rt-thread-official/bsp/stm32/libraries/HAL_Drivers/drivers/drv_usart_v2.c

1258 lines
37 KiB
C

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-06-01 KyleChan first version
*/
#include "board.h"
#include "drv_usart_v2.h"
#ifdef RT_USING_SERIAL_V2
//#define DRV_DEBUG
#define DBG_TAG "drv.usart"
#ifdef DRV_DEBUG
#define DBG_LVL DBG_LOG
#else
#define DBG_LVL DBG_INFO
#endif /* DRV_DEBUG */
#include <rtdbg.h>
#if !defined(BSP_USING_UART1) && !defined(BSP_USING_UART2) && !defined(BSP_USING_UART3) && \
!defined(BSP_USING_UART4) && !defined(BSP_USING_UART5) && !defined(BSP_USING_UART6) && \
!defined(BSP_USING_UART7) && !defined(BSP_USING_UART8) && !defined(BSP_USING_LPUART1)
#error "Please define at least one BSP_USING_UARTx"
/* this driver can be disabled at menuconfig -> RT-Thread Components -> Device Drivers */
#endif
#ifdef RT_SERIAL_USING_DMA
static void stm32_dma_config(struct rt_serial_device *serial, rt_ubase_t flag);
#endif
enum
{
#ifdef BSP_USING_UART1
UART1_INDEX,
#endif
#ifdef BSP_USING_UART2
UART2_INDEX,
#endif
#ifdef BSP_USING_UART3
UART3_INDEX,
#endif
#ifdef BSP_USING_UART4
UART4_INDEX,
#endif
#ifdef BSP_USING_UART5
UART5_INDEX,
#endif
#ifdef BSP_USING_UART6
UART6_INDEX,
#endif
#ifdef BSP_USING_UART7
UART7_INDEX,
#endif
#ifdef BSP_USING_UART8
UART8_INDEX,
#endif
#ifdef BSP_USING_LPUART1
LPUART1_INDEX,
#endif
};
static struct stm32_uart_config uart_config[] =
{
#ifdef BSP_USING_UART1
UART1_CONFIG,
#endif
#ifdef BSP_USING_UART2
UART2_CONFIG,
#endif
#ifdef BSP_USING_UART3
UART3_CONFIG,
#endif
#ifdef BSP_USING_UART4
UART4_CONFIG,
#endif
#ifdef BSP_USING_UART5
UART5_CONFIG,
#endif
#ifdef BSP_USING_UART6
UART6_CONFIG,
#endif
#ifdef BSP_USING_UART7
UART7_CONFIG,
#endif
#ifdef BSP_USING_UART8
UART8_CONFIG,
#endif
#ifdef BSP_USING_LPUART1
LPUART1_CONFIG,
#endif
};
static struct stm32_uart uart_obj[sizeof(uart_config) / sizeof(uart_config[0])] = {0};
static rt_err_t stm32_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
uart->handle.Instance = uart->config->Instance;
uart->handle.Init.BaudRate = cfg->baud_rate;
uart->handle.Init.Mode = UART_MODE_TX_RX;
#ifdef USART_CR1_OVER8
uart->handle.Init.OverSampling = cfg->baud_rate > 5000000 ? UART_OVERSAMPLING_8 : UART_OVERSAMPLING_16;
#else
uart->handle.Init.OverSampling = UART_OVERSAMPLING_16;
#endif /* USART_CR1_OVER8 */
switch (cfg->data_bits)
{
case DATA_BITS_8:
if (cfg->parity == PARITY_ODD || cfg->parity == PARITY_EVEN)
uart->handle.Init.WordLength = UART_WORDLENGTH_9B;
else
uart->handle.Init.WordLength = UART_WORDLENGTH_8B;
break;
case DATA_BITS_9:
uart->handle.Init.WordLength = UART_WORDLENGTH_9B;
break;
default:
uart->handle.Init.WordLength = UART_WORDLENGTH_8B;
break;
}
switch (cfg->stop_bits)
{
case STOP_BITS_1:
uart->handle.Init.StopBits = UART_STOPBITS_1;
break;
case STOP_BITS_2:
uart->handle.Init.StopBits = UART_STOPBITS_2;
break;
default:
uart->handle.Init.StopBits = UART_STOPBITS_1;
break;
}
switch (cfg->parity)
{
case PARITY_NONE:
uart->handle.Init.Parity = UART_PARITY_NONE;
break;
case PARITY_ODD:
uart->handle.Init.Parity = UART_PARITY_ODD;
break;
case PARITY_EVEN:
uart->handle.Init.Parity = UART_PARITY_EVEN;
break;
default:
uart->handle.Init.Parity = UART_PARITY_NONE;
break;
}
switch (cfg->flowcontrol)
{
case RT_SERIAL_FLOWCONTROL_NONE:
uart->handle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
break;
case RT_SERIAL_FLOWCONTROL_CTSRTS:
uart->handle.Init.HwFlowCtl = UART_HWCONTROL_RTS_CTS;
break;
default:
uart->handle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
break;
}
#ifdef RT_SERIAL_USING_DMA
uart->dma_rx.remaining_cnt = serial->config.rx_bufsz;
#endif
if (HAL_UART_Init(&uart->handle) != HAL_OK)
{
return -RT_ERROR;
}
return RT_EOK;
}
static rt_err_t stm32_control(struct rt_serial_device *serial, int cmd, void *arg)
{
struct stm32_uart *uart;
rt_ubase_t ctrl_arg = (rt_ubase_t)arg;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
if(ctrl_arg & (RT_DEVICE_FLAG_RX_BLOCKING | RT_DEVICE_FLAG_RX_NON_BLOCKING))
{
if (uart->uart_dma_flag & RT_DEVICE_FLAG_DMA_RX)
ctrl_arg = RT_DEVICE_FLAG_DMA_RX;
else
ctrl_arg = RT_DEVICE_FLAG_INT_RX;
}
else if(ctrl_arg & (RT_DEVICE_FLAG_TX_BLOCKING | RT_DEVICE_FLAG_TX_NON_BLOCKING))
{
if (uart->uart_dma_flag & RT_DEVICE_FLAG_DMA_TX)
ctrl_arg = RT_DEVICE_FLAG_DMA_TX;
else
ctrl_arg = RT_DEVICE_FLAG_INT_TX;
}
switch (cmd)
{
/* disable interrupt */
case RT_DEVICE_CTRL_CLR_INT:
NVIC_DisableIRQ(uart->config->irq_type);
if (ctrl_arg == RT_DEVICE_FLAG_INT_RX)
__HAL_UART_DISABLE_IT(&(uart->handle), UART_IT_RXNE);
else if (ctrl_arg == RT_DEVICE_FLAG_INT_TX)
__HAL_UART_DISABLE_IT(&(uart->handle), UART_IT_TXE);
#ifdef RT_SERIAL_USING_DMA
else if (ctrl_arg == RT_DEVICE_FLAG_DMA_RX)
{
__HAL_UART_DISABLE_IT(&(uart->handle), UART_IT_RXNE);
HAL_NVIC_DisableIRQ(uart->config->dma_rx->dma_irq);
if (HAL_DMA_Abort(&(uart->dma_rx.handle)) != HAL_OK)
{
RT_ASSERT(0);
}
if (HAL_DMA_DeInit(&(uart->dma_rx.handle)) != HAL_OK)
{
RT_ASSERT(0);
}
}
else if(ctrl_arg == RT_DEVICE_FLAG_DMA_TX)
{
__HAL_UART_DISABLE_IT(&(uart->handle), UART_IT_TC);
HAL_NVIC_DisableIRQ(uart->config->dma_tx->dma_irq);
if (HAL_DMA_DeInit(&(uart->dma_tx.handle)) != HAL_OK)
{
RT_ASSERT(0);
}
}
#endif
break;
case RT_DEVICE_CTRL_SET_INT:
HAL_NVIC_SetPriority(uart->config->irq_type, 1, 0);
HAL_NVIC_EnableIRQ(uart->config->irq_type);
if (ctrl_arg == RT_DEVICE_FLAG_INT_RX)
__HAL_UART_ENABLE_IT(&(uart->handle), UART_IT_RXNE);
else if (ctrl_arg == RT_DEVICE_FLAG_INT_TX)
__HAL_UART_ENABLE_IT(&(uart->handle), UART_IT_TXE);
break;
case RT_DEVICE_CTRL_CONFIG:
if (ctrl_arg & (RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX))
{
