rt-thread-official/components/lwp/lwp.c

1619 lines
41 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2006-03-12 Bernard first version
* 2018-11-02 heyuanjie fix complie error in iar
* 2021-02-03 lizhirui add 64-bit arch support and riscv64 arch support
* 2021-08-26 linzhenxing add lwp_setcwd\lwp_getcwd
* 2023-02-20 wangxiaoyao inv icache before new app startup
* 2023-02-20 wangxiaoyao fix bug on foreground app switch
* 2023-10-16 Shell Support a new backtrace framework
* 2023-11-17 xqyjlj add process group and session support
* 2023-11-30 Shell add lwp_startup()
*/
#define DBG_TAG "lwp"
#define DBG_LVL DBG_WARNING
#include <rtdbg.h>
#include <rthw.h>
#include <rtthread.h>
#include <dfs_file.h>
#include <unistd.h>
#include <stdio.h> /* rename() */
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/statfs.h> /* statfs() */
#include <lwp_elf.h>
#ifndef RT_USING_DFS
#error "lwp need file system(RT_USING_DFS)"
#endif
#include "lwp_internal.h"
#include "lwp_arch.h"
#include "lwp_arch_comm.h"
#include "lwp_signal.h"
#include "lwp_dbg.h"
#include <terminal/terminal.h>
#ifdef ARCH_MM_MMU
#include <lwp_user_mm.h>
#endif /* end of ARCH_MM_MMU */
#ifndef O_DIRECTORY
#define O_DIRECTORY 0x200000
#endif
#ifndef O_BINARY
#define O_BINARY 0x10000
#endif
static const char elf_magic[] = {0x7f, 'E', 'L', 'F'};
#ifdef DFS_USING_WORKDIR
extern char working_directory[];
#endif
/**
* @brief The default console is only a backup device with lowest priority.
* It's always recommended to scratch the console from the boot arguments.
* And dont forget to register the device with a higher priority.
*/
static rt_err_t lwp_default_console_setup(void)
{
rt_device_t bakdev = rt_device_find("ttyS0");
rt_err_t rc;
if (bakdev)
{
lwp_console_register_backend(bakdev, LWP_CONSOLE_LOWEST_PRIOR);
rc = RT_EOK;
}
else
{
rc = -RT_EINVAL;
}
return rc;
}
static int lwp_component_init(void)
{
int rc;
if ((rc = lwp_tid_init()) != RT_EOK)
{
LOG_E("%s: lwp_component_init() failed", __func__);
}
else if ((rc = lwp_pid_init()) != RT_EOK)
{
LOG_E("%s: lwp_pid_init() failed", __func__);
}
else if ((rc = rt_channel_component_init()) != RT_EOK)
{
LOG_E("%s: rt_channel_component_init failed", __func__);
}
else if ((rc = lwp_futex_init()) != RT_EOK)
{
LOG_E("%s: lwp_futex_init() failed", __func__);
}
else if ((rc = lwp_default_console_setup()) != RT_EOK)
{
LOG_E("%s: lwp_default_console_setup() failed", __func__);
}
return rc;
}
INIT_COMPONENT_EXPORT(lwp_component_init);
rt_weak int lwp_startup_debug_request(void)
{
return 0;
}
#define LATENCY_TIMES (3)
#define LATENCY_IN_MSEC (128)
#define LWP_CONSOLE_PATH "CONSOLE=/dev/console"
const char *init_search_path[] = {
"/sbin/init",
"/bin/init",
};
/**
* Startup process 0 and do the essential works
* This is the "Hello World" point of RT-Smart
*/
static int lwp_startup(void)
{
int error;
const char *init_path;
char *argv[] = {0, "&"};
char *envp[] = {LWP_CONSOLE_PATH, 0};
#ifdef LWP_DEBUG_INIT
int command;
int countdown = LATENCY_TIMES;
while (countdown)
{
command = lwp_startup_debug_request();
if (command)
{
return 0;
}
rt_kprintf("Press any key to stop init process startup ... %d\n", countdown);
countdown -= 1;
rt_thread_mdelay(LATENCY_IN_MSEC);
}
rt_kprintf("Starting init ...\n");
#endif /* LWP_DEBUG_INIT */
for (size_t i = 0; i < sizeof(init_search_path)/sizeof(init_search_path[0]); i++)
{
struct stat s;
init_path = init_search_path[i];
error = stat(init_path, &s);
if (error == 0)
{
argv[0] = (void *)init_path;
error = lwp_execve((void *)init_path, 0, sizeof(argv)/sizeof(argv[0]), argv, envp);
if (error < 0)
{
LOG_E("%s: failed to startup process 0 (init)\n"
"Switching to legacy mode...", __func__);
}
else if (error != 1)
{
LOG_E("%s: pid 1 is already allocated", __func__);
error = -EBUSY;
}
else
{
rt_lwp_t p = lwp_from_pid_locked(1);
p->sig_protected = 1;
error = 0;
}
break;
}
}
if (error)
{
LOG_D("%s: init program not found\n"
"Switching to legacy mode...", __func__);
}
return error;
}
INIT_APP_EXPORT(lwp_startup);
void lwp_setcwd(char *buf)
{
struct rt_lwp *lwp = RT_NULL;
if(strlen(buf) >= DFS_PATH_MAX)
{
rt_kprintf("buf too long!\n");
return ;
}
lwp = (struct rt_lwp *)rt_thread_self()->lwp;
