rt-thread-official/bsp/nxp/mcx/mcxn/Libraries/drivers/drv_sdio.c

358 lines
9.5 KiB
C

/*
* Copyright (c) 2006-2024, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2017-08-08 Yang the first version
* 2019-07-19 yandld The first version for MCXN
* 2023-02-0 Alex Yang update driver
*/
#include <rtdevice.h>
#include "fsl_usdhc.h"
#ifdef RT_USING_SDIO
//#define MMCSD_DEBUG
#ifdef MMCSD_DEBUG
#define MMCSD_DGB rt_kprintf
#else
#define MMCSD_DGB(fmt, ...)
#endif
#define USDHC_ADMA_TABLE_WORDS (32U) /* define the ADMA descriptor table length */
#define USDHC_ADMA2_ADDR_ALIGN (4U) /* define the ADMA2 descriptor table addr align size */
AT_NONCACHEABLE_SECTION_ALIGN(uint32_t g_usdhcAdma2Table[USDHC_ADMA_TABLE_WORDS], USDHC_ADMA2_ADDR_ALIGN);
struct mcx_mmcsd
{
struct rt_mmcsd_host *host;
USDHC_Type *USDHC;
uint32_t *usdhc_adma2_table;
};
#define USDHC_DMA_MODE kUSDHC_DmaModeAdma2
#define USDHC_ENDIAN_MODE kUSDHC_EndianModeLittle
#define USDHC_READ_BURST_LEN (8U) /*!< number of words USDHC read in a single burst */
#define USDHC_WRITE_BURST_LEN (8U) /*!< number of words USDHC write in a single burst */
#define USDHC_DATA_TIMEOUT (0xFU) /*!< data timeout counter value */
#define SDMMCHOST_SUPPORT_MAX_BLOCK_LENGTH (4096U)
#define SDMMCHOST_SUPPORT_MAX_BLOCK_COUNT (USDHC_MAX_BLOCK_COUNT)
/* Read/write watermark level. The bigger value indicates DMA has higher read/write performance. */
#define USDHC_READ_WATERMARK_LEVEL (0x80U)
#define USDHC_WRITE_WATERMARK_LEVEL (0x80U)
static void SDMMCHOST_ErrorRecovery(USDHC_Type *base)
{
uint32_t status = 0U;
/* get host present status */
status = USDHC_GetPresentStatusFlags(base);
/* check command inhibit status flag */
if ((status & kUSDHC_CommandInhibitFlag) != 0U)
{
/* reset command line */
USDHC_Reset(base, kUSDHC_ResetCommand, 1000U);
}
/* check data inhibit status flag */
if ((status & kUSDHC_DataInhibitFlag) != 0U)
{
/* reset data line */
USDHC_Reset(base, kUSDHC_ResetData, 1000U);
}
}
static void mcx_sdmmc_request(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
{
struct mcx_mmcsd *mmcsd;
struct rt_mmcsd_cmd *cmd;
struct rt_mmcsd_data *data;
status_t error;
usdhc_adma_config_t dmaConfig;
usdhc_transfer_t fsl_content = {0};
usdhc_command_t fsl_command = {0};
usdhc_data_t fsl_data = {0};
rt_uint32_t *buf = NULL;
RT_ASSERT(host != RT_NULL);
RT_ASSERT(req != RT_NULL);
mmcsd = (struct mcx_mmcsd *)host->private_data;
RT_ASSERT(mmcsd != RT_NULL);
cmd = req->cmd;
RT_ASSERT(cmd != RT_NULL);
MMCSD_DGB("\tcmd->cmd_code: %02d, cmd->arg: %08x, cmd->flags: %08x --> ", cmd->cmd_code, cmd->arg, cmd->flags);
data = cmd->data;
rt_memset(&dmaConfig, 0, sizeof(usdhc_adma_config_t));
/* config adma */
