4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-25 23:47:22 +08:00
Meco Man f58d3c5200 rt_device_write/read return data type as rt_ssize_t
rt_ssize_t can give negative error code, which follows the unix style correctly
2023-02-07 21:43:57 -05:00

2928 lines
108 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-07-20 jiezhi320 the first version
*/
#include <stddef.h>
#include <rthw.h>
#include <rtthread.h>
#ifdef RT_USING_SDIO
#include "drv_sdio.h"
//#define DRV_DEBUG
#define LOG_TAG "drv.sdio"
#include "drv_log.h"
#define SDIO_DMA_USE_IPC 0//1:ʹÓÃipc×öͬ²½
/* card status of R1 definitions */
#define SD_R1_OUT_OF_RANGE BIT(31) /* command's argument was out of the allowed range */
#define SD_R1_ADDRESS_ERROR BIT(30) /* misaligned address which did not match the block length */
#define SD_R1_BLOCK_LEN_ERROR BIT(29) /* transferred block length is not allowed */
#define SD_R1_ERASE_SEQ_ERROR BIT(28) /* an error in the sequence of erase commands occurred */
#define SD_R1_ERASE_PARAM BIT(27) /* an invalid selection of write-blocks for erase occurred */
#define SD_R1_WP_VIOLATION BIT(26) /* the host attempts to write to a protected block or to the temporary or permanent write protected card */
#define SD_R1_CARD_IS_LOCKED BIT(25) /* the card is locked by the host */
#define SD_R1_LOCK_UNLOCK_FAILED BIT(24) /* a sequence or password error has been detected in lock/unlock card command */
#define SD_R1_COM_CRC_ERROR BIT(23) /* CRC check of the previous command failed */
#define SD_R1_ILLEGAL_COMMAND BIT(22) /* command not legal for the card state */
#define SD_R1_CARD_ECC_FAILED BIT(21) /* card internal ECC was applied but failed to correct the data */
#define SD_R1_CC_ERROR BIT(20) /* internal card controller error */
#define SD_R1_GENERAL_UNKNOWN_ERROR BIT(19) /* a general or an unknown error occurred during the operation */
#define SD_R1_CSD_OVERWRITE BIT(16) /* read only section of the CSD does not match or attempt to reverse the copy or permanent WP bits */
#define SD_R1_WP_ERASE_SKIP BIT(15) /* partial address space was erased */
#define SD_R1_CARD_ECC_DISABLED BIT(14) /* command has been executed without using the internal ECC */
#define SD_R1_ERASE_RESET BIT(13) /* an erase sequence was cleared before executing */
#define SD_R1_READY_FOR_DATA BIT(8) /* correspond to buffer empty signaling on the bus */
#define SD_R1_APP_CMD BIT(5) /* card will expect ACMD */
#define SD_R1_AKE_SEQ_ERROR BIT(3) /* error in the sequence of the authentication process */
#define SD_R1_ERROR_BITS (uint32_t)0xFDF9E008 /* all the R1 error bits */
/* card status of R6 definitions */
#define SD_R6_COM_CRC_ERROR BIT(15) /* CRC check of the previous command failed */
#define SD_R6_ILLEGAL_COMMAND BIT(14) /* command not legal for the card state */
#define SD_R6_GENERAL_UNKNOWN_ERROR BIT(13) /* a general or an unknown error occurred during the operation */
/* card state */
#define SD_CARDSTATE_IDLE ((uint8_t)0x00) /* card is in idle state */
#define SD_CARDSTATE_READY ((uint8_t)0x01) /* card is in ready state */
#define SD_CARDSTATE_IDENTIFICAT ((uint8_t)0x02) /* card is in identificat state */
#define SD_CARDSTATE_STANDBY ((uint8_t)0x03) /* card is in standby state */
#define SD_CARDSTATE_TRANSFER ((uint8_t)0x04) /* card is in transfer state */
#define SD_CARDSTATE_DATA ((uint8_t)0x05) /* card is in data sending state */
#define SD_CARDSTATE_RECEIVING ((uint8_t)0x06) /* card is in receiving state */
#define SD_CARDSTATE_PROGRAMMING ((uint8_t)0x07) /* card is in programming state */
#define SD_CARDSTATE_DISCONNECT ((uint8_t)0x08) /* card is in disconnect state */
#define SD_CARDSTATE_LOCKED ((uint32_t)0x02000000) /* card is in locked state */
#define SD_CHECK_PATTERN ((uint32_t)0x000001AA) /* check pattern for CMD8 */
#define SD_VOLTAGE_WINDOW ((uint32_t)0x80100000) /* host 3.3V request in ACMD41 */
/* parameters for ACMD41(voltage validation) */
#define SD_HIGH_CAPACITY ((uint32_t)0x40000000) /* high capacity SD memory card */
#define SD_STD_CAPACITY ((uint32_t)0x00000000) /* standard capacity SD memory card */
/* SD bus width, check SCR register */
#define SD_BUS_WIDTH_4BIT ((uint32_t)0x00040000) /* 4-bit width bus mode */