if (lwp)
{
rt_strncpy(lwp->working_directory, buf, DFS_PATH_MAX - 1);
}
else
{
rt_strncpy(working_directory, buf, DFS_PATH_MAX - 1);
}
return ;
}
char *lwp_getcwd(void)
{
char *dir_buf = RT_NULL;
struct rt_lwp *lwp = RT_NULL;
rt_thread_t thread = rt_thread_self();
if (thread)
{
lwp = (struct rt_lwp *)thread->lwp;
}
if (lwp)
{
if(lwp->working_directory[0] != '/')
{
dir_buf = &working_directory[0];
}
else
{
dir_buf = &lwp->working_directory[0];
}
}
else
dir_buf = &working_directory[0];
return dir_buf;
}
/**
* RT-Thread light-weight process
*/
void lwp_set_kernel_sp(uint32_t *sp)
{
rt_thread_self()->kernel_sp = (rt_uint32_t *)sp;
}
uint32_t *lwp_get_kernel_sp(void)
{
#ifdef ARCH_MM_MMU
return (uint32_t *)rt_thread_self()->sp;
#else
uint32_t* kernel_sp;
extern rt_uint32_t rt_interrupt_from_thread;
extern rt_uint32_t rt_thread_switch_interrupt_flag;
if (rt_thread_switch_interrupt_flag)
{
kernel_sp = (uint32_t *)((rt_thread_t)rt_container_of(rt_interrupt_from_thread, struct rt_thread, sp))->kernel_sp;
}
else
{
kernel_sp = (uint32_t *)rt_thread_self()->kernel_sp;
}
return kernel_sp;
#endif
}
#ifdef ARCH_MM_MMU
struct process_aux *lwp_argscopy(struct rt_lwp *lwp, int argc, char **argv, char **envp)
{
int size = sizeof(size_t) * 5; /* store argc, argv, envp, aux, NULL */
int *args;
char *str;
char *str_k;
char **new_argve;
int i;
int len;
size_t *args_k;
struct process_aux *aux;
size_t prot = PROT_READ | PROT_WRITE;
size_t flags = MAP_FIXED | MAP_PRIVATE;
size_t zero = 0;
for (i = 0; i < argc; i++)
{
size += (rt_strlen(argv[i]) + 1);
}
size += (sizeof(size_t) * argc);
i = 0;
if (envp)
{
while (envp[i] != 0)
{
size += (rt_strlen(envp[i]) + 1);
size += sizeof(size_t);
i++;
}
}
/* for aux */
size += sizeof(struct process_aux);
if (size > ARCH_PAGE_SIZE)
{
return RT_NULL;
}
args = lwp_mmap2(lwp, (void *)(USER_STACK_VEND), size, prot, flags, -1, 0);
if (args == RT_NULL || lwp_data_put(lwp, args, &zero, sizeof(zero)) != sizeof(zero))
{
return RT_NULL;
}
args_k = (size_t *)lwp_v2p(lwp, args);
args_k = (size_t *)((size_t)args_k - PV_OFFSET);
/* argc, argv[], 0, envp[], 0 , aux[] */
str = (char *)((size_t)args + (argc + 2 + i + 1 + AUX_ARRAY_ITEMS_NR * 2 + 1) * sizeof(size_t));
str_k = (char *)((size_t)args_k + (argc + 2 + i + 1 + AUX_ARRAY_ITEMS_NR * 2 + 1) * sizeof(size_t));
new_argve = (char **)&args_k[1];
args_k[0] = argc;
for (i = 0; i < argc; i++)
{
len = rt_strlen(argv[i]) + 1;
new_argve[i] = str;
lwp_memcpy(str_k, argv[i], len);
str += len;
str_k += len;
}
new_argve[i] = 0;
i++;
new_argve[i] = 0;
if (envp)
{
int j;
for (j = 0; envp[j] != 0; j++)
{
len = rt_strlen(envp[j]) + 1;
new_argve[i] = str;
lwp_memcpy(str_k, envp[j], len);
str += len;
str_k += len;
i++;
}
new_argve[i] = 0;
}
i++;
/* aux */
aux = (struct process_aux *)(new_argve + i);
aux->item[0].key = AT_EXECFN;
aux->item[0].value = (size_t)(size_t)new_argve[0];
i += AUX_ARRAY_ITEMS_NR * 2;
new_argve[i] = 0;
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, args_k, size);
lwp->args = args;
return aux;
}
#else
static struct process_aux *lwp_argscopy(struct rt_lwp *lwp, int argc, char **argv, char **envp)
{
#ifdef ARCH_MM_MMU
int size = sizeof(int) * 5; /* store argc, argv, envp, aux, NULL */
struct process_aux *aux;
#else
int size = sizeof(int) * 4; /* store argc, argv, envp, NULL */
#endif /* ARCH_MM_MMU */
int *args;
char *str;
char **new_argve;
int i;
int len;
for (i = 0; i < argc; i++)
{
size += (rt_strlen(argv[i]) + 1);
}
size += (sizeof(int) * argc);
i = 0;
if (envp)
{
while (envp[i] != 0)
{
size += (rt_strlen(envp[i]) + 1);
size += sizeof(int);
i++;
}
}
#ifdef ARCH_MM_MMU
/* for aux */
size += sizeof(struct process_aux);
args = (int *)rt_malloc(size);
if (args == RT_NULL)
{
return RT_NULL;
}
/* argc, argv[], 0, envp[], 0 */
str = (char *)((size_t)args + (argc + 2 + i + 1 + AUX_ARRAY_ITEMS_NR * 2 + 1) * sizeof(int));
#else
args = (int *)rt_malloc(size);
if (args == RT_NULL)
{
return RT_NULL;
}
str = (char*)((int)args + (argc + 2 + i + 1) * sizeof(int));
#endif /* ARCH_MM_MMU */
new_argve = (char **)&args[1];
args[0] = argc;
for (i = 0; i < argc; i++)
{
len = rt_strlen(argv[i]) + 1;
new_argve[i] = str;
lwp_memcpy(str, argv[i], len);
str += len;
}
