rt-thread-official/bsp/synwit/swm341/applications/main.c

867 lines
23 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
*/
/***************************************************************
由于和mmcsd_cmd.h中的ERASE重名
修改SWM341.h中 FMC_TpyeDef中ERASE寄存器为FMC_ERASE
***************************************************************/
#include <rtthread.h>
#include <rtdevice.h>
#include "board.h"
#define LED_PIN GET_PIN(B,0)
int main(void)
{
int count = 1;
rt_pin_mode(LED_PIN, PIN_MODE_OUTPUT);
while (count++)
{
rt_pin_write(LED_PIN, PIN_HIGH);
rt_thread_mdelay(500);
rt_pin_write(LED_PIN, PIN_LOW);
rt_thread_mdelay(500);
}
return RT_EOK;
}
#ifdef BSP_USING_GPIO
#define KEY1_PIN GET_PIN(A,8)
void key1_cb(void *args)
{
rt_kprintf("key1 irq!\n");
}
static int pin_sample(int argc, char *argv[])
{
rt_pin_mode(KEY1_PIN, PIN_IRQ_MODE_FALLING);
rt_pin_attach_irq(KEY1_PIN, PIN_IRQ_MODE_FALLING, key1_cb, RT_NULL);
rt_pin_irq_enable(KEY1_PIN, PIN_IRQ_ENABLE);
return RT_EOK;
}
MSH_CMD_EXPORT(pin_sample, pin sample);
#endif
#ifdef BSP_USING_ADC
#define ADC_DEV_NAME "adc0"
#define ADC_DEV_CHANNEL 0
#define REFER_VOLTAGE 330
#define CONVERT_BITS (1 << 12)
static int adc_vol_sample(int argc, char *argv[])
{
rt_adc_device_t adc_dev;
rt_uint32_t value, vol;
rt_err_t ret = RT_EOK;
adc_dev = (rt_adc_device_t)rt_device_find(ADC_DEV_NAME);
if (adc_dev == RT_NULL)
{
rt_kprintf("adc sample run failed! can't find %s device!\n", ADC_DEV_NAME);
return RT_ERROR;
}
ret = rt_adc_enable(adc_dev, ADC_DEV_CHANNEL);
value = rt_adc_read(adc_dev, ADC_DEV_CHANNEL);
rt_kprintf("the value is :%d,", value);
vol = value * REFER_VOLTAGE / CONVERT_BITS;
rt_kprintf("the voltage is :%d.%02d \n", vol / 100, vol % 100);
ret = rt_adc_disable(adc_dev, ADC_DEV_CHANNEL);
return ret;
}
MSH_CMD_EXPORT(adc_vol_sample, adc voltage convert sample);
#endif
#ifdef BSP_USING_DAC
#include <stdlib.h>
#define DAC_DEV_NAME "dac" /* DAC 设备名称 */
#define DAC_DEV_CHANNEL 0 /* DAC 通道 */
#define REFER_VOLTAGE 330 /* 参考电压 3.3V,数据精度乘以100保留2位小数*/
#define CONVERT_BITS (1 << 12) /* 转换位数为12位 */
static int dac_vol_sample(int argc, char *argv[])
{
rt_dac_device_t dac_dev;
rt_uint32_t value, vol;
rt_err_t ret = RT_EOK;
/* 查找设备 */
dac_dev = (rt_dac_device_t)rt_device_find(DAC_DEV_NAME);
if (dac_dev == RT_NULL)
{
rt_kprintf("dac sample run failed! can't find %s device!\n", DAC_DEV_NAME);
return RT_ERROR;
}
/* 打开通道 */
ret = rt_dac_enable(dac_dev, DAC_DEV_CHANNEL);
/* 设置输出值 */
value = atoi(argv[1]);
rt_dac_write(dac_dev, DAC_DEV_CHANNEL, value);
rt_kprintf("the value is :%d \n", value);
/* 转换为对应电压值 */
vol = value * REFER_VOLTAGE / CONVERT_BITS;
rt_kprintf("the voltage is :%d.%02d \n", vol / 100, vol % 100);