#define SD_BUS_WIDTH_1BIT ((uint32_t)0x00010000) /* 1-bit width bus mode */
/* masks for SCR register */
#define SD_MASK_0_7BITS ((uint32_t)0x000000FF) /* mask [7:0] bits */
#define SD_MASK_8_15BITS ((uint32_t)0x0000FF00) /* mask [15:8] bits */
#define SD_MASK_16_23BITS ((uint32_t)0x00FF0000) /* mask [23:16] bits */
#define SD_MASK_24_31BITS ((uint32_t)0xFF000000) /* mask [31:24] bits */
#define SDIO_FIFO_ADDR ((uint32_t)0x40012C80) /* address of SDIO_FIFO */
#define SD_FIFOHALF_WORDS ((uint32_t)0x00000008) /* words of FIFO half full/empty */
#define SD_FIFOHALF_BYTES ((uint32_t)0x00000020) /* bytes of FIFO half full/empty */
#define SD_DATATIMEOUT ((uint32_t)0xFFFFFFFF) /* DSM data timeout */
#define SD_MAX_VOLT_VALIDATION ((uint32_t)0x0000FFFF) /* the maximum times of voltage validation */
#define SD_MAX_DATA_LENGTH ((uint32_t)0x01FFFFFF) /* the maximum length of data */
#define SD_ALLZERO ((uint32_t)0x00000000) /* all zero */
#define SD_RCA_SHIFT ((uint8_t)0x10) /* RCA shift bits */
#define SD_CLK_DIV_INIT ((uint16_t)0x0076) /* SD clock division in initialization phase */
#define SD_CLK_DIV_TRANS ((uint16_t)0x0002) /* SD clock division in transmission phase */
#define SDIO_MASK_INTC_FLAGS ((uint32_t)0x00C007FF) /* mask flags of SDIO_INTC */
typedef struct{
uint32_t sd_scr[2] ; /* content of SCR register */
sdio_card_type_enum cardtype; /* SD card type */
uint32_t sd_csd[4]; /* content of CSD register */
uint32_t sd_cid[4]; /* content of CID register */
uint16_t sd_rca; /* RCA of SD card */
uint32_t transmode;
uint32_t totalnumber_bytes;
uint32_t stopcondition;
__IO sd_error_enum transerror;
__IO uint32_t transend;
__IO uint32_t number_bytes;
}sdcard_opration_t;
static sdcard_opration_t card_opration = {
.sd_scr = {0,0},
.cardtype = SDIO_STD_CAPACITY_SD_CARD_V1_1,
.sd_csd = {0,0,0,0},
.sd_cid = {0,0,0,0},
.sd_rca = 0,
.transmode = SD_POLLING_MODE,
.totalnumber_bytes = 0,
.stopcondition = 0,
.transerror = SD_OK,
.transend = 0,
.number_bytes = 0,
};
/* set sector size to 512 */
#define SECTOR_SIZE 512
typedef struct
{
struct rt_device sdcard_device;
sd_card_info_struct sd_cardinfo;
IRQn_Type irqn;
struct rt_mutex sd_lock;
struct rt_semaphore sem;
char *device_name;
} gd32_sdio_t;
static gd32_sdio_t sd = {
.irqn = SDIO_IRQn,
.device_name = "sd0",
};
/* check if the command sent error occurs */
static sd_error_enum cmdsent_error_check(void);
/* check if error occurs for R1 response */
static sd_error_enum r1_error_check(uint8_t cmdindex);
/* check if error type for R1 response */
static sd_error_enum r1_error_type_check(uint32_t resp);
/* check if error occurs for R2 response */
static sd_error_enum r2_error_check(void);
/* check if error occurs for R3 response */
static sd_error_enum r3_error_check(void);
/* check if error occurs for R6 response */
static sd_error_enum r6_error_check(uint8_t cmdindex, uint16_t *prca);
/* check if error occurs for R7 response */
static sd_error_enum r7_error_check(void);
/* get the state which the card is in */
static sd_error_enum sd_card_state_get(uint8_t *pcardstate);
/* configure the bus width mode */
static sd_error_enum sd_bus_width_config(uint32_t buswidth);
/* get the SCR of corresponding card */
static sd_error_enum sd_scr_get(uint16_t rca, uint32_t *pscr);
/* get the data block size */
static uint32_t sd_datablocksize_get(uint16_t bytesnumber);
/* configure the GPIO of SDIO interface */
static void gpio_config(void);
/* configure the RCU of SDIO and DMA */
static void rcu_config(void);
/* configure the DMA for SDIO transfer request */
static void dma_transfer_config(uint32_t *srcbuf, uint32_t bufsize);
/* configure the DMA for SDIO reveive request */
static void dma_receive_config(uint32_t *dstbuf, uint32_t bufsize);
static void nvic_config(void);
static sd_error_enum sd_config(void);
static void card_info_get(void);
#if SDIO_DMA_USE_IPC
static void sdio_dma_irq_config(void);
#endif
/* RT-Thread Device Driver Interface */
static rt_err_t rt_sdcard_init(rt_device_t dev)
{
rt_err_t ret = RT_EOK;
sd_error_enum sd_error = SD_OK;
uint16_t retry = 5;
ret = rt_mutex_init(&sd.sd_lock, "sd_lock", RT_IPC_FLAG_FIFO);
if (RT_EOK != ret) {