#ifdef RT_SERIAL_USING_DMA
stm32_dma_config(serial, ctrl_arg);
#endif
}
else
stm32_control(serial, RT_DEVICE_CTRL_SET_INT, (void *)ctrl_arg);
break;
case RT_DEVICE_CHECK_OPTMODE:
{
if (ctrl_arg & RT_DEVICE_FLAG_DMA_TX)
return RT_SERIAL_TX_BLOCKING_NO_BUFFER;
else
return RT_SERIAL_TX_BLOCKING_BUFFER;
}
case RT_DEVICE_CTRL_CLOSE:
if (HAL_UART_DeInit(&(uart->handle)) != HAL_OK )
{
RT_ASSERT(0)
}
break;
}
return RT_EOK;
}
static int stm32_putc(struct rt_serial_device *serial, char c)
{
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC);
UART_SET_TDR(&uart->handle, c);
while (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) == RESET);
return 1;
}
rt_uint32_t stm32_uart_get_mask(rt_uint32_t word_length, rt_uint32_t parity)
{
rt_uint32_t mask = 0;
if (word_length == UART_WORDLENGTH_8B)
{
if (parity == UART_PARITY_NONE)
{
mask = 0x00FFU ;
}
else
{
mask = 0x007FU ;
}
}
#ifdef UART_WORDLENGTH_9B
else if (word_length == UART_WORDLENGTH_9B)
{
if (parity == UART_PARITY_NONE)
{
mask = 0x01FFU ;
}
else
{
mask = 0x00FFU ;
}
}
#endif
#ifdef UART_WORDLENGTH_7B
else if (word_length == UART_WORDLENGTH_7B)
{
if (parity == UART_PARITY_NONE)
{
mask = 0x007FU ;
}
else
{
mask = 0x003FU ;
}
}
else
{
mask = 0x0000U;
}
#endif
return mask;
}
static int stm32_getc(struct rt_serial_device *serial)
{
int ch;
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
ch = -1;
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET)
ch = UART_GET_RDR(&uart->handle, stm32_uart_get_mask(uart->handle.Init.WordLength, uart->handle.Init.Parity));
return ch;
}
static rt_ssize_t stm32_transmit(struct rt_serial_device *serial,
rt_uint8_t *buf,
rt_size_t size,
rt_uint32_t tx_flag)
{
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
RT_ASSERT(buf != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
if (uart->uart_dma_flag & RT_DEVICE_FLAG_DMA_TX)
{
HAL_UART_Transmit_DMA(&uart->handle, buf, size);
return size;
}
stm32_control(serial, RT_DEVICE_CTRL_SET_INT, (void *)tx_flag);
return size;
}
#ifdef RT_SERIAL_USING_DMA
static void dma_recv_isr(struct rt_serial_device *serial, rt_uint8_t isr_flag)
{
struct stm32_uart *uart;
rt_size_t recv_len, counter;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
recv_len = 0;
counter = __HAL_DMA_GET_COUNTER(&(uart->dma_rx.handle));
if (counter <= uart->dma_rx.remaining_cnt)
recv_len = uart->dma_rx.remaining_cnt - counter;
else
recv_len = serial->config.rx_bufsz + uart->dma_rx.remaining_cnt - counter;
if (recv_len)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
SCB_InvalidateDCache_by_Addr((uint32_t *)rx_fifo->buffer, serial->config.rx_bufsz);
#endif
uart->dma_rx.remaining_cnt = counter;
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
}
}
#endif /* RT_SERIAL_USING_DMA */
/**
* Uart common interrupt process. This need add to uart ISR.