rt_thread_mdelay(500);
/* 关闭通道 */
ret = rt_dac_disable(dac_dev, DAC_DEV_CHANNEL);
return ret;
}
/* 导出到 msh 命令列表中 */
MSH_CMD_EXPORT(dac_vol_sample, dac voltage convert sample);
#endif
#ifdef BSP_USING_CAN
#define CAN_DEV_NAME "can0" /* CAN 设备名称 */
static struct rt_semaphore rx_sem; /* 用于接收消息的信号量 */
static rt_device_t can_dev; /* CAN 设备句柄 */
/* 接收数据回调函数 */
static rt_err_t can_rx_call(rt_device_t dev, rt_size_t size)
{
/* CAN 接收到数据后产生中断,调用此回调函数,然后发送接收信号量 */
rt_sem_release(&rx_sem);
return RT_EOK;
}
static void can_rx_thread(void *parameter)
{
int i;
rt_err_t res;
struct rt_can_msg rxmsg = {0};
/* 设置接收回调函数 */
rt_device_set_rx_indicate(can_dev, can_rx_call);
#ifdef RT_CAN_USING_HDR
struct rt_can_filter_item items[5] =
{
RT_CAN_FILTER_ITEM_INIT(0x100, 0, 0, 0, 0x700, RT_NULL, RT_NULL), /* std,match ID:0x100~0x1ffhdr 为 - 1设置默认过滤表 */
RT_CAN_FILTER_ITEM_INIT(0x300, 0, 0, 0, 0x700, RT_NULL, RT_NULL), /* std,match ID:0x300~0x3ffhdr 为 - 1 */
RT_CAN_FILTER_ITEM_INIT(0x211, 0, 0, 0, 0x7ff, RT_NULL, RT_NULL), /* std,match ID:0x211hdr 为 - 1 */
RT_CAN_FILTER_STD_INIT(0x486, RT_NULL, RT_NULL), /* std,match ID:0x486hdr 为 - 1 */
{0x555, 0, 0, 0, 0x7ff, 7,} /* std,match ID:0x555hdr 为 7指定设置 7 号过滤表 */
};
struct rt_can_filter_config cfg = {5, 1, items}; /* 一共有 5 个过滤表 */
/* 设置硬件过滤表 */
res = rt_device_control(can_dev, RT_CAN_CMD_SET_FILTER, &cfg);
RT_ASSERT(res == RT_EOK);
#endif
while (1)
{
/* hdr 值为 - 1表示直接从 uselist 链表读取数据 */
v .hdr = -1;
/* 阻塞等待接收信号量 */
rt_sem_take(&rx_sem, RT_WAITING_FOREVER);
/* 从 CAN 读取一帧数据 */
rt_device_read(can_dev, 0, &rxmsg, sizeof(rxmsg));
/* 打印数据 ID 及内容 */
rt_kprintf("ID:%x", rxmsg.id);
for (i = 0; i < 8; i++)
{
rt_kprintf("%2x", rxmsg.data[i]);
}
rt_kprintf("\n");
}
}
int can_sample(int argc, char *argv[])
{
struct rt_can_msg msg = {0};
rt_err_t res;
rt_size_t size;
rt_thread_t thread;
char can_name[RT_NAME_MAX];
if (argc == 2)
{
rt_strncpy(can_name, argv[1], RT_NAME_MAX);
}
else
{
rt_strncpy(can_name, CAN_DEV_NAME, RT_NAME_MAX);
}
/* 查找 CAN 设备 */
can_dev = rt_device_find(can_name);
if (!can_dev)
{
rt_kprintf("find %s failed!\n", can_name);
return RT_ERROR;
}
/* 初始化 CAN 接收信号量 */
rt_sem_init(&rx_sem, "rx_sem", 0, RT_IPC_FLAG_FIFO);
/* 以中断接收及发送方式打开 CAN 设备 */
res = rt_device_open(can_dev, RT_DEVICE_FLAG_INT_TX | RT_DEVICE_FLAG_INT_RX);
RT_ASSERT(res == RT_EOK);
/* 创建数据接收线程 */
thread = rt_thread_create("can_rx", can_rx_thread, RT_NULL, 1024, 25, 10);
if (thread != RT_NULL)
{
rt_thread_startup(thread);
}
else
{
rt_kprintf("create can_rx thread failed!\n");
}
msg.id = 0x78; /* ID 为 0x78 */
msg.ide = RT_CAN_STDID; /* 标准格式 */
msg.rtr = RT_CAN_DTR; /* 数据帧 */
msg.len = 8; /* 数据长度为 8 */
/* 待发送的 8 字节数据 */