LOG_E("init mutex failed\n");
return ret;
}
ret = rt_sem_init(&sd.sem, "sd_sem", 0, RT_IPC_FLAG_FIFO);
if (RT_EOK != ret) {
LOG_E("init semaphore failed\n");
return ret;
}
nvic_irq_enable(sd.irqn, 0, 0);
do {
/* initialize the card, get the card information and configurate the bus mode and transfer mode */
sd_error = sd_config();
} while((SD_OK != sd_error) && (--retry));
if (retry) {
LOG_I("\r\n Card init success!\r\n");
}
else {
LOG_E("\r\n Card init failed!\r\n");
ret = -RT_EIO;
return ret;
}
card_info_get();
return ret;
}
static rt_err_t rt_sdcard_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t rt_sdcard_close(rt_device_t dev)
{
return RT_EOK;
}
static uint32_t dma_buffer[SECTOR_SIZE/sizeof(uint32_t)];
static rt_ssize_t rt_sdcard_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
RT_ASSERT(dev != RT_NULL);
sd_error_enum sd_error;
uint32_t status;
gd32_sdio_t *sd = (gd32_sdio_t *)dev->user_data;
if (!buffer) {
return 0;
}
rt_mutex_take(&sd->sd_lock, RT_WAITING_FOREVER);
if(((uint32_t)buffer & 0x03) != 0)
{
/* non-aligned. */
uint32_t i;
uint32_t sector_adr;
uint32_t* copy_buffer;
sector_adr = pos*SECTOR_SIZE;
copy_buffer = (uint32_t*)buffer;
for(i=0; i<size; i++){
sd_error = sd_block_read((uint32_t*)dma_buffer, sector_adr, SECTOR_SIZE);
rt_memcpy(copy_buffer, dma_buffer, SECTOR_SIZE);
sector_adr += SECTOR_SIZE;
copy_buffer += SECTOR_SIZE;
}
}
else {
if (size == 1){
sd_error = sd_block_read((uint32_t*)buffer, pos*SECTOR_SIZE, SECTOR_SIZE);
}
else {
sd_error = sd_multiblocks_read((uint32_t*)buffer, pos*SECTOR_SIZE, SECTOR_SIZE, size);
}
}
rt_mutex_release(&sd->sd_lock);
if (sd_error == SD_OK){
return size;
}
else {
return 0;
}
}
static rt_ssize_t rt_sdcard_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
#define WR_RETRY_TIMES 2
RT_ASSERT(dev != RT_NULL);
uint8_t retry = 0;
sd_error_enum sd_error;
uint32_t status;
gd32_sdio_t *sd = (gd32_sdio_t *)dev->user_data;
rt_mutex_take(&sd->sd_lock, RT_WAITING_FOREVER);
if (((uint32_t)buffer & 0x03) != 0) {
/* non-aligned. */
uint32_t i;
rt_size_t sector_adr;
uint32_t* copy_buffer;
sector_adr = pos*SECTOR_SIZE;
copy_buffer = (uint32_t*)buffer;
for (i=0; i<size; i++) {
retry = WR_RETRY_TIMES;
rt_memcpy(dma_buffer, copy_buffer, SECTOR_SIZE);
while (retry > 0) {
sd_error = sd_block_write((uint32_t*)dma_buffer, sector_adr, SECTOR_SIZE);
retry--;
if (sd_error == SD_OK) {
break;
}
}
sector_adr += SECTOR_SIZE;
copy_buffer += SECTOR_SIZE;
}
}
else {
retry = WR_RETRY_TIMES;
if (size == 1) {
while (retry > 0) {
sd_error = sd_block_write((uint32_t*)buffer, pos*SECTOR_SIZE, SECTOR_SIZE);
retry--;
if (sd_error == SD_OK) {
break;
}
}
}
else {
while (retry > 0) {
sd_error = sd_multiblocks_write((uint32_t*)buffer, pos*SECTOR_SIZE, SECTOR_SIZE, size);
retry--;
if (sd_error == SD_OK) {
break;
}
}
}
}
rt_mutex_release(&sd->sd_lock);
if (!retry) {
LOG_D("sdio e:%d r:%d\n", sd_error, retry);
}
if (sd_error == SD_OK) {
return size;
}
else {
return 0;
}
}
static rt_err_t rt_sdcard_control(rt_device_t dev, int cmd, void *args)
{
RT_ASSERT(dev != RT_NULL);
gd32_sdio_t *sd = (gd32_sdio_t *)dev->user_data;
if (cmd == RT_DEVICE_CTRL_BLK_GETGEOME) {
struct rt_device_blk_geometry *geometry;
geometry = (struct rt_device_blk_geometry *)args;
if (geometry == RT_NULL)
return -RT_ERROR;
geometry->bytes_per_sector = 512;
geometry->block_size = sd->sd_cardinfo.card_blocksize;
if (sd->sd_cardinfo.card_type == SDIO_HIGH_CAPACITY_SD_CARD)
geometry->sector_count = (sd->sd_cardinfo.card_csd.c_size + 1) * 1024;
else
geometry->sector_count = sd->sd_cardinfo.card_capacity/sd->sd_cardinfo.card_blocksize;
}
return RT_EOK;
}
int rt_hw_sdcard_init(void)
{
/* register sdcard device */
sd.sdcard_device.type = RT_Device_Class_Block;
sd.sdcard_device.init = rt_sdcard_init;
sd.sdcard_device.open = rt_sdcard_open;
sd.sdcard_device.close = rt_sdcard_close;
sd.sdcard_device.read = rt_sdcard_read;
sd.sdcard_device.write = rt_sdcard_write;
sd.sdcard_device.control = rt_sdcard_control;
sd.sdcard_device.user_data = &sd;
rt_device_register(&sd.sdcard_device, sd.device_name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE);
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_sdcard_init);
/*!
