4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-23 02:57:24 +08:00
2022-10-11 08:59:42 +08:00

489 lines
13 KiB
C

/**************************************************************************//**
*
* @copyright (C) 2019 Nuvoton Technology Corp. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-8-16 Wayne First version
*
******************************************************************************/
#include <rtconfig.h>
#if defined(BSP_USING_CCAP)
#include <rthw.h>
#include "NuMicro.h"
#include "ccap_sensor.h"
#include "drv_ccap.h"
#define LOG_TAG "drv.ccap"
#define DBG_ENABLE
#define DBG_SECTION_NAME LOG_TAG
#define DBG_LEVEL LOG_LVL_INFO
#define DBG_COLOR
#include <rtdbg.h>
/* Private Typedef --------------------------------------------------------------*/
enum
{
CCAP_START = -1,
#if defined(BSP_USING_CCAP0)
CCAP0_IDX,
#endif
CCAP_CNT
};
struct nu_ccap
{
struct rt_device device;
char *name;
CCAP_T *base;
uint32_t rstidx;
uint32_t modid_ccap;
uint32_t modid_sensor;
IRQn_Type irqn;
ccap_config sConfig;
};
typedef struct nu_ccap *nu_ccap_t;
static struct nu_ccap nu_ccap_arr [] =
{
#if defined(BSP_USING_CCAP0)
{
.name = "ccap0",
.base = CCAP,
.rstidx = CCAP_RST,
.modid_ccap = CCAP_MODULE,
.modid_sensor = SEN_MODULE,
.irqn = CCAP_IRQn,
},
#endif
};
static void nu_ccap_isr(nu_ccap_t ccap)
{
CCAP_T *base = ccap->base;
uint32_t u32CapInt, u32EvtMsk;
u32CapInt = base->INT;
u32EvtMsk = 0;
if ((u32CapInt & (CCAP_INT_VIEN_Msk | CCAP_INT_VINTF_Msk)) == (CCAP_INT_VIEN_Msk | CCAP_INT_VINTF_Msk))
{
base->INT |= CCAP_INT_VINTF_Msk; /* Clear Frame end interrupt */
u32EvtMsk |= NU_CCAP_FRAME_END;
}
if ((u32CapInt & (CCAP_INT_ADDRMIEN_Msk | CCAP_INT_ADDRMINTF_Msk)) == (CCAP_INT_ADDRMIEN_Msk | CCAP_INT_ADDRMINTF_Msk))
{
base->INT |= CCAP_INT_ADDRMINTF_Msk; /* Clear Address match interrupt */
u32EvtMsk |= NU_CCAP_ADDRESS_MATCH;
}
if ((u32CapInt & (CCAP_INT_MEIEN_Msk | CCAP_INT_MEINTF_Msk)) == (CCAP_INT_MEIEN_Msk | CCAP_INT_MEINTF_Msk))
{
base->INT |= CCAP_INT_MEINTF_Msk; /* Clear Memory error interrupt */
u32EvtMsk |= NU_CCAP_MEMORY_ERROR;
}
/* Invoke callback */
if (ccap->device.rx_indicate != RT_NULL)
ccap->device.rx_indicate(&ccap->device, 1);
if (ccap->sConfig.pfnEvHndler && u32EvtMsk)
ccap->sConfig.pfnEvHndler(ccap->sConfig.pvData, u32EvtMsk);
base->CTL = base->CTL | CCAP_CTL_UPDATE;
}
#if defined(BSP_USING_CCAP0)
/* CCAP interrupt entry */
void CCAP_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
nu_ccap_isr(&nu_ccap_arr[CCAP0_IDX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
/* common device interface */
static rt_err_t ccap_init(rt_device_t dev)
{
return RT_EOK;
}
static void ccap_sensor_setfreq(nu_ccap_t psNuCcap, uint32_t u32SensorFreq)
{
uint32_t u32RegLockLevel = SYS_IsRegLocked();
/* Unlock protected registers */
if (u32RegLockLevel)
SYS_UnlockReg();
if (u32SensorFreq > 0)
