4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-25 10:47:23 +08:00
2023-03-31 07:58:24 -04:00

562 lines
16 KiB
C

/**************************************************************************//**
*
* @copyright (C) 2020 Nuvoton Technology Corp. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-2-11 Wayne First version
*
******************************************************************************/
#include <rtconfig.h>
#if defined(BSP_USING_QSPI)
#include <rtdevice.h>
#include "NuMicro.h"
#include <nu_bitutil.h>
#include <drv_sys.h>
#include <drv_qspi.h>
#define LOG_TAG "drv.qspi"
#define DBG_ENABLE
#define DBG_SECTION_NAME LOG_TAG
#define DBG_LEVEL DBG_INFO
#define DBG_COLOR
#include <rtdbg.h>
#include <rthw.h>
#include <rtdevice.h>
#include <rtdef.h>
/* Private define ---------------------------------------------------------------*/
/* fsclk = fpclk / ((div+1)*2), but div=1 is suggested. */
#define DEF_SPI_MAX_SPEED (SPI_INPUT_CLOCK/((1)*2))
enum
{
QSPI_START = -1,
#if defined(BSP_USING_QSPI0)
QSPI0_IDX,
#endif
#if defined(BSP_USING_QSPI1)
QSPI1_IDX,
#endif
QSPI_CNT
};
/* Private typedef --------------------------------------------------------------*/
struct nu_qspi
{
struct rt_spi_bus dev;
char *name;
uint32_t idx;
E_SYS_IPRST rstidx;
E_SYS_IPCLK clkidx;
uint32_t dummy;
struct rt_qspi_configuration configuration;
};
typedef struct nu_qspi *nu_qspi_t;
/* Private functions ------------------------------------------------------------*/
static void nu_qspi_transmission_with_poll(struct nu_qspi *spi_bus,
uint8_t *send_addr, uint8_t *recv_addr, int length, uint8_t bytes_per_word);
static int nu_qspi_register_bus(struct nu_qspi *spi_bus, const char *name);
static rt_ssize_t nu_qspi_bus_xfer(struct rt_spi_device *device, struct rt_spi_message *message);
static rt_err_t nu_qspi_bus_configure(struct rt_spi_device *device, struct rt_spi_configuration *configuration);
/* Public functions -------------------------------------------------------------*/
/* Private variables ------------------------------------------------------------*/
static struct rt_spi_ops nu_qspi_poll_ops =
{
.configure = nu_qspi_bus_configure,
.xfer = nu_qspi_bus_xfer,
};
static struct nu_qspi nu_qspi_arr [] =
{
#if defined(BSP_USING_QSPI0)
{
.name = "qspi0",
.idx = 0,
.rstidx = SPI0RST,
.clkidx = SPI0CKEN,
},
#endif
#if defined(BSP_USING_QSPI1)
{
.name = "qspi1",
.idx = 1,
.rstidx = SPI1RST,
.clkidx = SPI1CKEN,
},
#endif
}; /* nu_qspi */
static rt_err_t nu_qspi_bus_configure(struct rt_spi_device *device,
struct rt_spi_configuration *configuration)
{
struct nu_qspi *qspi_bus;
uint32_t u32SPIMode;
uint32_t u32SPISpeed;
rt_err_t ret = RT_EOK;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
qspi_bus = (struct nu_qspi *) device->bus;
/* Check mode */
switch (configuration->mode & RT_SPI_MODE_3)
{
case RT_SPI_MODE_0:
u32SPIMode = SPI_MODE_0;
break;
case RT_SPI_MODE_1:
u32SPIMode = SPI_MODE_1;
break;