\brief initialize the card, get the card information, set the bus mode and transfer mode
\param[in] none
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_config(void)
{
sd_error_enum status = SD_OK;
uint32_t cardstate = 0;
/* initialize the card */
status = sd_init();
if(SD_OK == status){
status = sd_card_information_get(&sd.sd_cardinfo);
}
if(SD_OK == status){
status = sd_card_select_deselect(sd.sd_cardinfo.card_rca);
}
status = sd_cardstatus_get(&cardstate);
if(cardstate & 0x02000000){
LOG_D("\r\n The card is locked!");
#if 0
/* unlock the card if necessary */
status = sd_lock_unlock(SD_UNLOCK);
if(SD_OK != status){
LOG_D("\r\n Unlock failed!");
while (1){
}
}else{
LOG_W("\r\n The card is unlocked! Please reset MCU!");
}
#endif
while (1){
}
}
if ((SD_OK == status) && (!(cardstate & 0x02000000)))
{
/* set bus mode */
status = sd_bus_mode_config(SDIO_BUSMODE_4BIT);
// status = sd_bus_mode_config( SDIO_BUSMODE_1BIT );
}
if (SD_OK == status)
{
/* set data transfer mode */
status = sd_transfer_mode_config(SD_DMA_MODE);
//status = sd_transfer_mode_config(SD_POLLING_MODE);
}
return status;
}
/*!
\brief get the card information and print it out by USRAT
\param[in] none
\param[out] none
\retval none
*/
void card_info_get(void)
{
uint8_t sd_spec, sd_spec3, sd_spec4, sd_security;
uint32_t block_count, block_size;
uint16_t temp_ccc;
LOG_D("\r\nCard information:");
sd_spec = (card_opration.sd_scr[1] & 0x0F000000) >> 24;
sd_spec3 = (card_opration.sd_scr[1] & 0x00008000) >> 15;
sd_spec4 = (card_opration.sd_scr[1] & 0x00000400) >> 10;
if(2 == sd_spec){
if(1 == sd_spec3){
if(1 == sd_spec4){
LOG_D("\r\n## Card version 4.xx ##");
}else{
LOG_D("\r\n## Card version 3.0x ##");
}
}else{
LOG_D("\r\n## Card version 2.00 ##");
}
}else if(1 == sd_spec){
LOG_D("\r\n## Card version 1.10 ##");
}else if(0 == sd_spec){
LOG_D("\r\n## Card version 1.0x ##");
}
sd_security = (card_opration.sd_scr[1] & 0x00700000) >> 20;
if(2 == sd_security){
LOG_I("\r\n## SDSC card ##");
}else if(3 == sd_security){
LOG_I("\r\n## SDHC card ##");
}else if(4 == sd_security){
LOG_I("\r\n## SDXC card ##");
}
block_count = (sd.sd_cardinfo.card_csd.c_size + 1)*1024;
block_size = 512;
LOG_I("\r\n## Device size is %dKB ##", sd_card_capacity_get());
LOG_D("\r\n## Block size is %dB - %dB ##", block_size, sd.sd_cardinfo.card_blocksize);
LOG_D("\r\n## Block count is %d ##", block_count);
if(sd.sd_cardinfo.card_csd.read_bl_partial){
LOG_D("\r\n## Partial blocks for read allowed ##" );
}
if(sd.sd_cardinfo.card_csd.write_bl_partial){
LOG_D("\r\n## Partial blocks for write allowed ##" );
}
temp_ccc = sd.sd_cardinfo.card_csd.ccc;
LOG_D("\r\n## CardCommandClasses is: %x ##", temp_ccc);
if((SD_CCC_BLOCK_READ & temp_ccc) && (SD_CCC_BLOCK_WRITE & temp_ccc)){
LOG_D("\r\n## Block operation supported ##");
}
if(SD_CCC_ERASE & temp_ccc){
LOG_D("\r\n## Erase supported ##");
}
if(SD_CCC_WRITE_PROTECTION & temp_ccc){
LOG_D("\r\n## Write protection supported ##");
}
if(SD_CCC_LOCK_CARD & temp_ccc){
LOG_D("\r\n## Lock unlock supported ##");
}
if(SD_CCC_APPLICATION_SPECIFIC & temp_ccc){
LOG_D("\r\n## Application specific supported ##");
}
if(SD_CCC_IO_MODE & temp_ccc){
LOG_D("\r\n## I/O mode supported ##");
}
if(SD_CCC_SWITCH & temp_ccc){
LOG_D("\r\n## Switch function supported ##");
}
}
void SDIO_IRQHandler(void)
{
sd_error_enum status;
rt_interrupt_enter();
status = sd_interrupts_process();
if (SD_OK != status) {
LOG_D("irq:%d", status);
}
rt_interrupt_leave();
}
/*!
\brief initialize the SD card and make it in standby state
\param[in] none
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_init(void)
{
sd_error_enum status = SD_OK;
/* configure the RCU and GPIO, deinitialize the SDIO */
rcu_config();
gpio_config();
sdio_deinit();
/* configure the clock and work voltage */
status = sd_power_on();
if(SD_OK != status){
return status;
}
/* initialize the card and get CID and CSD of the card */
status = sd_card_init();
if(SD_OK != status){
return status;
}
/* configure the SDIO peripheral */
sdio_clock_config(SDIO_SDIOCLKEDGE_RISING, SDIO_CLOCKBYPASS_DISABLE, SDIO_CLOCKPWRSAVE_DISABLE, SD_CLK_DIV_TRANS);
sdio_bus_mode_set(SDIO_BUSMODE_1BIT);
sdio_hardware_clock_enable();//sdio_hardware_clock_disable();
return status;
}
/*!