new_argve[i] = 0;
i++;
new_argve[i] = 0;
if (envp)
{
int j;
for (j = 0; envp[j] != 0; j++)
{
len = rt_strlen(envp[j]) + 1;
new_argve[i] = str;
lwp_memcpy(str, envp[j], len);
str += len;
i++;
}
new_argve[i] = 0;
}
#ifdef ARCH_MM_MMU
/* aux */
aux = (struct process_aux *)(new_argve + i);
aux->item[0].key = AT_EXECFN;
aux->item[0].value = (uint32_t)(size_t)new_argve[0];
i += AUX_ARRAY_ITEMS_NR * 2;
new_argve[i] = 0;
lwp->args = args;
return aux;
#else
lwp->args = args;
lwp->args_length = size;
return (struct process_aux *)(new_argve + i);
#endif /* ARCH_MM_MMU */
}
#endif
#ifdef ARCH_MM_MMU
#define check_off(voff, vlen) \
do \
{ \
if (voff > vlen) \
{ \
result = -RT_ERROR; \
goto _exit; \
} \
} while (0)
#define check_read(vrlen, vrlen_want) \
do \
{ \
if (vrlen < vrlen_want) \
{ \
result = -RT_ERROR; \
goto _exit; \
} \
} while (0)
static size_t load_fread(void *ptr, size_t size, size_t nmemb, int fd)
{
size_t read_block = 0;
while (nmemb)
{
size_t count;
count = read(fd, ptr, size * nmemb) / size;
if (count < nmemb)
{
LOG_E("ERROR: file size error!");
break;
}
ptr = (void *)((uint8_t *)ptr + (count * size));
nmemb -= count;
read_block += count;
}
return read_block;
}
typedef struct
{
Elf_Word st_name;
Elf_Addr st_value;
Elf_Word st_size;
unsigned char st_info;
unsigned char st_other;
Elf_Half st_shndx;
} Elf_sym;
#ifdef ARCH_MM_MMU
struct map_range
{
void *start;
size_t size;
};
static void expand_map_range(struct map_range *m, void *start, size_t size)
{
if (!m->start)
{
m->start = start;
m->size = size;
}
else
{
void *end = (void *)((char*)start + size);
void *mend = (void *)((char*)m->start + m->size);
if (m->start > start)
{
m->start = start;
}
if (mend < end)
{
mend = end;
}
m->size = (char *)mend - (char *)m->start;
}
}
static int map_range_ckeck(struct map_range *m1, struct map_range *m2)
{
void *m1_start = (void *)((size_t)m1->start & ~ARCH_PAGE_MASK);
void *m1_end = (void *)((((size_t)m1->start + m1->size) + ARCH_PAGE_MASK) & ~ARCH_PAGE_MASK);
void *m2_start = (void *)((size_t)m2->start & ~ARCH_PAGE_MASK);
void *m2_end = (void *)((((size_t)m2->start + m2->size) + ARCH_PAGE_MASK) & ~ARCH_PAGE_MASK);
if (m1->size)
{
if (m1_start < (void *)USER_LOAD_VADDR)
{
return -1;
}
if (m1_start > (void *)USER_STACK_VSTART)
{
return -1;
}
if (m1_end < (void *)USER_LOAD_VADDR)
{
return -1;
}
if (m1_end > (void *)USER_STACK_VSTART)
{
return -1;
}
}
if (m2->size)
{
if (m2_start < (void *)USER_LOAD_VADDR)
{
return -1;
}
if (m2_start > (void *)USER_STACK_VSTART)
{
return -1;
}
if (m2_end < (void *)USER_LOAD_VADDR)
{
return -1;
}
if (m2_end > (void *)USER_STACK_VSTART)
{
return -1;
}
}
if ((m1->size != 0) && (m2->size != 0))
{
if (m1_start < m2_start)
{
if (m1_end > m2_start)
{
return -1;
}
}
else /* m2_start <= m1_start */
{
if (m2_end > m1_start)
{
return -1;
}
}
}
return 0;
}
#endif
static int load_elf(int fd, int len, struct rt_lwp *lwp, uint8_t *load_addr, struct process_aux *aux)
{
uint32_t i;
uint32_t off = 0;
size_t load_off = 0;
char *p_section_str = 0;
Elf_sym *dynsym = 0;
Elf_Ehdr eheader;
Elf_Phdr pheader;
Elf_Shdr sheader;
int result = RT_EOK;
uint32_t magic;
size_t read_len;
void *got_start = 0;
size_t got_size = 0;
void *rel_dyn_start = 0;
size_t rel_dyn_size = 0;
size_t dynsym_off = 0;
size_t dynsym_size = 0;
#ifdef ARCH_MM_MMU
struct map_range user_area[2] = {{NULL, 0}, {NULL, 0}}; /* 0 is text, 1 is data */
void *pa, *va;
void *va_self;
#endif
if (len < sizeof eheader)
{
LOG_E("len < sizeof eheader!");
return -RT_ERROR;
}
lseek(fd, 0, SEEK_SET);
read_len = load_fread(&magic, 1, sizeof magic, fd);
check_read(read_len, sizeof magic);
if (memcmp(elf_magic, &magic, 4) != 0)
{
LOG_E("elf_magic not same, magic:0x%x!", magic);
return -RT_ERROR;
}
lseek(fd, off, SEEK_SET);
read_len = load_fread(&eheader, 1, sizeof eheader, fd);
check_read(read_len, sizeof eheader);
#ifndef ARCH_CPU_64BIT
if (eheader.e_ident[4] != 1)
{ /* not 32bit */
LOG_E("elf not 32bit, %d!", eheader.e_ident[4]);
return -RT_ERROR;
}
#else
if (eheader.e_ident[4] != 2)
{ /* not 64bit */
LOG_E("elf not 64bit, %d!", eheader.e_ident[4]);
return -RT_ERROR;
}
#endif
if (eheader.e_ident[6] != 1)
{ /* ver not 1 */
LOG_E("elf Version not 1,ver:%d!", eheader.e_ident[6]);