msg.data[0] = 0x00;
msg.data[1] = 0x11;
msg.data[2] = 0x22;
msg.data[3] = 0x33;
msg.data[4] = 0x44;
msg.data[5] = 0x55;
msg.data[6] = 0x66;
msg.data[7] = 0x77;
/* 发送一帧 CAN 数据 */
size = rt_device_write(can_dev, 0, &msg, sizeof(msg));
if (size == 0)
{
rt_kprintf("can dev write data failed!\n");
}
return res;
}
/* 导出到 msh 命令列表中 */
MSH_CMD_EXPORT(can_sample, can device sample);
#endif
#ifdef BSP_USING_TIM
#define HWTIMER_DEV_NAME "timer0"
static rt_err_t timeout_cb(rt_device_t dev, rt_size_t size)
{
rt_kprintf("this is hwtimer timeout callback fucntion!\n");
rt_kprintf("tick is :%d !\n", rt_tick_get());
return 0;
}
static int hwtimer_sample(int argc, char *argv[])
{
rt_err_t ret = RT_EOK;
rt_hwtimerval_t timeout_s;
rt_device_t hw_dev = RT_NULL;
rt_hwtimer_mode_t mode;
hw_dev = rt_device_find(HWTIMER_DEV_NAME);
if (hw_dev == RT_NULL)
{
rt_kprintf("hwtimer sample run failed! can't find %s device!\n", HWTIMER_DEV_NAME);
return RT_ERROR;
}
ret = rt_device_open(hw_dev, RT_DEVICE_OFLAG_RDWR);
if (ret != RT_EOK)
{
rt_kprintf("open %s device failed!\n", HWTIMER_DEV_NAME);
return ret;
}
rt_device_set_rx_indicate(hw_dev, timeout_cb);
mode = HWTIMER_MODE_PERIOD;
//mode = HWTIMER_MODE_ONESHOT;
ret = rt_device_control(hw_dev, HWTIMER_CTRL_MODE_SET, &mode);
if (ret != RT_EOK)
{
rt_kprintf("set mode failed! ret is :%d\n", ret);
return ret;
}
timeout_s.sec = 2;
timeout_s.usec = 0;
if (rt_device_write(hw_dev, 0, &timeout_s, sizeof(timeout_s)) != sizeof(timeout_s))
{
rt_kprintf("set timeout value failed\n");
return RT_ERROR;
}
rt_thread_mdelay(3500);
rt_device_read(hw_dev, 0, &timeout_s, sizeof(timeout_s));
rt_kprintf("Read: Sec = %d, Usec = %d\n", timeout_s.sec, timeout_s.usec);
return ret;
}
MSH_CMD_EXPORT(hwtimer_sample, hwtimer sample);
#endif
#ifdef BSP_USING_PWM
#define PWM_DEV_NAME "pwm0" /* PWM设备名称 */
#define PWM_DEV_CHANNEL 0 /* PWM通道 */
struct rt_device_pwm *pwm_dev; /* PWM设备句柄 */
static int pwm_sample(int argc, char *argv[])
{
rt_uint32_t period, pulse;
period = 500000; /* 周期为0.5ms单位为纳秒ns */
pulse = 100000; /* PWM脉冲宽度值单位为纳秒ns */
pwm_dev = (struct rt_device_pwm *)rt_device_find(PWM_DEV_NAME);
if (pwm_dev == RT_NULL)
{
rt_kprintf("pwm sample run failed! can't find %s device!\n", PWM_DEV_NAME);
return RT_ERROR;
}
rt_pwm_set(pwm_dev, PWM_DEV_CHANNEL, period, pulse);
rt_pwm_enable(pwm_dev, PWM_DEV_CHANNEL);
return RT_EOK;
}
MSH_CMD_EXPORT(pwm_sample, pwm sample);
#endif
#ifdef BSP_USING_RTC
#include "sys/time.h"
static int rtc_sample(int argc, char *argv[])
{
rt_err_t ret = RT_EOK;
time_t now;
ret = set_date(2000, 2, 28);
if (ret != RT_EOK)
{
rt_kprintf("set RTC date failed\n");
return ret;
}
ret = set_time(23, 59, 55);