dmaConfig.dmaMode = USDHC_DMA_MODE;
dmaConfig.burstLen = kUSDHC_EnBurstLenForINCR;
dmaConfig.admaTable = mmcsd->usdhc_adma2_table;
dmaConfig.admaTableWords = USDHC_ADMA_TABLE_WORDS;
fsl_command.index = cmd->cmd_code;
fsl_command.argument = cmd->arg;
if (cmd->cmd_code == STOP_TRANSMISSION)
fsl_command.type = kCARD_CommandTypeAbort;
else
fsl_command.type = kCARD_CommandTypeNormal;
switch (cmd->flags & RESP_MASK)
{
case RESP_NONE:
fsl_command.responseType = kCARD_ResponseTypeNone;
break;
case RESP_R1:
fsl_command.responseType = kCARD_ResponseTypeR1;
break;
case RESP_R1B:
fsl_command.responseType = kCARD_ResponseTypeR1b;
break;
case RESP_R2:
fsl_command.responseType = kCARD_ResponseTypeR2;
break;
case RESP_R3:
fsl_command.responseType = kCARD_ResponseTypeR3;
break;
case RESP_R4:
fsl_command.responseType = kCARD_ResponseTypeR4;
break;
case RESP_R6:
fsl_command.responseType = kCARD_ResponseTypeR6;
break;
case RESP_R7:
fsl_command.responseType = kCARD_ResponseTypeR7;
break;
case RESP_R5:
fsl_command.responseType = kCARD_ResponseTypeR5;
break;
default:
RT_ASSERT(NULL);
}
fsl_command.flags = 0;
fsl_content.command = &fsl_command;
if (data)
{
if (req->stop != NULL)
fsl_data.enableAutoCommand12 = true;
else
fsl_data.enableAutoCommand12 = false;
fsl_data.enableAutoCommand23 = false;
fsl_data.enableIgnoreError = false;
fsl_data.dataType = kUSDHC_TransferDataNormal; //todo : update data type
fsl_data.blockSize = data->blksize;
fsl_data.blockCount = data->blks;
MMCSD_DGB(" blksize:%d, blks:%d ", fsl_data.blockSize, fsl_data.blockCount);
if ((cmd->cmd_code == WRITE_BLOCK) || (cmd->cmd_code == WRITE_MULTIPLE_BLOCK))
{
if (buf)
{
MMCSD_DGB(" write(data->buf to buf) ");
rt_memcpy(buf, data->buf, fsl_data.blockSize * fsl_data.blockCount);
fsl_data.txData = (uint32_t const *)buf;
}
else
{
fsl_data.txData = (uint32_t const *)data->buf;
}
fsl_data.rxData = NULL;
}
else
{
if (buf)
{
fsl_data.rxData = (uint32_t *)buf;
}
else
{
fsl_data.rxData = (uint32_t *)data->buf;
}
fsl_data.txData = NULL;
}
fsl_content.data = &fsl_data;
}
else
{
fsl_content.data = NULL;
}
error = USDHC_TransferBlocking(mmcsd->USDHC, &dmaConfig, &fsl_content);
if (error != kStatus_Success)
{
SDMMCHOST_ErrorRecovery(mmcsd->USDHC);
MMCSD_DGB(" ***USDHC_TransferBlocking error: %d*** --> \n", error);
cmd->err = -RT_ERROR;
}
if (buf)
{
if (fsl_data.rxData)
{
MMCSD_DGB("read copy buf to data->buf ");
rt_memcpy(data->buf, buf, fsl_data.blockSize * fsl_data.blockCount);
}
rt_free_align(buf);
}
if ((cmd->flags & RESP_MASK) == RESP_R2)
{
cmd->resp[3] = fsl_command.response[0];
cmd->resp[2] = fsl_command.response[1];
cmd->resp[1] = fsl_command.response[2];
cmd->resp[0] = fsl_command.response[3];