*
* @param serial serial device
*/
static void uart_isr(struct rt_serial_device *serial)
{
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
/* If the Read data register is not empty and the RXNE interrupt is enabled (RDR) */
if ((__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET) &&
(__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_RXNE) != RESET))
{
struct rt_serial_rx_fifo *rx_fifo;
rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
rt_ringbuffer_putchar(&(rx_fifo->rb), UART_GET_RDR(&uart->handle, stm32_uart_get_mask(uart->handle.Init.WordLength, uart->handle.Init.Parity)));
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
}
/* If the Transmit data register is empty and the TXE interrupt enable is enabled (TDR) */
else if ((__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TXE) != RESET) &&
(__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_TXE)) != RESET)
{
struct rt_serial_tx_fifo *tx_fifo;
tx_fifo = (struct rt_serial_tx_fifo *) serial->serial_tx;
RT_ASSERT(tx_fifo != RT_NULL);
rt_uint8_t put_char = 0;
if (rt_ringbuffer_getchar(&(tx_fifo->rb), &put_char))
{
UART_SET_TDR(&uart->handle, put_char);
}
else
{
__HAL_UART_DISABLE_IT(&(uart->handle), UART_IT_TXE);
__HAL_UART_ENABLE_IT(&(uart->handle), UART_IT_TC);
}
}
else if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) &&
(__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_TC) != RESET))
{
if (uart->uart_dma_flag & RT_DEVICE_FLAG_DMA_TX)
{
/* The HAL_UART_TxCpltCallback will be triggered */
HAL_UART_IRQHandler(&(uart->handle));
}
else
{
/* Transmission complete interrupt disable ( CR1 Register) */
__HAL_UART_DISABLE_IT(&(uart->handle), UART_IT_TC);
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DONE);
}
/* Clear Transmission complete interrupt flag ( ISR Register ) */
UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC);
}
#ifdef RT_SERIAL_USING_DMA
else if ((uart->uart_dma_flag) && (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_IDLE) != RESET)
&& (__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_IDLE) != RESET))
{
dma_recv_isr(serial, UART_RX_DMA_IT_IDLE_FLAG);
__HAL_UART_CLEAR_IDLEFLAG(&uart->handle);
}
#endif
else
{
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_ORE) != RESET)
{
LOG_E("(%s) serial device Overrun error!", serial->parent.parent.name);
__HAL_UART_CLEAR_OREFLAG(&uart->handle);
}
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_NE) != RESET)
{
__HAL_UART_CLEAR_NEFLAG(&uart->handle);
}
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_FE) != RESET)
{
__HAL_UART_CLEAR_FEFLAG(&uart->handle);
}
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_PE) != RESET)
{
__HAL_UART_CLEAR_PEFLAG(&uart->handle);
}
#if !defined(SOC_SERIES_STM32L4) && !defined(SOC_SERIES_STM32WL) && !defined(SOC_SERIES_STM32F7) && !defined(SOC_SERIES_STM32F0) \
&& !defined(SOC_SERIES_STM32L0) && !defined(SOC_SERIES_STM32G0) && !defined(SOC_SERIES_STM32H7) \
&& !defined(SOC_SERIES_STM32G4) && !defined(SOC_SERIES_STM32MP1) && !defined(SOC_SERIES_STM32WB)
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_LBD) != RESET)
{
UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_LBD);
}
#endif
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_CTS) != RESET)
{
UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_CTS);
}
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TXE) != RESET)
{
UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TXE);
}
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) != RESET)
{
UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC);
}
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET)
{
UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_RXNE);
}
}
}
#if defined(BSP_USING_UART1)
void USART1_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[UART1_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_RX_USING_DMA)
void UART1_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART1_INDEX].dma_rx.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_RX_USING_DMA) */
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_TX_USING_DMA)
void UART1_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART1_INDEX].dma_tx.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_TX_USING_DMA) */