{
int32_t i32Div;
/* Specified sensor clock */
i32Div = CLK_GetHCLKFreq() / u32SensorFreq;
if (i32Div == 0)
i32Div = 1;
CLK_EnableModuleClock(psNuCcap->modid_ccap);
CLK_SetModuleClock(psNuCcap->modid_ccap, CLK_CLKSEL0_CCAPSEL_HCLK, MODULE_NoMsk);
CLK_EnableModuleClock(psNuCcap->modid_sensor);
CLK_SetModuleClock(psNuCcap->modid_sensor, MODULE_NoMsk, CLK_CLKDIV3_VSENSE(i32Div));
LOG_I("CCAP Engine clock:%d", CLK_GetHCLKFreq());
LOG_I("CCAP Sensor preferred clock %d, divider:%d", u32SensorFreq, i32Div);
LOG_I("CCAP Sensor actully clock:%d", CLK_GetHCLKFreq() / i32Div);
}
else
{
CLK_DisableModuleClock(psNuCcap->modid_ccap);
CLK_DisableModuleClock(psNuCcap->modid_sensor);
}
/* Lock protected registers */
if (u32RegLockLevel)
SYS_LockReg();
}
static rt_err_t ccap_pipe_configure(nu_ccap_t psNuCcap, ccap_view_info_t psViewInfo)
{
sensor_mode_info_t psSensorModeInfo = (sensor_mode_info_t)psViewInfo;
ccap_config_t psCcapConf = &psNuCcap->sConfig;
uint32_t u32PipeEnabling = 0;
struct rt_device_rect_info *psRectCropping = &psCcapConf->sRectCropping;
/* Set Cropping Window Vertical/Horizontal Starting Address and Cropping Window Size */
CCAP_SetCroppingWindow(psNuCcap->base, psRectCropping->y, psRectCropping->x, psRectCropping->height, psRectCropping->width);
if (psCcapConf->sPipeInfo_Packet.pu8FarmAddr)
{
uint32_t u32WM, u32WN, u32HM, u32HN;
/* Set System Memory Packet Base Address Register */
CCAP_SetPacketBuf(psNuCcap->base, (uint32_t)psCcapConf->sPipeInfo_Packet.pu8FarmAddr);
u32WM = u32WN = u32HM = u32HN = 0;
/* Set Packet Scaling Vertical/Horizontal Factor Register */
if (psCcapConf->sPipeInfo_Packet.u32Height < psRectCropping->height)
{
u32HN = psCcapConf->sPipeInfo_Packet.u32Height;
u32HM = psRectCropping->height;
}
if (psCcapConf->sPipeInfo_Packet.u32Width < psRectCropping->width)
{
u32WN = psCcapConf->sPipeInfo_Packet.u32Width;
u32WM = psRectCropping->width;
}
CCAP_SetPacketScaling(psNuCcap->base,
u32HN,
u32HM,
u32WN,
u32WM);
/* Set Packet Frame Output Pixel Stride Width */
CCAP_SetPacketStride(psNuCcap->base, psCcapConf->u32Stride_Packet);
u32PipeEnabling |= CCAP_CTL_PKTEN;
}
if (psCcapConf->sPipeInfo_Planar.pu8FarmAddr)
{
uint32_t u32Offset = 0;
uint32_t u32WM, u32WN, u32HM, u32HN;
uint32_t u32Div = 0;
if (psCcapConf->sPipeInfo_Planar.u32PixFmt == CCAP_PAR_PLNFMT_YUV422)
{
/* U/V farm size equals Y/2 farm size */
u32Div = 2;
}
else if (psCcapConf->sPipeInfo_Planar.u32PixFmt == CCAP_PAR_PLNFMT_YUV420)
{
/* U/V farm size equals Y/4 farm size */
u32Div = 4;
}
else
{
goto fail_ccap_pipe_configure;
}
/* Set System Memory Planar Y Base Address Register */
CCAP_SetPlanarYBuf(psNuCcap->base, (uint32_t)psCcapConf->sPipeInfo_Planar.pu8FarmAddr + u32Offset);
u32Offset = psCcapConf->sPipeInfo_Planar.u32Height * psCcapConf->sPipeInfo_Planar.u32Width;
/* Set System Memory Planar U Base Address Register */