return -RT_ERROR;
}
if ((eheader.e_type != ET_DYN)
#ifdef ARCH_MM_MMU
&& (eheader.e_type != ET_EXEC)
#endif
)
{
/* not pie or exec elf */
LOG_E("elf type not pie or exec, type:%d!", eheader.e_type);
return -RT_ERROR;
}
#ifdef ARCH_MM_MMU
{
off = eheader.e_phoff;
for (i = 0; i < eheader.e_phnum; i++, off += sizeof pheader)
{
check_off(off, len);
lseek(fd, off, SEEK_SET);
read_len = load_fread(&pheader, 1, sizeof pheader, fd);
check_read(read_len, sizeof pheader);
if (pheader.p_type == PT_DYNAMIC)
{
/* load ld.so */
return 1; /* 1 means dynamic */
}
}
}
#endif
if (eheader.e_entry != 0)
{
if ((eheader.e_entry != USER_LOAD_VADDR)
&& (eheader.e_entry != LDSO_LOAD_VADDR))
{
/* the entry is invalidate */
LOG_E("elf entry is invalidate, entry:0x%x!", eheader.e_entry);
return -RT_ERROR;
}
}
{ /* load aux */
uint8_t *process_header;
size_t process_header_size;
off = eheader.e_phoff;
process_header_size = eheader.e_phnum * sizeof pheader;
#ifdef ARCH_MM_MMU
if (process_header_size > ARCH_PAGE_SIZE - sizeof(char[16]))
{
LOG_E("process_header_size too big, size:0x%x!", process_header_size);
return -RT_ERROR;
}
va = (uint8_t *)lwp_map_user(lwp, (void *)(USER_VADDR_TOP - ARCH_PAGE_SIZE * 2), process_header_size, 0);
if (!va)
{
LOG_E("lwp map user failed!");
return -RT_ERROR;
}
pa = lwp_v2p(lwp, va);
process_header = (uint8_t *)pa - PV_OFFSET;
#else
process_header = (uint8_t *)rt_malloc(process_header_size + sizeof(char[16]));
if (!process_header)
{
LOG_E("process_header malloc failed, size:0x%x!", process_header_size + sizeof(char[16]));
return -RT_ERROR;
}
#endif
check_off(off, len);
lseek(fd, off, SEEK_SET);
read_len = load_fread(process_header, 1, process_header_size, fd);
check_read(read_len, process_header_size);
#ifdef ARCH_MM_MMU
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, process_header, process_header_size);
#endif
aux->item[1].key = AT_PAGESZ;
#ifdef ARCH_MM_MMU
aux->item[1].value = ARCH_PAGE_SIZE;
#else
aux->item[1].value = RT_MM_PAGE_SIZE;
#endif
aux->item[2].key = AT_RANDOM;
{
uint32_t random_value = rt_tick_get();
uint8_t *random;
#ifdef ARCH_MM_MMU
uint8_t *krandom;
random = (uint8_t *)(USER_VADDR_TOP - ARCH_PAGE_SIZE - sizeof(char[16]));
krandom = (uint8_t *)lwp_v2p(lwp, random);
krandom = (uint8_t *)krandom - PV_OFFSET;
rt_memcpy(krandom, &random_value, sizeof random_value);
#else
random = (uint8_t *)(process_header + process_header_size);
rt_memcpy(random, &random_value, sizeof random_value);
#endif
aux->item[2].value = (size_t)random;
}
aux->item[3].key = AT_PHDR;
#ifdef ARCH_MM_MMU
aux->item[3].value = (size_t)va;
#else
aux->item[3].value = (size_t)process_header;
#endif
aux->item[4].key = AT_PHNUM;
aux->item[4].value = eheader.e_phnum;
aux->item[5].key = AT_PHENT;
aux->item[5].value = sizeof pheader;
#ifdef ARCH_MM_MMU
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, aux, sizeof *aux);
#endif
}
if (load_addr)
{
load_off = (size_t)load_addr;
}
#ifdef ARCH_MM_MMU
else
{
/* map user */
off = eheader.e_shoff;
for (i = 0; i < eheader.e_shnum; i++, off += sizeof sheader)
{
check_off(off, len);
lseek(fd, off, SEEK_SET);
read_len = load_fread(&sheader, 1, sizeof sheader, fd);
check_read(read_len, sizeof sheader);
if ((sheader.sh_flags & SHF_ALLOC) == 0)
{
continue;
}
switch (sheader.sh_type)
{
case SHT_PROGBITS:
if ((sheader.sh_flags & SHF_WRITE) == 0)
{
expand_map_range(&user_area[0], (void *)sheader.sh_addr, sheader.sh_size);
}
else
{
expand_map_range(&user_area[1], (void *)sheader.sh_addr, sheader.sh_size);
}
break;
case SHT_NOBITS:
expand_map_range(&user_area[1], (void *)sheader.sh_addr, sheader.sh_size);
break;
default:
expand_map_range(&user_area[1], (void *)sheader.sh_addr, sheader.sh_size);
break;
}
}
if (user_area[0].size == 0)
{
/* no code */
result = -RT_ERROR;
goto _exit;
}
if (user_area[0].start == NULL)
{
/* DYN */
load_off = USER_LOAD_VADDR;
user_area[0].start = (void *)((char*)user_area[0].start + load_off);
user_area[1].start = (void *)((char*)user_area[1].start + load_off);
}
if (map_range_ckeck(&user_area[0], &user_area[1]) != 0)
{
result = -RT_ERROR;
goto _exit;
}
/* text and data */
for (i = 0; i < 2; i++)
{
if (user_area[i].size != 0)
{