\brief initialize the card and get CID and CSD of the card
\param[in] none
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_card_init(void)
{
sd_error_enum status = SD_OK;
uint16_t temp_rca = 0x01;
if(SDIO_POWER_OFF == sdio_power_state_get()){
status = SD_OPERATION_IMPROPER;
return status;
}
/* the card is not I/O only card */
if(SDIO_SECURE_DIGITAL_IO_CARD != card_opration.cardtype){
/* send CMD2(SD_CMD_ALL_SEND_CID) to get the CID numbers */
sdio_command_response_config(SD_CMD_ALL_SEND_CID, (uint32_t)0x0, SDIO_RESPONSETYPE_LONG);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r2_error_check();
if(SD_OK != status){
return status;
}
/* store the CID numbers */
card_opration.sd_cid[0] = sdio_response_get(SDIO_RESPONSE0);
card_opration.sd_cid[1] = sdio_response_get(SDIO_RESPONSE1);
card_opration.sd_cid[2] = sdio_response_get(SDIO_RESPONSE2);
card_opration.sd_cid[3] = sdio_response_get(SDIO_RESPONSE3);
}
/* the card is SD memory card or the I/O card has the memory portion */
if ((SDIO_STD_CAPACITY_SD_CARD_V1_1 == card_opration.cardtype) || (SDIO_STD_CAPACITY_SD_CARD_V2_0 == card_opration.cardtype) ||
(SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype) || (SDIO_SECURE_DIGITAL_IO_COMBO_CARD == card_opration.cardtype)){
/* send CMD3(SEND_RELATIVE_ADDR) to ask the card to publish a new relative address (RCA) */
sdio_command_response_config(SD_CMD_SEND_RELATIVE_ADDR, (uint32_t)0x0, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r6_error_check(SD_CMD_SEND_RELATIVE_ADDR, &temp_rca);
if(SD_OK != status){
return status;
}
}
if(SDIO_SECURE_DIGITAL_IO_CARD != card_opration.cardtype){
/* the card is not I/O only card */
card_opration.sd_rca = temp_rca;
/* send CMD9(SEND_CSD) to get the addressed card's card-specific data (CSD) */
sdio_command_response_config(SD_CMD_SEND_CSD, (uint32_t)(temp_rca << SD_RCA_SHIFT), SDIO_RESPONSETYPE_LONG);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r2_error_check();
if(SD_OK != status){
return status;
}
/* store the card-specific data (CSD) */
card_opration.sd_csd[0] = sdio_response_get(SDIO_RESPONSE0);
card_opration.sd_csd[1] = sdio_response_get(SDIO_RESPONSE1);
card_opration.sd_csd[2] = sdio_response_get(SDIO_RESPONSE2);
card_opration.sd_csd[3] = sdio_response_get(SDIO_RESPONSE3);
}
return status;
}
/*!
\brief configure the clock and the work voltage, and get the card type
\param[in] none
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_power_on(void)
{
sd_error_enum status = SD_OK;
uint32_t sdcardtype = SD_STD_CAPACITY, response = 0, count = 0;
uint8_t busyflag = 0;
/* configure the SDIO peripheral */
sdio_clock_config(SDIO_SDIOCLKEDGE_RISING, SDIO_CLOCKBYPASS_DISABLE, SDIO_CLOCKPWRSAVE_DISABLE, SD_CLK_DIV_INIT);
sdio_bus_mode_set(SDIO_BUSMODE_1BIT);
sdio_hardware_clock_enable();//sdio_hardware_clock_disable();
sdio_power_state_set(SDIO_POWER_ON);
/* enable SDIO_CLK clock output */
sdio_clock_enable();
/* send CMD0(GO_IDLE_STATE) to reset the card */
sdio_command_response_config(SD_CMD_GO_IDLE_STATE, (uint32_t)0x0, SDIO_RESPONSETYPE_NO);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
/* enable the CSM */
sdio_csm_enable();
/* check if command sent error occurs */
status = cmdsent_error_check();
if(SD_OK != status){
return status;
}
/* send CMD8(SEND_IF_COND) to get SD memory card interface condition */
sdio_command_response_config(SD_CMD_SEND_IF_COND, SD_CHECK_PATTERN, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
if(SD_OK == r7_error_check()){
/* SD Card 2.0 */
card_opration.cardtype = SDIO_STD_CAPACITY_SD_CARD_V2_0;
sdcardtype = SD_HIGH_CAPACITY;
}
/* send CMD55(APP_CMD) to indicate next command is application specific command */
sdio_command_response_config(SD_CMD_APP_CMD, (uint32_t)0x0, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
if(SD_OK == r1_error_check(SD_CMD_APP_CMD)){
/* SD memory card */
while((!busyflag) && (count < SD_MAX_VOLT_VALIDATION)){
/* send CMD55(APP_CMD) to indicate next command is application specific command */
sdio_command_response_config(SD_CMD_APP_CMD, (uint32_t)0x0, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_APP_CMD);
if(SD_OK != status){
return status;
}
/* send ACMD41(SD_SEND_OP_COND) to get host capacity support information (HCS) and OCR content */
sdio_command_response_config(SD_APPCMD_SD_SEND_OP_COND, (SD_VOLTAGE_WINDOW | sdcardtype), SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r3_error_check();
if(SD_OK != status){
return status;
}
/* get the response and check card power up status bit(busy) */
response = sdio_response_get(SDIO_RESPONSE0);
busyflag = (uint8_t)((response >> 31)&(uint32_t)0x01);
++count;
}
if(count >= SD_MAX_VOLT_VALIDATION){
status = SD_VOLTRANGE_INVALID;
return status;
}
if(response &= SD_HIGH_CAPACITY){
/* SDHC card */
card_opration.cardtype = SDIO_HIGH_CAPACITY_SD_CARD;
}
}
return status;
}
/*!