CCAP_SetPlanarUBuf(psNuCcap->base, (uint32_t)psCcapConf->sPipeInfo_Planar.pu8FarmAddr + u32Offset);
u32Offset += ((psCcapConf->sPipeInfo_Planar.u32Height * psCcapConf->sPipeInfo_Planar.u32Width) / u32Div);
/* Set System Memory Planar V Base Address Register */
CCAP_SetPlanarVBuf(psNuCcap->base, (uint32_t)psCcapConf->sPipeInfo_Planar.pu8FarmAddr + u32Offset);
u32WM = u32WN = u32HM = u32HN = 0;
/* Set Planar Scaling Vertical/Horizontal Factor Register */
if (psCcapConf->sPipeInfo_Planar.u32Height < psRectCropping->height)
{
u32HN = psCcapConf->sPipeInfo_Planar.u32Height;
u32HM = psRectCropping->height;
}
if (psCcapConf->sPipeInfo_Planar.u32Width < psRectCropping->width)
{
u32WN = psCcapConf->sPipeInfo_Planar.u32Width;
u32WM = psRectCropping->width;
}
/* Set Planar Scaling Vertical/Horizontal Factor Register */
CCAP_SetPlanarScaling(psNuCcap->base,
u32HN,
u32HM,
u32WN,
u32WM);
/* Set Planar Frame Output Pixel Stride Width */
CCAP_SetPlanarStride(psNuCcap->base, psCcapConf->u32Stride_Planar);
u32PipeEnabling |= CCAP_CTL_PLNEN;
}
/* Set Vsync polarity, Hsync polarity, pixel clock polarity, Sensor Format and Order */
CCAP_Open(psNuCcap->base,
psSensorModeInfo->u32Polarity |
psViewInfo->u32PixFmt |
psCcapConf->sPipeInfo_Packet.u32PixFmt |
psCcapConf->sPipeInfo_Planar.u32PixFmt,
u32PipeEnabling);
return RT_EOK;
fail_ccap_pipe_configure:
return -RT_ERROR;
}
static rt_err_t ccap_open(rt_device_t dev, rt_uint16_t oflag)
{
nu_ccap_t psNuCcap = (nu_ccap_t)dev;
uint32_t u32RegLockLevel = SYS_IsRegLocked();
/* Unlock protected registers */
if (u32RegLockLevel)
SYS_UnlockReg();
/* Enable clock */
ccap_sensor_setfreq(psNuCcap, 24000000);
/* Reset IP */
SYS_ResetModule(psNuCcap->rstidx);
/* Lock protected registers */
if (u32RegLockLevel)
SYS_LockReg();
/* Unmask External CCAP Interrupt */
NVIC_EnableIRQ(psNuCcap->irqn);
return RT_EOK;
}
static rt_err_t ccap_close(rt_device_t dev)
{
nu_ccap_t psNuCcap = (nu_ccap_t)dev;
/* Stop capture engine */
CCAP_Stop(psNuCcap->base, FALSE);
/* Disable CCAP Interrupt */
CCAP_DisableInt(psNuCcap->base, CCAP_INT_VIEN_Msk);
/* Mask External CCAP Interrupt */
NVIC_DisableIRQ(psNuCcap->irqn);
/* Disable clock */
ccap_sensor_setfreq(psNuCcap, 0);
return RT_EOK;
}
static rt_err_t ccap_control(rt_device_t dev, int cmd, void *args)
{
nu_ccap_t psNuCcap = (nu_ccap_t)dev;
rt_err_t ret = -RT_ERROR;
if (psNuCcap == RT_NULL)
goto exit_ccap_control;
switch (cmd)
{
case CCAP_CMD_CONFIG:
{
ccap_config *psCcapConf = (ccap_config *)args;
if (args == RT_NULL)
goto exit_ccap_control;
rt_memcpy(&psNuCcap->sConfig, psCcapConf, sizeof(ccap_config));
}
break;
case CCAP_CMD_START_CAPTURE:
/* Enable CCAP Interrupt */
CCAP_EnableInt(psNuCcap->base, CCAP_INT_VIEN_Msk);
/* Start capture engine */
CCAP_Start(psNuCcap->base);
break;
case CCAP_CMD_STOP_CAPTURE:
/* Disable CCAP Interrupt */