case RT_SPI_MODE_2:
u32SPIMode = SPI_MODE_2;
break;
case RT_SPI_MODE_3:
u32SPIMode = SPI_MODE_3;
break;
default:
ret = -RT_EIO;
goto exit_nu_qspi_bus_configure;
}
/* Check data width */
if (!(configuration->data_width == 8 ||
configuration->data_width == 16 ||
configuration->data_width == 24 ||
configuration->data_width == 32))
{
ret = -RT_EINVAL;
goto exit_nu_qspi_bus_configure;
}
/* Need to initialize new configuration? */
if (rt_memcmp(configuration, &qspi_bus->configuration, sizeof(*configuration)) != 0)
{
rt_memcpy(&qspi_bus->configuration, configuration, sizeof(*configuration));
/* Set mode */
spiIoctl(qspi_bus->idx, SPI_IOC_SET_MODE, (uint32_t)u32SPIMode, 0);
/* Set data width */
spiIoctl(qspi_bus->idx, SPI_IOC_SET_TX_BITLEN, (uint32_t)configuration->data_width, 0);
/* Set speed */
u32SPISpeed = configuration->max_hz;
/* Limitation: SPI clock must be lower than 37.5MHz. */
if ((SPI_INPUT_CLOCK / 2) > 37500000)
u32SPISpeed = SPI_INPUT_CLOCK / 4;
else if (u32SPISpeed > DEF_SPI_MAX_SPEED)
u32SPISpeed = DEF_SPI_MAX_SPEED;
u32SPISpeed = spiIoctl(qspi_bus->idx, SPI_IOC_SET_SPEED, u32SPISpeed, 0);
LOG_I("Actual=%dHz, Prefer=%dHz", u32SPISpeed, configuration->max_hz);
/* Disable auto-select */
spiIoctl(qspi_bus->idx, SPI_IOC_SET_AUTOSS, SPI_DISABLE_AUTOSS, 0);
if (configuration->mode & RT_SPI_CS_HIGH)
{
/* Set CS pin to LOW */
spiIoctl(qspi_bus->idx, SPI_IOC_SET_SS_ACTIVE_LEVEL, SPI_SS_ACTIVE_HIGH, 0);
}
else
{
/* Set CS pin to HIGH */
spiIoctl(qspi_bus->idx, SPI_IOC_SET_SS_ACTIVE_LEVEL, SPI_SS_ACTIVE_LOW, 0);
}
if (configuration->mode & RT_SPI_MSB)
{
/* Set sequence to MSB first */
spiIoctl(qspi_bus->idx, SPI_IOC_SET_LSB_MSB, SPI_MSB, 0);
}
else
{
/* Set sequence to LSB first */
spiIoctl(qspi_bus->idx, SPI_IOC_SET_LSB_MSB, SPI_LSB, 0);
}
}
exit_nu_qspi_bus_configure:
return -(ret);
}
static int nu_qspi_read(uint32_t idx, uint32_t buf_id, uint8_t *recv_addr, uint8_t bytes_per_word)
{
uint32_t val;
// Read data from SPI RX FIFO
switch (bytes_per_word)
{
case 4:
val = spiRead(idx, buf_id);
nu_set32_le(recv_addr, val);
break;
case 3:
val = spiRead(idx, buf_id);
nu_set24_le(recv_addr, val);
break;
case 2:
val = spiRead(idx, buf_id);
nu_set16_le(recv_addr, val);
break;
case 1:
*recv_addr = spiRead(idx, buf_id);
break;
default:
LOG_E("Data length is not supported.\n");
return 0;
}
return bytes_per_word;
}
static int nu_qspi_write(uint32_t idx, uint32_t buf_id, const uint8_t *send_addr, uint8_t bytes_per_word)
{
// Input data to SPI TX
switch (bytes_per_word)
{
case 4:
spiWrite(idx, buf_id, nu_get32_le(send_addr));
break;
case 3:
spiWrite(idx, buf_id, nu_get24_le(send_addr));
break;
case 2:
spiWrite(idx, buf_id, nu_get16_le(send_addr));
break;
case 1:
spiWrite(idx, buf_id, *((uint8_t *)send_addr));
break;
default:
LOG_E("Data length is not supported.\n");
return 0;
}
return bytes_per_word;
}
/**
* @brief SPI bus polling
* @param dev : The pointer of the specified SPI module.