#endif /* BSP_USING_UART1 */
#if defined(BSP_USING_UART2)
void USART2_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[UART2_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_RX_USING_DMA)
void UART2_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART2_INDEX].dma_rx.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_RX_USING_DMA) */
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_TX_USING_DMA)
void UART2_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART2_INDEX].dma_tx.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_TX_USING_DMA) */
#endif /* BSP_USING_UART2 */
#if defined(BSP_USING_UART3)
void USART3_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[UART3_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART3_RX_USING_DMA)
void UART3_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART3_INDEX].dma_rx.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_UART_USING_DMA_RX) && defined(BSP_UART3_RX_USING_DMA) */
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART3_TX_USING_DMA)
void UART3_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART3_INDEX].dma_tx.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_UART_USING_DMA_TX) && defined(BSP_UART3_TX_USING_DMA) */
#endif /* BSP_USING_UART3*/
#if defined(BSP_USING_UART4)
void UART4_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[UART4_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART4_RX_USING_DMA)
void UART4_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART4_INDEX].dma_rx.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_UART_USING_DMA_RX) && defined(BSP_UART4_RX_USING_DMA) */
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART4_TX_USING_DMA)
void UART4_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART4_INDEX].dma_tx.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_UART_USING_DMA_TX) && defined(BSP_UART4_TX_USING_DMA) */
#endif /* BSP_USING_UART4*/
#if defined(BSP_USING_UART5)
void UART5_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[UART5_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_RX_USING_DMA)
void UART5_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART5_INDEX].dma_rx.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_RX_USING_DMA) */
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_TX_USING_DMA)
void UART5_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART5_INDEX].dma_tx.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_TX_USING_DMA) */
#endif /* BSP_USING_UART5*/
#if defined(BSP_USING_UART6)
void USART6_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[UART6_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART6_RX_USING_DMA)
void UART6_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART6_INDEX].dma_rx.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART6_RX_USING_DMA) */
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART6_TX_USING_DMA)
void UART6_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART6_INDEX].dma_tx.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART6_TX_USING_DMA) */
#endif /* BSP_USING_UART6*/
#if defined(BSP_USING_UART7)
void UART7_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[UART7_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART7_RX_USING_DMA)
void UART7_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART7_INDEX].dma_rx.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART7_RX_USING_DMA) */
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART7_TX_USING_DMA)
void UART7_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART7_INDEX].dma_tx.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART7_TX_USING_DMA) */
#endif /* BSP_USING_UART7*/
#if defined(BSP_USING_UART8)
void UART8_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[UART8_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART8_RX_USING_DMA)
void UART8_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART8_INDEX].dma_rx.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART8_RX_USING_DMA) */
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART8_TX_USING_DMA)