CCAP_DisableInt(psNuCcap->base, CCAP_INT_VIEN_Msk);
/* Stop capture engine */
CCAP_Stop(psNuCcap->base, FALSE);
break;
case CCAP_CMD_SET_SENCLK:
{
rt_uint32_t u32SenClk;
RT_ASSERT(args);
u32SenClk = *((rt_uint32_t *)args);
if (u32SenClk > 0)
ccap_sensor_setfreq(psNuCcap, u32SenClk);
}
break;
case CCAP_CMD_SET_PIPES:
{
ccap_view_info_t psViewInfo;
RT_ASSERT(args);
psViewInfo = (ccap_view_info_t)args;
ret = ccap_pipe_configure(psNuCcap, psViewInfo);
}
break;
case CCAP_CMD_SET_OPMODE:
{
RT_ASSERT(args);
int i32IsOneSutterMode = *((int *)args);
/* Set shutter or continuous mode */
CCAP_SET_CTL(psNuCcap->base, (i32IsOneSutterMode > 0) ? CCAP_CTL_SHUTTER_Msk : 0);
}
break;
case CCAP_CMD_SET_BASEADDR:
{
uint32_t u32Offset = 0;
ccap_config_t psCcapConf;
RT_ASSERT(args);
psCcapConf = (ccap_config_t)args;
/* Set System Memory Packet Base Address Register */
CCAP_SetPacketBuf(psNuCcap->base, (uint32_t)psCcapConf->sPipeInfo_Packet.pu8FarmAddr);
/* Set System Memory Planar Y Base Address Register */
CCAP_SetPlanarYBuf(psNuCcap->base, (uint32_t)psCcapConf->sPipeInfo_Planar.pu8FarmAddr + u32Offset);
u32Offset = psCcapConf->sPipeInfo_Planar.u32Height * psCcapConf->sPipeInfo_Planar.u32Width;
/* Set System Memory Planar U Base Address Register */
CCAP_SetPlanarUBuf(psNuCcap->base, (uint32_t)psCcapConf->sPipeInfo_Planar.pu8FarmAddr + u32Offset);
u32Offset += ((psCcapConf->sPipeInfo_Planar.u32Height * psCcapConf->sPipeInfo_Planar.u32Width) / 2);
/* Set System Memory Planar V Base Address Register */
CCAP_SetPlanarVBuf(psNuCcap->base, (uint32_t)psCcapConf->sPipeInfo_Planar.pu8FarmAddr + u32Offset);
}
break;
default:
return -RT_ENOSYS;
}
ret = RT_EOK;
exit_ccap_control:
return ret;
}
#ifdef RT_USING_DEVICE_OPS
static struct rt_device_ops ccap_ops =
{
.init = ccap_init,
.open = ccap_open,
.close = ccap_close,
.read = RT_NULL,
.write = RT_NULL,
.control = ccap_control,
};
#endif
static rt_err_t ccap_register(struct rt_device *device, const char *name, void *user_data)
{
RT_ASSERT(device);
device->type = RT_Device_Class_Miscellaneous;
device->rx_indicate = RT_NULL;
device->tx_complete = RT_NULL;
#ifdef RT_USING_DEVICE_OPS
device->ops = &inputcapture_ops;
#else
device->init = ccap_init;
device->open = ccap_open;
device->close = ccap_close;
device->read = RT_NULL;
device->write = RT_NULL;
device->control = ccap_control;
#endif
device->user_data = user_data;
return rt_device_register(device, name, RT_DEVICE_FLAG_RDONLY | RT_DEVICE_FLAG_STANDALONE);
}
/**
* Hardware CCAP Initialization
*/
int rt_hw_ccap_init(void)
{
int i;
rt_err_t ret = RT_EOK;
for (i = (CCAP_START + 1); i < CCAP_CNT; i++)
{
rt_memset(&nu_ccap_arr[i].sConfig, 0, sizeof(ccap_config));
ret = ccap_register(&nu_ccap_arr[i].device, nu_ccap_arr[i].name, NULL);
RT_ASSERT(ret == RT_EOK);
}
return ret;
}
INIT_DEVICE_EXPORT(rt_hw_ccap_init);
#endif