* @param send_addr : Source address
* @param recv_addr : Destination address
* @param length : Data length
*/
static void nu_qspi_transmission_with_poll(struct nu_qspi *spi_bus,
uint8_t *send_addr, uint8_t *recv_addr, int length, uint8_t bytes_per_word)
{
uint32_t idx = spi_bus->idx;
int trans_num = length / bytes_per_word;
while (trans_num > 0)
{
int i;
uint32_t u32TxNum = (trans_num > 4) ? 4 : trans_num;
for (i = 0; i < u32TxNum; i++)
{
/* Write TX data into TX-buffer */
if ((send_addr != RT_NULL))
{
send_addr += nu_qspi_write(idx, i, (const uint8_t *)send_addr, bytes_per_word);
}
else /* read-only */
{
spi_bus->dummy = 0;
nu_qspi_write(idx, i, (const uint8_t *)&spi_bus->dummy, bytes_per_word);
}
}
/* Set TX transacation number */
spiIoctl(idx, SPI_IOC_SET_TX_NUM, u32TxNum - 1, 0);
/* Trigger SPI communication. */
spiIoctl(idx, SPI_IOC_TRIGGER, 0, 0);
/* Wait it done. */
while (spiGetBusyStatus(idx)) {};
/* Read data from RX-buffer */
if ((recv_addr != RT_NULL))
{
for (i = 0; i < u32TxNum; i++)
{
recv_addr += nu_qspi_read(idx, i, recv_addr, bytes_per_word);
}
}
trans_num -= u32TxNum;
}
}
void nu_qspi_transfer(struct nu_qspi *spi_bus, uint8_t *tx, uint8_t *rx, int length, uint8_t bytes_per_word)
{
RT_ASSERT(spi_bus != RT_NULL);
nu_qspi_transmission_with_poll(spi_bus, tx, rx, length, bytes_per_word);
}
static int nu_qspi_mode_config(struct nu_qspi *spi_bus, rt_uint8_t *tx, rt_uint8_t *rx, int qspi_lines)
{
uint32_t idx = spi_bus->idx;
if (qspi_lines > 1)
{
if (tx)
{
switch (qspi_lines)
{
case 2:
spiIoctl(idx, SPI_IOC_SET_DUAL_QUAD_MODE, SPI_DUAL_MODE, 0);
break;
case 4:
spiIoctl(idx, SPI_IOC_SET_DUAL_QUAD_MODE, SPI_QUAD_MODE, 0);
break;
default:
LOG_E("Data line is not supported.\n");
return -1;
}
spiIoctl(idx, SPI_IOC_SET_DUAL_QUAD_DIR, SPI_DUAL_QUAD_OUTPUT, 0);
}
else if (rx)
{
switch (qspi_lines)
{
case 2:
spiIoctl(idx, SPI_IOC_SET_DUAL_QUAD_MODE, SPI_DUAL_MODE, 0);
break;
case 4:
spiIoctl(idx, SPI_IOC_SET_DUAL_QUAD_MODE, SPI_QUAD_MODE, 0);
break;
default:
LOG_E("Data line is not supported.\n");
return -1;
}
spiIoctl(idx, SPI_IOC_SET_DUAL_QUAD_DIR, SPI_DUAL_QUAD_INPUT, 0);
}
}
else
{
spiIoctl(idx, SPI_IOC_SET_DUAL_QUAD_MODE, SPI_DISABLE_DUAL_QUAD, 0);
}
return qspi_lines;
}
static rt_ssize_t nu_qspi_bus_xfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
struct nu_qspi *spi_bus;
struct rt_qspi_configuration *qspi_configuration;
struct rt_qspi_message *qspi_message;
rt_uint8_t u8last = 1;
rt_uint8_t bytes_per_word;
uint32_t idx;
rt_ssize_t u32len = 0;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(message != RT_NULL);
spi_bus = (struct nu_qspi *) device->bus;
idx = spi_bus->idx;
qspi_configuration = &spi_bus->configuration;
bytes_per_word = qspi_configuration->parent.data_width / 8;
if (message->cs_take && !(qspi_configuration->parent.mode & RT_SPI_NO_CS))
{
/* /CS: active */
/* We just use CS0 only. if you need CS1, please use pin controlling before sending message. */
spiIoctl(idx, SPI_IOC_ENABLE_SS, SPI_SS_SS0, 0);
}
qspi_message = (struct rt_qspi_message *)message;
/* Command + Address + Dummy + Data */
/* Command stage */
if (qspi_message->instruction.content != 0)
{
u8last = nu_qspi_mode_config(spi_bus, (rt_uint8_t *) &qspi_message->instruction.content, RT_NULL, qspi_message->instruction.qspi_lines);
nu_qspi_transfer((struct nu_qspi *)spi_bus,
(rt_uint8_t *) &qspi_message->instruction.content,
RT_NULL,
1,
1);
}
/* Address stage */
if (qspi_message->address.size > 0)
{
rt_uint32_t u32ReversedAddr = 0;
rt_uint32_t u32AddrNumOfByte = qspi_message->address.size / 8;
switch (u32AddrNumOfByte)
{
case 1:
u32ReversedAddr = (qspi_message->address.content & 0xff);
break;
case 2:
nu_set16_be((rt_uint8_t *)&u32ReversedAddr, qspi_message->address.content);