if (ret != RT_EOK)
{
rt_kprintf("set RTC time failed\n");
return ret;
}
rt_thread_mdelay(3000);
now = time(RT_NULL);
rt_kprintf("%s\n", ctime(&now));
return ret;
}
MSH_CMD_EXPORT(rtc_sample, rtc sample);
#endif
#ifdef RT_USING_WDT
#define WDT_DEVICE_NAME "wdt"
static rt_device_t wdg_dev;
static void idle_hook(void)
{
rt_device_control(wdg_dev, RT_DEVICE_CTRL_WDT_KEEPALIVE, RT_NULL);
rt_kprintf("feed the dog!\n ");
}
static int wdt_sample(int argc, char *argv[])
{
rt_err_t ret = RT_EOK;
rt_uint32_t timeout = 5;
char device_name[RT_NAME_MAX];
if (argc == 2)
{
rt_strncpy(device_name, argv[1], RT_NAME_MAX);
}
else
{
rt_strncpy(device_name, WDT_DEVICE_NAME, RT_NAME_MAX);
}
wdg_dev = rt_device_find(device_name);
if (!wdg_dev)
{
rt_kprintf("find %s failed!\n", device_name);
return RT_ERROR;
}
ret = rt_device_init(wdg_dev);
if (ret != RT_EOK)
{
rt_kprintf("initialize %s failed!\n", device_name);
return RT_ERROR;
}
ret = rt_device_control(wdg_dev, RT_DEVICE_CTRL_WDT_SET_TIMEOUT, &timeout);
if (ret != RT_EOK)
{
rt_kprintf("set %s timeout failed!\n", device_name);
return RT_ERROR;
}
ret = rt_device_control(wdg_dev, RT_DEVICE_CTRL_WDT_START, RT_NULL);
if (ret != RT_EOK)
{
rt_kprintf("start %s failed!\n", device_name);
return -RT_ERROR;
}
// rt_thread_idle_sethook(idle_hook);
return ret;
}
MSH_CMD_EXPORT(wdt_sample, wdt sample);
#endif
#ifdef BSP_USING_SPI
#define W25Q_SPI_DEVICE_NAME "spi00"
#define W25Q_FLASH_NAME "norflash0"
#include "drv_spi.h"
#ifdef RT_USING_SFUD
#include "spi_flash_sfud.h"
static int rt_hw_spi_flash_init(void)
{
rt_hw_spi_device_attach("spi0", "spi00", GPIOM, PIN3);
if (RT_NULL == rt_sfud_flash_probe(W25Q_FLASH_NAME, W25Q_SPI_DEVICE_NAME))
{
return -RT_ERROR;
};
return RT_EOK;
}
/* 导出到自动初始化 */
INIT_COMPONENT_EXPORT(rt_hw_spi_flash_init);
static void spi_w25q_sample(int argc, char *argv[])
{
struct rt_spi_device *spi_dev_w25q;
char name[RT_NAME_MAX];
rt_uint8_t w25x_read_id = 0x90;
rt_uint8_t id[5] = {0};
if (argc == 2)
{
rt_strncpy(name, argv[1], RT_NAME_MAX);
}
else
{
rt_strncpy(name, W25Q_SPI_DEVICE_NAME, RT_NAME_MAX);
}
/* 查找 spi 设备获取设备句柄 */
spi_dev_w25q = (struct rt_spi_device *)rt_device_find(name);
if (!spi_dev_w25q)
{
rt_kprintf("spi sample run failed! can't find %s device!\n", name);
}
else
{
/* 方式1使用 rt_spi_send_then_recv()发送命令读取ID */
rt_spi_send_then_recv(spi_dev_w25q, &w25x_read_id, 1, id, 5);
rt_kprintf("use rt_spi_send_then_recv() read w25q ID is:%x%x\n", id[3], id[4]);
/* 方式2使用 rt_spi_transfer_message()发送命令读取ID */
struct rt_spi_message msg1, msg2;
msg1.send_buf = &w25x_read_id;
msg1.recv_buf = RT_NULL;
msg1.length = 1;
msg1.cs_take = 1;
msg1.cs_release = 0;
msg1.next = &msg2;