void UART8_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART8_INDEX].dma_tx.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART8_TX_USING_DMA) */
#endif /* BSP_USING_UART8*/
#if defined(BSP_USING_LPUART1)
void LPUART1_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[LPUART1_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_LPUART1_RX_USING_DMA)
void LPUART1_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[LPUART1_INDEX].dma_rx.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_LPUART1_RX_USING_DMA) */
#endif /* BSP_USING_LPUART1*/
static void stm32_uart_get_config(void)
{
struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
#ifdef BSP_USING_UART1
uart_obj[UART1_INDEX].serial.config = config;
uart_obj[UART1_INDEX].uart_dma_flag = 0;
uart_obj[UART1_INDEX].serial.config.rx_bufsz = BSP_UART1_RX_BUFSIZE;
uart_obj[UART1_INDEX].serial.config.tx_bufsz = BSP_UART1_TX_BUFSIZE;
#ifdef BSP_UART1_RX_USING_DMA
uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config uart1_dma_rx = UART1_DMA_RX_CONFIG;
uart_config[UART1_INDEX].dma_rx = &uart1_dma_rx;
#endif
#ifdef BSP_UART1_TX_USING_DMA
uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config uart1_dma_tx = UART1_DMA_TX_CONFIG;
uart_config[UART1_INDEX].dma_tx = &uart1_dma_tx;
#endif
#endif
#ifdef BSP_USING_UART2
uart_obj[UART2_INDEX].serial.config = config;
uart_obj[UART2_INDEX].uart_dma_flag = 0;
uart_obj[UART2_INDEX].serial.config.rx_bufsz = BSP_UART2_RX_BUFSIZE;
uart_obj[UART2_INDEX].serial.config.tx_bufsz = BSP_UART2_TX_BUFSIZE;
#ifdef BSP_UART2_RX_USING_DMA
uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config uart2_dma_rx = UART2_DMA_RX_CONFIG;
uart_config[UART2_INDEX].dma_rx = &uart2_dma_rx;
#endif
#ifdef BSP_UART2_TX_USING_DMA
uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config uart2_dma_tx = UART2_DMA_TX_CONFIG;
uart_config[UART2_INDEX].dma_tx = &uart2_dma_tx;
#endif
#endif
#ifdef BSP_USING_UART3
uart_obj[UART3_INDEX].serial.config = config;
uart_obj[UART3_INDEX].uart_dma_flag = 0;
uart_obj[UART3_INDEX].serial.config.rx_bufsz = BSP_UART3_RX_BUFSIZE;
uart_obj[UART3_INDEX].serial.config.tx_bufsz = BSP_UART3_TX_BUFSIZE;
#ifdef BSP_UART3_RX_USING_DMA
uart_obj[UART3_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config uart3_dma_rx = UART3_DMA_RX_CONFIG;
uart_config[UART3_INDEX].dma_rx = &uart3_dma_rx;
#endif
#ifdef BSP_UART3_TX_USING_DMA
uart_obj[UART3_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config uart3_dma_tx = UART3_DMA_TX_CONFIG;
uart_config[UART3_INDEX].dma_tx = &uart3_dma_tx;
#endif
#endif
#ifdef BSP_USING_UART4
uart_obj[UART4_INDEX].serial.config = config;
uart_obj[UART4_INDEX].uart_dma_flag = 0;
uart_obj[UART4_INDEX].serial.config.rx_bufsz = BSP_UART4_RX_BUFSIZE;
uart_obj[UART4_INDEX].serial.config.tx_bufsz = BSP_UART4_TX_BUFSIZE;
#ifdef BSP_UART4_RX_USING_DMA
uart_obj[UART4_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config uart4_dma_rx = UART4_DMA_RX_CONFIG;
uart_config[UART4_INDEX].dma_rx = &uart4_dma_rx;
#endif
#ifdef BSP_UART4_TX_USING_DMA
uart_obj[UART4_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config uart4_dma_tx = UART4_DMA_TX_CONFIG;
uart_config[UART4_INDEX].dma_tx = &uart4_dma_tx;
#endif
#endif
#ifdef BSP_USING_UART5
uart_obj[UART5_INDEX].serial.config = config;
uart_obj[UART5_INDEX].uart_dma_flag = 0;
uart_obj[UART5_INDEX].serial.config.rx_bufsz = BSP_UART5_RX_BUFSIZE;
uart_obj[UART5_INDEX].serial.config.tx_bufsz = BSP_UART5_TX_BUFSIZE;
#ifdef BSP_UART5_RX_USING_DMA
uart_obj[UART5_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config uart5_dma_rx = UART5_DMA_RX_CONFIG;
uart_config[UART5_INDEX].dma_rx = &uart5_dma_rx;
#endif
#ifdef BSP_UART5_TX_USING_DMA
uart_obj[UART5_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config uart5_dma_tx = UART5_DMA_TX_CONFIG;
uart_config[UART5_INDEX].dma_tx = &uart5_dma_tx;
#endif
#endif
#ifdef BSP_USING_UART6
uart_obj[UART6_INDEX].serial.config = config;
uart_obj[UART6_INDEX].uart_dma_flag = 0;
uart_obj[UART6_INDEX].serial.config.rx_bufsz = BSP_UART6_RX_BUFSIZE;
uart_obj[UART6_INDEX].serial.config.tx_bufsz = BSP_UART6_TX_BUFSIZE;
#ifdef BSP_UART6_RX_USING_DMA
uart_obj[UART6_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config uart6_dma_rx = UART6_DMA_RX_CONFIG;