va = lwp_map_user(lwp, user_area[i].start, user_area[i].size, (i == 0));
if (!va || (va != user_area[i].start))
{
result = -RT_ERROR;
goto _exit;
}
}
}
lwp->text_size = user_area[0].size;
}
#else
else
{
size_t start = -1UL;
size_t end = 0UL;
size_t total_size;
off = eheader.e_shoff;
for (i = 0; i < eheader.e_shnum; i++, off += sizeof sheader)
{
check_off(off, len);
lseek(fd, off, SEEK_SET);
read_len = load_fread(&sheader, 1, sizeof sheader, fd);
check_read(read_len, sizeof sheader);
if ((sheader.sh_flags & SHF_ALLOC) == 0)
{
continue;
}
switch (sheader.sh_type)
{
case SHT_PROGBITS:
case SHT_NOBITS:
if (start > sheader.sh_addr)
{
start = sheader.sh_addr;
}
if (sheader.sh_addr + sheader.sh_size > end)
{
end = sheader.sh_addr + sheader.sh_size;
}
break;
default:
break;
}
}
total_size = end - start;
#ifdef RT_USING_CACHE
load_off = (size_t)rt_malloc_align(total_size, RT_CPU_CACHE_LINE_SZ);
#else
load_off = (size_t)rt_malloc(total_size);
#endif
if (load_off == 0)
{
LOG_E("alloc text memory faild!");
result = -RT_ENOMEM;
goto _exit;
}
else
{
LOG_D("lwp text malloc : %p, size: %d!", (void *)load_off, lwp->text_size);
}
lwp->load_off = load_off; /* for free */
lwp->text_size = total_size;
}
#endif
lwp->text_entry = (void *)(eheader.e_entry + load_off);
off = eheader.e_phoff;
for (i = 0; i < eheader.e_phnum; i++, off += sizeof pheader)
{
check_off(off, len);
lseek(fd, off, SEEK_SET);
read_len = load_fread(&pheader, 1, sizeof pheader, fd);
check_read(read_len, sizeof pheader);
if (pheader.p_type == PT_LOAD)
{
if (pheader.p_filesz > pheader.p_memsz)
{
LOG_E("pheader.p_filesz > pheader.p_memsz, p_filesz:0x%x;p_memsz:0x%x!", pheader.p_filesz, pheader.p_memsz);
return -RT_ERROR;
}
check_off(pheader.p_offset, len);
lseek(fd, pheader.p_offset, SEEK_SET);
#ifdef ARCH_MM_MMU
{
uint32_t size = pheader.p_filesz;
size_t tmp_len = 0;
va = (void *)(pheader.p_vaddr + load_addr);
read_len = 0;
while (size)
{
pa = lwp_v2p(lwp, va);
va_self = (void *)((char *)pa - PV_OFFSET);
LOG_D("va_self = %p pa = %p", va_self, pa);
tmp_len = (size < ARCH_PAGE_SIZE) ? size : ARCH_PAGE_SIZE;
tmp_len = load_fread(va_self, 1, tmp_len, fd);
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, va_self, tmp_len);
read_len += tmp_len;
size -= tmp_len;
va = (void *)((char *)va + ARCH_PAGE_SIZE);
}
}
#else
read_len = load_fread((void*)(pheader.p_vaddr + load_off), 1, pheader.p_filesz, fd);
#endif
check_read(read_len, pheader.p_filesz);
if (pheader.p_filesz < pheader.p_memsz)
{
#ifdef ARCH_MM_MMU
uint32_t size = pheader.p_memsz - pheader.p_filesz;
uint32_t size_s;
uint32_t off;
off = pheader.p_filesz & ARCH_PAGE_MASK;
va = (void *)((pheader.p_vaddr + pheader.p_filesz + load_off) & ~ARCH_PAGE_MASK);
while (size)
{
size_s = (size < ARCH_PAGE_SIZE - off) ? size : ARCH_PAGE_SIZE - off;
pa = lwp_v2p(lwp, va);
va_self = (void *)((char *)pa - PV_OFFSET);
memset((void *)((char *)va_self + off), 0, size_s);
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, (void *)((char *)va_self + off), size_s);
off = 0;
size -= size_s;
va = (void *)((char *)va + ARCH_PAGE_SIZE);
}
#else
memset((uint8_t *)pheader.p_vaddr + pheader.p_filesz + load_off, 0, (size_t)(pheader.p_memsz - pheader.p_filesz));
#endif
}
}
}
/* relocate */
if (eheader.e_type == ET_DYN)
{
/* section info */
off = eheader.e_shoff;
/* find section string table */
check_off(off, len);
lseek(fd, off + (sizeof sheader) * eheader.e_shstrndx, SEEK_SET);
read_len = load_fread(&sheader, 1, sizeof sheader, fd);
check_read(read_len, sizeof sheader);
p_section_str = (char *)rt_malloc(sheader.sh_size);
if (!p_section_str)
{
LOG_E("out of memory!");
result = -ENOMEM;
goto _exit;
}
check_off(sheader.sh_offset, len);
lseek(fd, sheader.sh_offset, SEEK_SET);
read_len = load_fread(p_section_str, 1, sheader.sh_size, fd);
check_read(read_len, sheader.sh_size);
check_off(off, len);
lseek(fd, off, SEEK_SET);
for (i = 0; i < eheader.e_shnum; i++, off += sizeof sheader)
{
read_len = load_fread(&sheader, 1, sizeof sheader, fd);
check_read(read_len, sizeof sheader);
if (strcmp(p_section_str + sheader.sh_name, ".got") == 0)
{
got_start = (void *)((uint8_t *)sheader.sh_addr + load_off);
got_size = (size_t)sheader.sh_size;
}