MMCSD_DGB(" resp 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]);
}
else
{
cmd->resp[0] = fsl_command.response[0];
MMCSD_DGB(" resp 0x%08X\n", cmd->resp[0]);
}
mmcsd_req_complete(host);
return;
}
static void mcx_sdmmc_set_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
{
MMCSD_DGB("%s\r\n", __FUNCTION__);
struct mcx_mmcsd *mmcsd;
mmcsd = (struct mcx_mmcsd *) host->private_data;
uint32_t sdxc_clock = io_cfg->clock;
MMCSD_DGB("sdxc_clock:%d\r\n", sdxc_clock);
MMCSD_DGB("bus_width:%d\r\n", io_cfg->bus_width);
if (sdxc_clock != 0U)
{
USDHC_SetSdClock(mmcsd->USDHC, CLOCK_GetUsdhcClkFreq(), sdxc_clock);
switch (io_cfg->bus_width)
{
case MMCSD_BUS_WIDTH_4:
USDHC_SetDataBusWidth(mmcsd->USDHC, kUSDHC_DataBusWidth4Bit);
break;
case MMCSD_BUS_WIDTH_8:
USDHC_SetDataBusWidth(mmcsd->USDHC, kUSDHC_DataBusWidth4Bit);
break;
default:
USDHC_SetDataBusWidth(mmcsd->USDHC, kUSDHC_DataBusWidth1Bit);
break;
}
}
rt_thread_mdelay(20);
}
static const struct rt_mmcsd_host_ops mcx_mmcsd_host_ops =
{
.request = mcx_sdmmc_request,
.set_iocfg = mcx_sdmmc_set_iocfg,
.get_card_status = NULL,
.enable_sdio_irq = NULL, // Do not use the interrupt mode, use DMA instead
};
int rt_hw_sdio_init(void)
{
struct rt_mmcsd_host *host = RT_NULL;
struct mcx_mmcsd *mmcsd = RT_NULL;
host = mmcsd_alloc_host();
if (!host)
{
return -RT_ERROR;
}
mmcsd = rt_malloc(sizeof(struct mcx_mmcsd));
if (!mmcsd)
{
MMCSD_DGB("alloc mci failed\n");
goto err;
}
rt_memset(mmcsd, 0, sizeof(struct mcx_mmcsd));
mmcsd->USDHC = USDHC0;
mmcsd->usdhc_adma2_table = g_usdhcAdma2Table;
host->ops = &mcx_mmcsd_host_ops;
host->freq_min = 375000;
host->freq_max = 50000000;
host->valid_ocr = VDD_32_33 | VDD_33_34;
host->flags = MMCSD_MUTBLKWRITE | MMCSD_BUSWIDTH_4 | MMCSD_SUP_HIGHSPEED | MMCSD_SUP_SDIO_IRQ;
host->max_seg_size = 65535;
host->max_dma_segs = 2;
host->max_blk_size = SDMMCHOST_SUPPORT_MAX_BLOCK_LENGTH;
host->max_blk_count = SDMMCHOST_SUPPORT_MAX_BLOCK_COUNT;
mmcsd->host = host;
/* attach FRO HF to USDHC */
CLOCK_SetClkDiv(kCLOCK_DivUSdhcClk, 1u);
CLOCK_AttachClk(kFRO_HF_to_USDHC);
MMCSD_DGB("SDIO clock:%dHz\r\n", CLOCK_GetUsdhcClkFreq());
/* Initializes SDHC. */
usdhc_config_t config;
config.dataTimeout = USDHC_DATA_TIMEOUT;
config.endianMode = USDHC_ENDIAN_MODE;
config.readWatermarkLevel = USDHC_READ_WATERMARK_LEVEL;
config.writeWatermarkLevel = USDHC_WRITE_WATERMARK_LEVEL;
config.readBurstLen = USDHC_READ_BURST_LEN;
config.writeBurstLen = USDHC_WRITE_BURST_LEN;
USDHC_Init(USDHC0, &config);
host->private_data = mmcsd;
mmcsd_change(host);
return 0;
err:
mmcsd_free_host(host);
return -RT_ENOMEM;
}
INIT_DEVICE_EXPORT(rt_hw_sdio_init);
#endif /* endif RT_USING_SDIO */