msg2.send_buf = RT_NULL;
msg2.recv_buf = id;
msg2.length = 5;
msg2.cs_take = 0;
msg2.cs_release = 1;
msg2.next = RT_NULL;
rt_spi_transfer_message(spi_dev_w25q, &msg1);
rt_kprintf("use rt_spi_transfer_message() read w25q ID is:%x%x\n", id[3], id[4]);
}
}
/* 导出到 msh 命令列表中 */
MSH_CMD_EXPORT(spi_w25q_sample, spi w25q sample);
#ifdef RT_USING_DFS_ELMFAT
#include <dfs_file.h>
#include <unistd.h>
static void elmfat_sample(void)
{
int fd, size;
struct statfs elm_stat;
char str[] = "elmfat mount to W25Q flash.\r\n", buf[80];
if (dfs_mkfs("elm", W25Q_FLASH_NAME) == 0)
rt_kprintf("make elmfat filesystem success.\n");
if (dfs_mount(W25Q_FLASH_NAME, "/", "elm", 0, 0) == 0)
rt_kprintf("elmfat filesystem mount success.\n");
if (statfs("/", &elm_stat) == 0)
rt_kprintf("elmfat filesystem block size: %d, total blocks: %d, free blocks: %d.\n",
elm_stat.f_bsize, elm_stat.f_blocks, elm_stat.f_bfree);
if (mkdir("/user", 0x777) == 0)
rt_kprintf("make a directory: '/user'.\n");
rt_kprintf("Write string '%s' to /user/test.txt.\n", str);
fd = open("/user/test.txt", O_WRONLY | O_CREAT);
if (fd >= 0)
{
if (write(fd, str, sizeof(str)) == sizeof(str))
rt_kprintf("Write data done.\n");
close(fd);
}
fd = open("/user/test.txt", O_RDONLY);
if (fd >= 0)
{
size = read(fd, buf, sizeof(buf));
close(fd);
if (size == sizeof(str))
rt_kprintf("Read data from file test.txt(size: %d): %s \n", size, buf);
}
}
MSH_CMD_EXPORT(elmfat_sample, elmfat sample);
#endif
#endif
#endif
#ifdef BSP_USING_SPI
#ifdef RT_USING_SPI_MSD
#define SD_SPI_DEVICE_NAME "spi00"
#define SDCARD_NAME "sd0"
#include "drv_spi.h"
#include "spi_msd.h"
#include <dfs_file.h>
#include <unistd.h>
static int rt_hw_spi0_tfcard(void)
{
rt_hw_spi_device_attach("spi0", SD_SPI_DEVICE_NAME, GPION, PIN1);
return msd_init(SDCARD_NAME, SD_SPI_DEVICE_NAME);
}
INIT_DEVICE_EXPORT(rt_hw_spi0_tfcard);
static void elmfat_sample(void)
{
int fd, size;
struct statfs elm_stat;
char str[] = "elmfat mount to sdcard.\r\n", buf[80];
if (dfs_mkfs("elm", SDCARD_NAME) == 0)
rt_kprintf("make elmfat filesystem success.\n");
if (dfs_mount(SDCARD_NAME, "/", "elm", 0, 0) == 0)
rt_kprintf("elmfat filesystem mount success.\n");
if (statfs("/", &elm_stat) == 0)
rt_kprintf("elmfat filesystem block size: %d, total blocks: %d, free blocks: %d.\n",
elm_stat.f_bsize, elm_stat.f_blocks, elm_stat.f_bfree);
if (mkdir("/user", 0x777) == 0)
rt_kprintf("make a directory: '/user'.\n");
rt_kprintf("Write string '%s' to /user/test.txt.\n", str);
fd = open("/user/test.txt", O_WRONLY | O_CREAT);
if (fd >= 0)
{
if (write(fd, str, sizeof(str)) == sizeof(str))
rt_kprintf("Write data done.\n");
close(fd);
}
fd = open("/user/test.txt", O_RDONLY);