else if (strcmp(p_section_str + sheader.sh_name, ".rel.dyn") == 0)
{
rel_dyn_start = (void *)((uint8_t *)sheader.sh_addr + load_off);
rel_dyn_size = (size_t)sheader.sh_size;
}
else if (strcmp(p_section_str + sheader.sh_name, ".dynsym") == 0)
{
dynsym_off = (size_t)sheader.sh_offset;
dynsym_size = (size_t)sheader.sh_size;
}
}
/* reloc */
if (dynsym_size)
{
dynsym = rt_malloc(dynsym_size);
if (!dynsym)
{
LOG_E("ERROR: Malloc error!");
result = -ENOMEM;
goto _exit;
}
check_off(dynsym_off, len);
lseek(fd, dynsym_off, SEEK_SET);
read_len = load_fread(dynsym, 1, dynsym_size, fd);
check_read(read_len, dynsym_size);
}
#ifdef ARCH_MM_MMU
arch_elf_reloc(lwp->aspace, (void *)load_off, rel_dyn_start, rel_dyn_size, got_start, got_size, dynsym);
#else
arch_elf_reloc((void *)load_off, rel_dyn_start, rel_dyn_size, got_start, got_size, dynsym);
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, lwp->text_entry, lwp->text_size);
rt_hw_cpu_icache_ops(RT_HW_CACHE_INVALIDATE, lwp->text_entry, lwp->text_size);
#endif
}
LOG_D("lwp->text_entry = 0x%p", lwp->text_entry);
LOG_D("lwp->text_size = 0x%p", lwp->text_size);
_exit:
if (dynsym)
{
rt_free(dynsym);
}
if (p_section_str)
{
rt_free(p_section_str);
}
if (result != RT_EOK)
{
LOG_E("lwp load faild, %d", result);
}
return result;
}
#endif /* ARCH_MM_MMU */
rt_weak int lwp_load(const char *filename, struct rt_lwp *lwp, uint8_t *load_addr, size_t addr_size, struct process_aux *aux)
{
uint8_t *ptr;
int ret = -1;
int len;
int fd = -1;
/* check file name */
RT_ASSERT(filename != RT_NULL);
/* check lwp control block */
RT_ASSERT(lwp != RT_NULL);
/* copy file name to process name */
rt_strncpy(lwp->cmd, filename, RT_NAME_MAX);
if (load_addr != RT_NULL)
{
lwp->lwp_type = LWP_TYPE_FIX_ADDR;
ptr = load_addr;
}
else
{
lwp->lwp_type = LWP_TYPE_DYN_ADDR;
ptr = RT_NULL;
}
fd = open(filename, O_BINARY | O_RDONLY, 0);
if (fd < 0)
{
LOG_E("ERROR: Can't open elf file %s!", filename);
goto out;
}
len = lseek(fd, 0, SEEK_END);
if (len < 0)
{
LOG_E("ERROR: File %s size error!", filename);
goto out;
}
lseek(fd, 0, SEEK_SET);
ret = load_elf(fd, len, lwp, ptr, aux);
if ((ret != RT_EOK) && (ret != 1))
{
LOG_E("lwp load ret = %d", ret);
}
out:
if (fd > 0)
{
close(fd);
}
return ret;
}
/* lwp-thread clean up routine */
void lwp_cleanup(struct rt_thread *tid)
{
struct rt_lwp *lwp;
if (tid == NULL)
{
LOG_I("%s: invalid parameter tid == NULL", __func__);
return;
}
else
LOG_D("cleanup thread: %s, stack_addr: 0x%x", tid->parent.name, tid->stack_addr);
/**
* Brief: lwp thread cleanup
*
* Note: Critical Section
* - thread control block (RW. It's ensured that no one else can access tcb
* other than itself)
*/
lwp = (struct rt_lwp *)tid->lwp;
lwp_thread_signal_detach(&tid->signal);
/* tty will be release in lwp_ref_dec() if ref is cleared */
lwp_ref_dec(lwp);
return;
}
static void lwp_execve_setup_stdio(struct rt_lwp *lwp)
{
struct dfs_fdtable *lwp_fdt;
struct dfs_file *cons_file;
int cons_fd;
lwp_fdt = &lwp->fdt;
/* open console */
cons_fd = open("/dev/console", O_RDWR);
if (cons_fd < 0)
{
LOG_E("%s: Cannot open console tty", __func__);
return ;
}
LOG_D("%s: open console as fd %d", __func__, cons_fd);
/* init 4 fds */
lwp_fdt->fds = rt_calloc(4, sizeof(void *));
if (lwp_fdt->fds)
{
cons_file = fd_get(cons_fd);
lwp_fdt->maxfd = 4;
fdt_fd_associate_file(lwp_fdt, 0, cons_file);
fdt_fd_associate_file(lwp_fdt, 1, cons_file);
fdt_fd_associate_file(lwp_fdt, 2, cons_file);
}
close(cons_fd);
return;
}
static void _lwp_thread_entry(void *parameter)
{
rt_thread_t tid;
struct rt_lwp *lwp;
tid = rt_thread_self();
lwp = (struct rt_lwp *)tid->lwp;
tid->cleanup = lwp_cleanup;
tid->user_stack = RT_NULL;
if (lwp->debug)
{
lwp->bak_first_inst = *(uint32_t *)lwp->text_entry;
*(uint32_t *)lwp->text_entry = dbg_get_ins();
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, lwp->text_entry, sizeof(uint32_t));
icache_invalid_all();
}
/**
* without ASID support, it will be a special case when trying to run application
* and exit multiple times and a same page frame allocated to it bound to
* different text segment. Then we are in a situation where icache contains
* out-of-dated data and must be handle by the running core itself.