\brief close the power of SDIO
\param[in] none
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_power_off(void)
{
sd_error_enum status = SD_OK;
sdio_power_state_set(SDIO_POWER_OFF);
return status;
}
/*!
\brief configure the bus mode
\param[in] busmode: the bus mode
\arg SDIO_BUSMODE_1BIT: 1-bit SDIO card bus mode
\arg SDIO_BUSMODE_4BIT: 4-bit SDIO card bus mode
\arg SDIO_BUSMODE_8BIT: 8-bit SDIO card bus mode (MMC only)
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_bus_mode_config(uint32_t busmode)
{
sd_error_enum status = SD_OK;
if(SDIO_MULTIMEDIA_CARD == card_opration.cardtype){
/* MMC card doesn't support this function */
status = SD_FUNCTION_UNSUPPORTED;
return status;
}else if((SDIO_STD_CAPACITY_SD_CARD_V1_1 == card_opration.cardtype) || (SDIO_STD_CAPACITY_SD_CARD_V2_0 == card_opration.cardtype) ||
(SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype)){
if(SDIO_BUSMODE_8BIT == busmode){
/* 8 bit bus mode doesn't support */
status = SD_FUNCTION_UNSUPPORTED;
return status;
}else if(SDIO_BUSMODE_4BIT == busmode){
/* configure SD bus width and the SDIO */
status = sd_bus_width_config(SD_BUS_WIDTH_4BIT);
if(SD_OK == status){
sdio_clock_config(SDIO_SDIOCLKEDGE_RISING, SDIO_CLOCKBYPASS_DISABLE,
SDIO_CLOCKPWRSAVE_DISABLE, SD_CLK_DIV_TRANS);
sdio_bus_mode_set(busmode);
sdio_hardware_clock_enable();//sdio_hardware_clock_disable();
}
}else if(SDIO_BUSMODE_1BIT == busmode){
/* configure SD bus width and the SDIO */
status = sd_bus_width_config(SD_BUS_WIDTH_1BIT);
if(SD_OK == status){
sdio_clock_config(SDIO_SDIOCLKEDGE_RISING, SDIO_CLOCKBYPASS_DISABLE,
SDIO_CLOCKPWRSAVE_DISABLE, SD_CLK_DIV_TRANS);
sdio_bus_mode_set(busmode);
sdio_hardware_clock_enable();//sdio_hardware_clock_disable();
}
}else{
status = SD_PARAMETER_INVALID;
}
}
return status;
}
/*!
\brief configure the mode of transmission
\param[in] txmode: transfer mode
\arg SD_DMA_MODE: DMA mode
\arg SD_POLLING_MODE: polling mode
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_transfer_mode_config(uint32_t txmode)
{
sd_error_enum status = SD_OK;
/* set the transfer mode */
if((SD_DMA_MODE == txmode) || (SD_POLLING_MODE == txmode)){
card_opration.transmode = txmode;
}else{
status = SD_PARAMETER_INVALID;
}
return status;
}
/*!
\brief read a block data into a buffer from the specified address of a card
\param[out] preadbuffer: a pointer that store a block read data
\param[in] readaddr: the read data address
\param[in] blocksize: the data block size
\retval sd_error_enum
*/
sd_error_enum sd_block_read(uint32_t *preadbuffer, uint32_t readaddr, uint16_t blocksize)
{
/* initialize the variables */
sd_error_enum status = SD_OK;
uint32_t count = 0, align = 0, datablksize = SDIO_DATABLOCKSIZE_1BYTE, *ptempbuff = preadbuffer;
__IO uint32_t timeout = 0;
if(NULL == preadbuffer){
status = SD_PARAMETER_INVALID;
return status;
}
card_opration.transerror = SD_OK;
card_opration.transend = 0;
card_opration.totalnumber_bytes = 0;
/* clear all DSM configuration */
sdio_data_config(0, 0, SDIO_DATABLOCKSIZE_1BYTE);
sdio_data_transfer_config(SDIO_TRANSDIRECTION_TOCARD, SDIO_TRANSMODE_BLOCK);
sdio_dsm_disable();
sdio_dma_disable();
/* check whether the card is locked */
if(sdio_response_get(SDIO_RESPONSE0) & SD_CARDSTATE_LOCKED){
status = SD_LOCK_UNLOCK_FAILED;
return status;
}
/* blocksize is fixed in 512B for SDHC card */
if (SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype)
{
blocksize = 512;
readaddr /= 512;
}
align = blocksize & (blocksize - 1);
if((blocksize > 0) && (blocksize <= 2048) && (0 == align)){
datablksize = sd_datablocksize_get(blocksize);
/* send CMD16(SET_BLOCKLEN) to set the block length */
sdio_command_response_config(SD_CMD_SET_BLOCKLEN, (uint32_t)blocksize, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SET_BLOCKLEN);
if(SD_OK != status){
return status;
}
}else{
status = SD_PARAMETER_INVALID;
return status;
}
card_opration.stopcondition = 0;
card_opration.totalnumber_bytes = blocksize;
/* configure SDIO data transmisson */
sdio_data_config(SD_DATATIMEOUT, card_opration.totalnumber_bytes, datablksize);
sdio_data_transfer_config(SDIO_TRANSDIRECTION_TOSDIO, SDIO_TRANSMODE_BLOCK);
sdio_dsm_enable();
/* send CMD17(READ_SINGLE_BLOCK) to read a block */