if (fd >= 0)
{
size = read(fd, buf, sizeof(buf));
close(fd);
if (size == sizeof(str))
rt_kprintf("Read data from file test.txt(size: %d): %s \n", size, buf);
}
}
MSH_CMD_EXPORT(elmfat_sample, elmfat sample);
#endif
#endif
#ifdef BSP_USING_SDIO
#define SDCARD_NAME "sd0"
#include <dfs_file.h>
#include <unistd.h>
static void elmfat_sample(void)
{
int fd, size;
struct statfs elm_stat;
char str[] = "elmfat mount to sdcard.\n", buf[80];
if (dfs_mkfs("elm", SDCARD_NAME) == 0)
rt_kprintf("make elmfat filesystem success.\n");
if (dfs_mount(SDCARD_NAME, "/", "elm", 0, 0) == 0)
rt_kprintf("elmfat filesystem mount success.\n");
if (statfs("/", &elm_stat) == 0)
rt_kprintf("elmfat filesystem block size: %d, total blocks: %d, free blocks: %d.\n",
elm_stat.f_bsize, elm_stat.f_blocks, elm_stat.f_bfree);
if (mkdir("/user", 0x777) == 0)
rt_kprintf("make a directory: '/user'.\n");
rt_kprintf("Write string '%s' to /user/test.txt.\n", str);
fd = open("/user/test.txt", O_WRONLY | O_CREAT);
if (fd >= 0)
{
if (write(fd, str, sizeof(str)) == sizeof(str))
rt_kprintf("Write data done.\n");
close(fd);
}
fd = open("/user/test.txt", O_RDONLY);
if (fd >= 0)
{
size = read(fd, buf, sizeof(buf));
close(fd);
if (size == sizeof(str))
rt_kprintf("Read data from file test.txt(size: %d): %s \n", size, buf);
}
}
MSH_CMD_EXPORT(elmfat_sample, elmfat sample);
#endif
#ifdef RT_USING_HWCRYPTO
static void crypto_sample(void)
{
#ifdef BSP_USING_CRC
rt_uint8_t temp[] = {0, 1, 2, 3, 4, 5, 6, 7};
struct rt_hwcrypto_ctx *ctx;
rt_uint32_t result = 0;
struct hwcrypto_crc_cfg cfg =
{
.last_val = 0x00000000,
.poly = 0x04C11DB7,
.width = 8,
.xorout = 0x00000000, //不支持XOR
.flags = 0,
};
ctx = rt_hwcrypto_crc_create(rt_hwcrypto_dev_default(), HWCRYPTO_CRC_CRC32);
rt_hwcrypto_crc_cfg(ctx, &cfg);
result = rt_hwcrypto_crc_update(ctx, temp, sizeof(temp));
rt_kprintf("result: 0x%08x \n", result);
rt_hwcrypto_crc_destroy(ctx);
#endif /* BSP_USING_CRC */
#ifdef BSP_USING_RNG
rt_uint32_t rng_result = 0;
int i;
for (i = 0; i < 20; i++)
{
rng_result = rt_hwcrypto_rng_update();
rt_kprintf("rng:0x%08x.\n", rng_result);
}
#endif /* BSP_USING_RNG */
}
MSH_CMD_EXPORT(crypto_sample, crypto sample);
#endif
#ifdef BSP_USING_SDRAM
#include <rtthread.h>
#define THREAD_PRIORITY 25
#define THREAD_STACK_SIZE 512
#define THREAD_TIMESLICE 5
/* 线程入口 */
void thread1_entry(void *parameter)
{
int i;
char *ptr = RT_NULL; /* 内存块的指针 */
for (i = 0;; i++)
{
/* 每次分配 (1 << i) 大小字节数的内存空间 */
ptr = rt_malloc(1 << i);
/* 如果分配成功 */
if (ptr != RT_NULL)
{
rt_kprintf("get memory :%d byte\n", (1 << i));
/* 释放内存块 */
rt_free(ptr);
rt_kprintf("free memory :%d byte\n", (1 << i));
ptr = RT_NULL;
}