* with ASID support, this should be a rare case that ASID & page frame both
* identical to previous running application.
*
* For a new application loaded into memory, icache are seen as empty. And there
* should be nothing in the icache entry to match. So this icache invalidation
* operation should have barely influence.
*/
rt_hw_icache_invalidate_all();
#ifdef ARCH_MM_MMU
arch_start_umode(lwp->args, lwp->text_entry, (void *)USER_STACK_VEND, (char *)tid->stack_addr + tid->stack_size);
#else
arch_start_umode(lwp->args, lwp->text_entry, lwp->data_entry, (void *)((uint32_t)lwp->data_entry + lwp->data_size));
#endif /* ARCH_MM_MMU */
}
struct rt_lwp *lwp_self(void)
{
rt_thread_t tid;
tid = rt_thread_self();
if (tid)
{
return (struct rt_lwp *)tid->lwp;
}
return RT_NULL;
}
rt_err_t lwp_children_register(struct rt_lwp *parent, struct rt_lwp *child)
{
/* lwp add to children link */
LWP_LOCK(parent);
child->sibling = parent->first_child;
parent->first_child = child;
child->parent = parent;
LWP_UNLOCK(parent);
LOG_D("%s(parent=%p, child=%p)", __func__, parent, child);
/* parent holds reference to child */
lwp_ref_inc(parent);
/* child holds reference to parent */
lwp_ref_inc(child);
return 0;
}
rt_err_t lwp_children_unregister(struct rt_lwp *parent, struct rt_lwp *child)
{
struct rt_lwp **lwp_node;
LWP_LOCK(parent);
/* detach from children link */
lwp_node = &parent->first_child;
while (*lwp_node != child)
{
RT_ASSERT(*lwp_node != RT_NULL);
lwp_node = &(*lwp_node)->sibling;
}
(*lwp_node) = child->sibling;
child->parent = RT_NULL;
LWP_UNLOCK(parent);
LOG_D("%s(parent=%p, child=%p)", __func__, parent, child);
lwp_ref_dec(child);
lwp_ref_dec(parent);
return 0;
}
pid_t lwp_execve(char *filename, int debug, int argc, char **argv, char **envp)
{
int result;
struct rt_lwp *lwp;
char *thread_name;
struct process_aux *aux;
int tid = 0;
if (filename == RT_NULL)
{
return -EINVAL;
}
if (access(filename, X_OK) != 0)
{
return -EACCES;
}
lwp = lwp_create(LWP_CREATE_FLAG_ALLOC_PID | LWP_CREATE_FLAG_NOTRACE_EXEC);
if (lwp == RT_NULL)
{
dbg_log(DBG_ERROR, "lwp struct out of memory!\n");
return -ENOMEM;
}
LOG_D("lwp malloc : %p, size: %d!", lwp, sizeof(struct rt_lwp));
if ((tid = lwp_tid_get()) == 0)
{
lwp_ref_dec(lwp);
return -ENOMEM;
}
#ifdef ARCH_MM_MMU
if (lwp_user_space_init(lwp, 0) != 0)
{
lwp_tid_put(tid);
lwp_ref_dec(lwp);
return -ENOMEM;
}
#endif
if ((aux = lwp_argscopy(lwp, argc, argv, envp)) == RT_NULL)
{
lwp_tid_put(tid);
lwp_ref_dec(lwp);
return -ENOMEM;
}
result = lwp_load(filename, lwp, RT_NULL, 0, aux);
#ifdef ARCH_MM_MMU
if (result == 1)
{
/* dynmaic */
lwp_unmap_user(lwp, (void *)(USER_VADDR_TOP - ARCH_PAGE_SIZE));
result = load_ldso(lwp, filename, argv, envp);
}
#endif /* ARCH_MM_MMU */
if (result == RT_EOK)
{
rt_thread_t thread = RT_NULL;
rt_uint32_t priority = 25, tick = 200;
lwp_execve_setup_stdio(lwp);
/* obtain the base name */
thread_name = strrchr(filename, '/');
thread_name = thread_name ? thread_name + 1 : filename;
#ifndef ARCH_MM_MMU
struct lwp_app_head *app_head = lwp->text_entry;
if (app_head->priority)
{
priority = app_head->priority;
}
if (app_head->tick)
{
tick = app_head->tick;
}
#endif /* not defined ARCH_MM_MMU */
thread = rt_thread_create(thread_name, _lwp_thread_entry, RT_NULL,
LWP_TASK_STACK_SIZE, priority, tick);
if (thread != RT_NULL)
{
struct rt_lwp *self_lwp;
rt_session_t session;
rt_processgroup_t group;
thread->tid = tid;
lwp_tid_set_thread(tid, thread);
LOG_D("lwp kernel => (0x%08x, 0x%08x)\n", (rt_size_t)thread->stack_addr,
(rt_size_t)thread->stack_addr + thread->stack_size);
self_lwp = lwp_self();
/* when create init, self_lwp == null */
if (self_lwp == RT_NULL && lwp_to_pid(lwp) != 1)
{
self_lwp = lwp_from_pid_and_lock(1);
}
if (self_lwp)
{
/* lwp add to children link */
lwp_children_register(self_lwp, lwp);
}
session = RT_NULL;
group = RT_NULL;
group = lwp_pgrp_create(lwp);
if (group)
{
lwp_pgrp_insert(group, lwp);
if (self_lwp == RT_NULL)
{
session = lwp_session_create(lwp);
lwp_session_insert(session, group);
}
else
{
session = lwp_session_find(lwp_sid_get_byprocess(self_lwp));
lwp_session_insert(session, group);
}
}
thread->lwp = lwp;
#ifndef ARCH_MM_MMU
struct lwp_app_head *app_head = (struct lwp_app_head*)lwp->text_entry;
thread->user_stack = app_head->stack_offset ?