break;
case 3:
nu_set24_be((rt_uint8_t *)&u32ReversedAddr, qspi_message->address.content);
break;
case 4:
nu_set32_be((rt_uint8_t *)&u32ReversedAddr, qspi_message->address.content);
break;
default:
RT_ASSERT(0);
break;
}
u8last = nu_qspi_mode_config(spi_bus, (rt_uint8_t *)&u32ReversedAddr, RT_NULL, qspi_message->address.qspi_lines);
nu_qspi_transfer((struct nu_qspi *)spi_bus,
(rt_uint8_t *) &u32ReversedAddr,
RT_NULL,
u32AddrNumOfByte,
1);
}
/* alternate_bytes stage */
if ((qspi_message->alternate_bytes.size > 0) && (qspi_message->alternate_bytes.size <= 4))
{
rt_uint32_t u32AlternateByte = 0;
rt_uint32_t u32NumOfByte = qspi_message->alternate_bytes.size / 8;
switch (u32NumOfByte)
{
case 1:
u32AlternateByte = (qspi_message->alternate_bytes.content & 0xff);
break;
case 2:
nu_set16_be((rt_uint8_t *)&u32AlternateByte, qspi_message->alternate_bytes.content);
break;
case 3:
nu_set24_be((rt_uint8_t *)&u32AlternateByte, qspi_message->alternate_bytes.content);
break;
case 4:
nu_set32_be((rt_uint8_t *)&u32AlternateByte, qspi_message->alternate_bytes.content);
break;
default:
RT_ASSERT(0);
break;
}
u8last = nu_qspi_mode_config(spi_bus, (rt_uint8_t *)&u32AlternateByte, RT_NULL, qspi_message->alternate_bytes.qspi_lines);
nu_qspi_transfer((struct nu_qspi *)spi_bus,
(rt_uint8_t *) &u32AlternateByte,
RT_NULL,
u32NumOfByte,
1);
}
/* Dummy_cycles stage */
if (qspi_message->dummy_cycles > 0)
{
spi_bus->dummy = 0x00;
u8last = nu_qspi_mode_config(spi_bus, (rt_uint8_t *) &spi_bus->dummy, RT_NULL, u8last);
nu_qspi_transfer((struct nu_qspi *)spi_bus,
(rt_uint8_t *) &spi_bus->dummy,
RT_NULL,
qspi_message->dummy_cycles / (8 / u8last),
1);
}
if (message->length > 0)
{
/* Data stage */
nu_qspi_mode_config(spi_bus, (rt_uint8_t *) message->send_buf, (rt_uint8_t *) message->recv_buf, qspi_message->qspi_data_lines);
nu_qspi_transfer((struct nu_qspi *)spi_bus,
(rt_uint8_t *) message->send_buf,
(rt_uint8_t *) message->recv_buf,
message->length,
bytes_per_word);
u32len = message->length;
}
else
{
u32len = 1;
}
if (message->cs_release && !(qspi_configuration->parent.mode & RT_SPI_NO_CS))
{
/* /CS: deactive */
/* We just use CS0 only. if you need CS1, please use pin controlling before sending message. */
spiIoctl(idx, SPI_IOC_DISABLE_SS, SPI_SS_SS0, 0);
}
return u32len;
}
static int nu_qspi_register_bus(struct nu_qspi *spi_bus, const char *name)
{
return rt_qspi_bus_register(&spi_bus->dev, name, &nu_qspi_poll_ops);
}
/**
* Hardware SPI Initial
*/
static int rt_hw_qspi_init(void)
{
int i;
for (i = (QSPI_START + 1); i < QSPI_CNT; i++)
{
nu_sys_ipclk_enable(nu_qspi_arr[i].clkidx);
nu_sys_ip_reset(nu_qspi_arr[i].rstidx);
spiOpen(nu_qspi_arr[i].idx);
nu_qspi_register_bus(&nu_qspi_arr[i], nu_qspi_arr[i].name);
}
return 0;
}
INIT_DEVICE_EXPORT(rt_hw_qspi_init);
rt_err_t nu_qspi_bus_attach_device(const char *bus_name, const char *device_name, rt_uint8_t data_line_width, void (*enter_qspi_mode)(), void (*exit_qspi_mode)())
{
struct rt_qspi_device *qspi_device = RT_NULL;
rt_err_t result = RT_EOK;
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
RT_ASSERT(data_line_width == 1 || data_line_width == 2 || data_line_width == 4);
qspi_device = (struct rt_qspi_device *)rt_malloc(sizeof(struct rt_qspi_device));
if (qspi_device == RT_NULL)
{
LOG_E("no memory, qspi bus attach device failed!\n");
result = -RT_ENOMEM;
goto __exit;
}
qspi_device->enter_qspi_mode = enter_qspi_mode;
qspi_device->exit_qspi_mode = exit_qspi_mode;
qspi_device->config.qspi_dl_width = data_line_width;
result = rt_spi_bus_attach_device(&qspi_device->parent, device_name, bus_name, RT_NULL);
__exit:
if (result != RT_EOK)
{
if (qspi_device)
{
rt_free(qspi_device);
}
}
return result;
}
#endif //#if defined(BSP_USING_SPI)