uart_config[UART6_INDEX].dma_rx = &uart6_dma_rx;
#endif
#ifdef BSP_UART6_TX_USING_DMA
uart_obj[UART6_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config uart6_dma_tx = UART6_DMA_TX_CONFIG;
uart_config[UART6_INDEX].dma_tx = &uart6_dma_tx;
#endif
#endif
#ifdef BSP_USING_UART7
uart_obj[UART7_INDEX].serial.config = config;
uart_obj[UART7_INDEX].uart_dma_flag = 0;
uart_obj[UART7_INDEX].serial.config.rx_bufsz = BSP_UART7_RX_BUFSIZE;
uart_obj[UART7_INDEX].serial.config.tx_bufsz = BSP_UART7_TX_BUFSIZE;
#ifdef BSP_UART7_RX_USING_DMA
uart_obj[UART7_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config uart7_dma_rx = UART7_DMA_RX_CONFIG;
uart_config[UART7_INDEX].dma_rx = &uart7_dma_rx;
#endif
#ifdef BSP_UART7_TX_USING_DMA
uart_obj[UART7_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config uart7_dma_tx = UART7_DMA_TX_CONFIG;
uart_config[UART7_INDEX].dma_tx = &uart7_dma_tx;
#endif
#endif
#ifdef BSP_USING_UART8
uart_obj[UART8_INDEX].serial.config = config;
uart_obj[UART8_INDEX].uart_dma_flag = 0;
uart_obj[UART8_INDEX].serial.config.rx_bufsz = BSP_UART8_RX_BUFSIZE;
uart_obj[UART8_INDEX].serial.config.tx_bufsz = BSP_UART8_TX_BUFSIZE;
#ifdef BSP_UART8_RX_USING_DMA
uart_obj[UART8_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config uart8_dma_rx = UART8_DMA_RX_CONFIG;
uart_config[UART8_INDEX].dma_rx = &uart8_dma_rx;
#endif
#ifdef BSP_UART8_TX_USING_DMA
uart_obj[UART8_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config uart8_dma_tx = UART8_DMA_TX_CONFIG;
uart_config[UART8_INDEX].dma_tx = &uart8_dma_tx;
#endif
#endif
}
#ifdef RT_SERIAL_USING_DMA
static void stm32_dma_config(struct rt_serial_device *serial, rt_ubase_t flag)
{
struct rt_serial_rx_fifo *rx_fifo;
DMA_HandleTypeDef *DMA_Handle;
struct dma_config *dma_config;
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
RT_ASSERT(flag == RT_DEVICE_FLAG_DMA_TX || flag == RT_DEVICE_FLAG_DMA_RX);
uart = rt_container_of(serial, struct stm32_uart, serial);
if (RT_DEVICE_FLAG_DMA_RX == flag)
{
DMA_Handle = &uart->dma_rx.handle;
dma_config = uart->config->dma_rx;
}
else /* RT_DEVICE_FLAG_DMA_TX == flag */
{
DMA_Handle = &uart->dma_tx.handle;
dma_config = uart->config->dma_tx;
}
LOG_D("%s dma config start", uart->config->name);
{
rt_uint32_t tmpreg = 0x00U;
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0) \
|| defined(SOC_SERIES_STM32L0)
/* enable DMA clock && Delay after an RCC peripheral clock enabling*/
SET_BIT(RCC->AHBENR, dma_config->dma_rcc);
tmpreg = READ_BIT(RCC->AHBENR, dma_config->dma_rcc);
#elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) \
|| defined(SOC_SERIES_STM32G4)|| defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32WB)
/* enable DMA clock && Delay after an RCC peripheral clock enabling*/
SET_BIT(RCC->AHB1ENR, dma_config->dma_rcc);
tmpreg = READ_BIT(RCC->AHB1ENR, dma_config->dma_rcc);
#elif defined(SOC_SERIES_STM32MP1)
/* enable DMA clock && Delay after an RCC peripheral clock enabling*/
SET_BIT(RCC->MP_AHB2ENSETR, dma_config->dma_rcc);
tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, dma_config->dma_rcc);
#endif
#if defined(DMAMUX1) && (defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32WB))
/* enable DMAMUX clock for L4+ and G4 */
__HAL_RCC_DMAMUX1_CLK_ENABLE();
#elif defined(SOC_SERIES_STM32MP1)
__HAL_RCC_DMAMUX_CLK_ENABLE();
#endif
UNUSED(tmpreg); /* To avoid compiler warnings */
}
if (RT_DEVICE_FLAG_DMA_RX == flag)
{
__HAL_LINKDMA(&(uart->handle), hdmarx, uart->dma_rx.handle);
}
else if (RT_DEVICE_FLAG_DMA_TX == flag)
{
__HAL_LINKDMA(&(uart->handle), hdmatx, uart->dma_tx.handle);
}
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32L0)
DMA_Handle->Instance = dma_config->Instance;
#elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
DMA_Handle->Instance = dma_config->Instance;
DMA_Handle->Init.Channel = dma_config->channel;
#elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32WB)\
|| defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
DMA_Handle->Instance = dma_config->Instance;
DMA_Handle->Init.Request = dma_config->request;
#endif
DMA_Handle->Init.PeriphInc = DMA_PINC_DISABLE;
DMA_Handle->Init.MemInc = DMA_MINC_ENABLE;
DMA_Handle->Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