(void *)(app_head->stack_offset -
app_head->data_offset +
(uint32_t)lwp->data_entry) : RT_NULL;
thread->user_stack_size = app_head->stack_size;
/* init data area */
rt_memset(lwp->data_entry, 0, lwp->data_size);
/* init user stack */
rt_memset(thread->user_stack, '#', thread->user_stack_size);
#endif /* not defined ARCH_MM_MMU */
rt_list_insert_after(&lwp->t_grp, &thread->sibling);
lwp->did_exec = RT_TRUE;
if (debug && rt_dbg_ops)
{
lwp->debug = debug;
rt_thread_control(thread, RT_THREAD_CTRL_BIND_CPU, (void*)0);
}
rt_thread_startup(thread);
return lwp_to_pid(lwp);
}
}
lwp_tid_put(tid);
lwp_ref_dec(lwp);
return -RT_ERROR;
}
#ifdef RT_USING_MUSLLIBC
extern char **__environ;
#else
char **__environ = 0;
#endif
pid_t exec(char *filename, int debug, int argc, char **argv)
{
setenv("OS", "RT-Thread", 1);
return lwp_execve(filename, debug, argc, argv, __environ);
}
#ifdef ARCH_MM_MMU
void lwp_user_setting_save(rt_thread_t thread)
{
if (thread)
{
thread->thread_idr = arch_get_tidr();
}
}
void lwp_user_setting_restore(rt_thread_t thread)
{
if (!thread)
{
return;
}
#if !defined(ARCH_RISCV64)
/* tidr will be set in RESTORE_ALL in risc-v */
arch_set_tidr(thread->thread_idr);
#endif
if (rt_dbg_ops)
{
struct rt_lwp *l = (struct rt_lwp *)thread->lwp;
if (l != 0)
{
rt_hw_set_process_id((size_t)l->pid);
}
else
{
rt_hw_set_process_id(0);
}
if (l && l->debug)
{
uint32_t step_type = 0;
step_type = dbg_step_type();
if ((step_type == 2) || (thread->step_exec && (step_type == 1)))
{
dbg_activate_step();
}
else
{
dbg_deactivate_step();
}
}
}
}
#endif /* ARCH_MM_MMU */
void lwp_uthread_ctx_save(void *ctx)
{
rt_thread_t thread;
thread = rt_thread_self();
thread->user_ctx.ctx = ctx;
}
void lwp_uthread_ctx_restore(void)
{
rt_thread_t thread;
thread = rt_thread_self();
thread->user_ctx.ctx = RT_NULL;
}
rt_err_t lwp_backtrace_frame(rt_thread_t uthread, struct rt_hw_backtrace_frame *frame)
{
rt_err_t rc = -RT_ERROR;
long nesting = 0;
char **argv;
rt_lwp_t lwp;
if (uthread && uthread->lwp && rt_scheduler_is_available())
{
lwp = uthread->lwp;
argv = lwp_get_command_line_args(lwp);
if (argv)
{
rt_kprintf("please use: addr2line -e %s -a -f", argv[0]);
lwp_free_command_line_args(argv);
}
else
{
rt_kprintf("please use: addr2line -e %s -a -f", lwp->cmd);
}
while (nesting < RT_BACKTRACE_LEVEL_MAX_NR)
{
rt_kprintf(" 0x%lx", frame->pc);
if (rt_hw_backtrace_frame_unwind(uthread, frame))
{
break;
}
nesting++;
}
rt_kprintf("\n");
rc = RT_EOK;
}
return rc;
}
void rt_update_process_times(void)
{
struct rt_thread *thread;
#ifdef RT_USING_SMP
struct rt_cpu* pcpu;
pcpu = rt_cpu_self();
#endif
thread = rt_thread_self();
if (!IS_USER_MODE(thread))
{
thread->user_time += 1;
#ifdef RT_USING_SMP
pcpu->cpu_stat.user += 1;
#endif
}
else
{
thread->system_time += 1;
#ifdef RT_USING_SMP
if (thread == pcpu->idle_thread)
{
pcpu->cpu_stat.idle += 1;
}
else
{
pcpu->cpu_stat.system += 1;
}
#endif
}
}