sdio_command_response_config(SD_CMD_READ_SINGLE_BLOCK, (uint32_t)readaddr, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_READ_SINGLE_BLOCK);
if(SD_OK != status){
return status;
}
if(SD_POLLING_MODE == card_opration.transmode){
/* polling mode */
while(!sdio_flag_get(SDIO_FLAG_DTCRCERR | SDIO_FLAG_DTTMOUT | SDIO_FLAG_RXORE | SDIO_FLAG_DTBLKEND | SDIO_FLAG_STBITE)){
if(RESET != sdio_flag_get(SDIO_FLAG_RFH)){
/* at least 8 words can be read in the FIFO */
for(count = 0; count < SD_FIFOHALF_WORDS; count++){
*(ptempbuff + count) = sdio_data_read();
}
ptempbuff += SD_FIFOHALF_WORDS;
}
}
/* whether some error occurs and return it */
if(RESET != sdio_flag_get(SDIO_FLAG_DTCRCERR)){
status = SD_DATA_CRC_ERROR;
sdio_flag_clear(SDIO_FLAG_DTCRCERR);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_DTTMOUT)){
status = SD_DATA_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_DTTMOUT);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_RXORE)){
status = SD_RX_OVERRUN_ERROR;
sdio_flag_clear(SDIO_FLAG_RXORE);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_STBITE)){
status = SD_START_BIT_ERROR;
sdio_flag_clear(SDIO_FLAG_STBITE);
return status;
}
while(RESET != sdio_flag_get(SDIO_FLAG_RXDTVAL)){
*ptempbuff = sdio_data_read();
++ptempbuff;
}
/* clear the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
}else if(SD_DMA_MODE == card_opration.transmode){
/* DMA mode */
/* enable the SDIO corresponding interrupts and DMA function */
sdio_interrupt_enable(SDIO_INT_CCRCERR | SDIO_INT_DTTMOUT | SDIO_INT_RXORE | SDIO_INT_DTEND | SDIO_INT_STBITE);
sdio_dma_enable();
dma_receive_config(preadbuffer, blocksize);
#if SDIO_DMA_USE_IPC
sdio_dma_irq_config();
if (RT_EOK != rt_sem_take(&sd.sem, 100)) {
return SD_ERROR;
}
#else
timeout = 400000;
while((RESET == dma_flag_get(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_FTF)) && (timeout > 0)){
timeout--;
if(0 == timeout){
return SD_ERROR;
}
}
#endif
}else{
status = SD_PARAMETER_INVALID;
}
return status;
}
/*!
\brief read multiple blocks data into a buffer from the specified address of a card
\param[out] preadbuffer: a pointer that store multiple blocks read data
\param[in] readaddr: the read data address
\param[in] blocksize: the data block size
\param[in] blocksnumber: number of blocks that will be read
\retval sd_error_enum
*/
sd_error_enum sd_multiblocks_read(uint32_t *preadbuffer, uint32_t readaddr, uint16_t blocksize, uint32_t blocksnumber)
{
/* initialize the variables */
sd_error_enum status = SD_OK;
uint32_t count = 0, align = 0, datablksize = SDIO_DATABLOCKSIZE_1BYTE, *ptempbuff = preadbuffer;
__IO uint32_t timeout = 0;
if(NULL == preadbuffer){
status = SD_PARAMETER_INVALID;
return status;
}
card_opration.transerror = SD_OK;
card_opration.transend = 0;
card_opration.totalnumber_bytes = 0;
/* clear all DSM configuration */
sdio_data_config(0, 0, SDIO_DATABLOCKSIZE_1BYTE);
sdio_data_transfer_config(SDIO_TRANSDIRECTION_TOCARD, SDIO_TRANSMODE_BLOCK);
sdio_dsm_disable();
sdio_dma_disable();
/* check whether the card is locked */
if(sdio_response_get(SDIO_RESPONSE0) & SD_CARDSTATE_LOCKED){
status = SD_LOCK_UNLOCK_FAILED;
return status;
}
/* blocksize is fixed in 512B for SDHC card */
if (SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype)
{
blocksize = 512;
readaddr /= 512;
}
align = blocksize & (blocksize - 1);
if((blocksize > 0) && (blocksize <= 2048) && (0 == align)){
datablksize = sd_datablocksize_get(blocksize);
/* send CMD16(SET_BLOCKLEN) to set the block length */
sdio_command_response_config(SD_CMD_SET_BLOCKLEN, (uint32_t)blocksize, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SET_BLOCKLEN);
if(SD_OK != status){
return status;
}
}else{
status = SD_PARAMETER_INVALID;
return status;
}
if(blocksnumber > 1){
if(blocksnumber * blocksize > SD_MAX_DATA_LENGTH){
/* exceeds the maximum length */
status = SD_PARAMETER_INVALID;
return status;
}
card_opration.stopcondition = 1;
card_opration.totalnumber_bytes = blocksnumber * blocksize;
/* configure the SDIO data transmisson */
sdio_data_config(SD_DATATIMEOUT, card_opration.totalnumber_bytes, datablksize);
sdio_data_transfer_config(SDIO_TRANSDIRECTION_TOSDIO, SDIO_TRANSMODE_BLOCK);
sdio_dsm_enable();
/* send CMD18(READ_MULTIPLE_BLOCK) to read multiple blocks */