DMA_Handle->Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
if (RT_DEVICE_FLAG_DMA_RX == flag)
{
DMA_Handle->Init.Direction = DMA_PERIPH_TO_MEMORY;
DMA_Handle->Init.Mode = DMA_CIRCULAR;
}
else if (RT_DEVICE_FLAG_DMA_TX == flag)
{
DMA_Handle->Init.Direction = DMA_MEMORY_TO_PERIPH;
DMA_Handle->Init.Mode = DMA_NORMAL;
}
DMA_Handle->Init.Priority = DMA_PRIORITY_MEDIUM;
#if defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
DMA_Handle->Init.FIFOMode = DMA_FIFOMODE_DISABLE;
#endif
if (HAL_DMA_DeInit(DMA_Handle) != HAL_OK)
{
RT_ASSERT(0);
}
if (HAL_DMA_Init(DMA_Handle) != HAL_OK)
{
RT_ASSERT(0);
}
/* enable interrupt */
if (flag == RT_DEVICE_FLAG_DMA_RX)
{
rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
/* Start DMA transfer */
if (HAL_UART_Receive_DMA(&(uart->handle), rx_fifo->buffer, serial->config.rx_bufsz) != HAL_OK)
{
/* Transfer error in reception process */
RT_ASSERT(0);
}
CLEAR_BIT(uart->handle.Instance->CR3, USART_CR3_EIE);
__HAL_UART_ENABLE_IT(&(uart->handle), UART_IT_IDLE);
}
/* DMA irq should set in DMA TX mode, or HAL_UART_TxCpltCallback function will not be called */
HAL_NVIC_SetPriority(dma_config->dma_irq, 0, 0);
HAL_NVIC_EnableIRQ(dma_config->dma_irq);
HAL_NVIC_SetPriority(uart->config->irq_type, 1, 0);
HAL_NVIC_EnableIRQ(uart->config->irq_type);
LOG_D("%s dma %s instance: %x", uart->config->name, flag == RT_DEVICE_FLAG_DMA_RX ? "RX" : "TX", DMA_Handle->Instance);
LOG_D("%s dma config done", uart->config->name);
}
/**
* @brief UART error callbacks
* @param huart: UART handle
* @note This example shows a simple way to report transfer error, and you can
* add your own implementation.
* @retval None
*/
void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
{
RT_ASSERT(huart != NULL);
struct stm32_uart *uart = (struct stm32_uart *)huart;
LOG_D("%s: %s %d\n", __FUNCTION__, uart->config->name, huart->ErrorCode);
UNUSED(uart);
}
/**
* @brief Rx Transfer completed callback
* @param huart: UART handle
* @note This example shows a simple way to report end of DMA Rx transfer, and
* you can add your own implementation.
* @retval None
*/
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
struct stm32_uart *uart;
RT_ASSERT(huart != NULL);
uart = (struct stm32_uart *)huart;
dma_recv_isr(&uart->serial, UART_RX_DMA_IT_TC_FLAG);
}
/**
* @brief Rx Half transfer completed callback
* @param huart: UART handle
* @note This example shows a simple way to report end of DMA Rx Half transfer,
* and you can add your own implementation.
* @retval None
*/
void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart)
{
struct stm32_uart *uart;
RT_ASSERT(huart != NULL);
uart = (struct stm32_uart *)huart;
dma_recv_isr(&uart->serial, UART_RX_DMA_IT_HT_FLAG);
}
/**
* @brief HAL_UART_TxCpltCallback
* @param huart: UART handle
* @note This callback can be called by two functions, first in UART_EndTransmit_IT when
* UART Tx complete and second in UART_DMATransmitCplt function in DMA Circular mode.
* @retval None
*/
void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
{
struct stm32_uart *uart;
struct rt_serial_device *serial;
rt_size_t trans_total_index;
rt_base_t level;
RT_ASSERT(huart != NULL);
uart = (struct stm32_uart *)huart;
serial = &uart->serial;
RT_ASSERT(serial != RT_NULL);
level = rt_hw_interrupt_disable();
trans_total_index = __HAL_DMA_GET_COUNTER(&(uart->dma_tx.handle));
rt_hw_interrupt_enable(level);
if (trans_total_index) return;
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DMADONE);
}
#endif /* RT_SERIAL_USING_DMA */
static const struct rt_uart_ops stm32_uart_ops =
{
.configure = stm32_configure,
.control = stm32_control,
.putc = stm32_putc,
.getc = stm32_getc,
.transmit = stm32_transmit
};
int rt_hw_usart_init(void)
{
rt_err_t result = 0;
rt_size_t obj_num = sizeof(uart_obj) / sizeof(struct stm32_uart);
stm32_uart_get_config();
for (int i = 0; i < obj_num; i++)
{
/* init UART object */
uart_obj[i].config = &uart_config[i];
uart_obj[i].serial.ops = &stm32_uart_ops;
/* register UART device */
result = rt_hw_serial_register(&uart_obj[i].serial,
uart_obj[i].config->name,
RT_DEVICE_FLAG_RDWR,
NULL);
RT_ASSERT(result == RT_EOK);
}
return result;
}
#endif /* RT_USING_SERIAL_V2 */