else
{
rt_kprintf("try to get %d byte memory failed!\n", (1 << i));
return;
}
}
}
int dynmem_sample(void)
{
rt_thread_t tid = RT_NULL;
/* 创建线程 1 */
tid = rt_thread_create("thread1",
thread1_entry, RT_NULL,
THREAD_STACK_SIZE,
THREAD_PRIORITY,
THREAD_TIMESLICE);
if (tid != RT_NULL)
rt_thread_startup(tid);
return 0;
}
/* 导出到 msh 命令列表中 */
MSH_CMD_EXPORT(dynmem_sample, dynmem sample);
#endif
#ifdef RT_USING_TOUCH
#include "gt9147.h"
#define THREAD_PRIORITY 25
#define THREAD_STACK_SIZE 512
#define THREAD_TIMESLICE 5
int rt_hw_gt9147_port(void)
{
struct rt_touch_config config;
rt_uint8_t rst;
rst = GT9147_RST_PIN;
config.dev_name = "i2c0";
config.irq_pin.pin = GT9147_IRQ_PIN;
config.irq_pin.mode = PIN_MODE_INPUT_PULLDOWN;
config.user_data = &rst;
rt_hw_gt9147_init("gt9147", &config);
return 0;
}
INIT_ENV_EXPORT(rt_hw_gt9147_port);
static rt_thread_t gt9147_thread = RT_NULL;
static rt_sem_t gt9147_sem = RT_NULL;
static rt_device_t dev = RT_NULL;
static struct rt_touch_data *read_data;
/* 读取数据线程入口函数 */
static void gt9147_entry(void *parameter)
{
struct rt_touch_data *read_data;
read_data = (struct rt_touch_data *)rt_malloc(sizeof(struct rt_touch_data) * 5);
while (1)
{
/* 请求信号量 */
rt_sem_take(gt9147_sem, RT_WAITING_FOREVER);
/* 读取五个点的触摸信息 */
if (rt_device_read(dev, 0, read_data, 5) == 5)
{
for (rt_uint8_t i = 0; i < 5; i++)
{
if (read_data[i].event == RT_TOUCH_EVENT_DOWN || read_data[i].event == RT_TOUCH_EVENT_MOVE)
{
rt_kprintf("%d %d %d %d %d\n",
read_data[i].track_id,
read_data[i].x_coordinate,
read_data[i].y_coordinate,
read_data[i].timestamp,
read_data[i].width);
}
}
}
/* 打开中断 */
rt_device_control(dev, RT_TOUCH_CTRL_ENABLE_INT, RT_NULL);
}
}
/* 接收回调函数 */
static rt_err_t rx_callback(rt_device_t dev, rt_size_t size)
{
/* 关闭中断 */
rt_device_control(dev, RT_TOUCH_CTRL_DISABLE_INT, RT_NULL);
/* 释放信号量 */
rt_sem_release(gt9147_sem);
return 0;
}
static int gt9147_sample(void)
{
/* 查找 Touch 设备 */
dev = rt_device_find("gt9147");
if (dev == RT_NULL)
{
rt_kprintf("can't find device:%s\n", "touch");
return -1;
}
/* 以中断的方式打开设备 */
if (rt_device_open(dev, RT_DEVICE_FLAG_INT_RX) != RT_EOK)
{
rt_kprintf("open device failed!");
return -1;
}
/* 设置接收回调 */
rt_device_set_rx_indicate(dev, rx_callback);
/* 创建信号量 */
gt9147_sem = rt_sem_create("dsem", 0, RT_IPC_FLAG_PRIO);
if (gt9147_sem == RT_NULL)
{
rt_kprintf("create dynamic semaphore failed.\n");
return -1;
}
/* 创建读取数据线程 */
gt9147_thread = rt_thread_create("thread1",
gt9147_entry,
RT_NULL,
THREAD_STACK_SIZE,
THREAD_PRIORITY,
THREAD_TIMESLICE);
/* 启动线程 */
if (gt9147_thread != RT_NULL)
rt_thread_startup(gt9147_thread);
return 0;
}
MSH_CMD_EXPORT(gt9147_sample, gt9147 sample);
#endif