sdio_command_response_config(SD_CMD_READ_MULTIPLE_BLOCK, readaddr, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_READ_MULTIPLE_BLOCK);
if(SD_OK != status){
return status;
}
if(SD_POLLING_MODE == card_opration.transmode){
/* polling mode */
while(!sdio_flag_get(SDIO_FLAG_DTCRCERR | SDIO_FLAG_DTTMOUT | SDIO_FLAG_RXORE | SDIO_FLAG_DTEND | SDIO_FLAG_STBITE)){
if(RESET != sdio_flag_get(SDIO_FLAG_RFH)){
/* at least 8 words can be read in the FIFO */
for(count = 0; count < SD_FIFOHALF_WORDS; count++){
*(ptempbuff + count) = sdio_data_read();
}
ptempbuff += SD_FIFOHALF_WORDS;
}
}
/* whether some error occurs and return it */
if(RESET != sdio_flag_get(SDIO_FLAG_DTCRCERR)){
status = SD_DATA_CRC_ERROR;
sdio_flag_clear(SDIO_FLAG_DTCRCERR);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_DTTMOUT)){
status = SD_DATA_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_DTTMOUT);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_RXORE)){
status = SD_RX_OVERRUN_ERROR;
sdio_flag_clear(SDIO_FLAG_RXORE);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_STBITE)){
status = SD_START_BIT_ERROR;
sdio_flag_clear(SDIO_FLAG_STBITE);
return status;
}
while(RESET != sdio_flag_get(SDIO_FLAG_RXDTVAL)){
*ptempbuff = sdio_data_read();
++ptempbuff;
}
if(RESET != sdio_flag_get(SDIO_FLAG_DTEND)){
if((SDIO_STD_CAPACITY_SD_CARD_V1_1 == card_opration.cardtype) || (SDIO_STD_CAPACITY_SD_CARD_V2_0 == card_opration.cardtype) ||
(SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype)){
/* send CMD12(STOP_TRANSMISSION) to stop transmission */
sdio_command_response_config(SD_CMD_STOP_TRANSMISSION, (uint32_t)0x0, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_STOP_TRANSMISSION);
if(SD_OK != status){
return status;
}
}
}
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
}else if(SD_DMA_MODE == card_opration.transmode){
/* DMA mode */
/* enable the SDIO corresponding interrupts and DMA function */
sdio_interrupt_enable(SDIO_INT_DTCRCERR | SDIO_INT_DTTMOUT | SDIO_INT_RXORE | SDIO_INT_DTEND | SDIO_INT_STBITE);
sdio_dma_enable();
dma_receive_config(preadbuffer, card_opration.totalnumber_bytes);
#if SDIO_DMA_USE_IPC
sdio_dma_irq_config();
if (RT_EOK != rt_sem_take(&sd.sem, 100)) {
return SD_ERROR;
}
#else
timeout = 400000;
while((RESET == dma_flag_get(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_FTF)) && (timeout > 0)){
timeout--;
if(0 == timeout){
return SD_ERROR;
}
}
#endif
while((0 == card_opration.transend) && (SD_OK == card_opration.transerror)){
}
if(SD_OK != card_opration.transerror){
return card_opration.transerror;
}
}else{
status = SD_PARAMETER_INVALID;
}
}
return status;
}
/*!
\brief write a block data to the specified address of a card
\param[in] pwritebuffer: a pointer that store a block data to be transferred
\param[in] writeaddr: the read data address
\param[in] blocksize: the data block size
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_block_write(uint32_t *pwritebuffer, uint32_t writeaddr, uint16_t blocksize)
{
/* initialize the variables */
sd_error_enum status = SD_OK;
uint8_t cardstate = 0;
uint32_t count = 0, align = 0, datablksize = SDIO_DATABLOCKSIZE_1BYTE, *ptempbuff = pwritebuffer;
uint32_t transbytes = 0, restwords = 0, response = 0;
__IO uint32_t timeout = 0;
if(NULL == pwritebuffer){
status = SD_PARAMETER_INVALID;
return status;
}
card_opration.transerror = SD_OK;
card_opration.transend = 0;
card_opration.totalnumber_bytes = 0;
/* clear all DSM configuration */
sdio_data_config(0, 0, SDIO_DATABLOCKSIZE_1BYTE);
sdio_data_transfer_config(SDIO_TRANSDIRECTION_TOCARD, SDIO_TRANSMODE_BLOCK);
sdio_dsm_disable();
sdio_dma_disable();
/* check whether the card is locked */
if(sdio_response_get(SDIO_RESPONSE0) & SD_CARDSTATE_LOCKED){
status = SD_LOCK_UNLOCK_FAILED;
return status;
}
/* blocksize is fixed in 512B for SDHC card */
if (SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype)
{
blocksize = 512;
writeaddr /= 512;
}
align = blocksize & (blocksize - 1);
if((blocksize > 0) && (blocksize <= 2048) && (0 == align)){
datablksize = sd_datablocksize_get(blocksize);
/* send CMD16(SET_BLOCKLEN) to set the block length */
sdio_command_response_config(SD_CMD_SET_BLOCKLEN, (uint32_t)blocksize, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SET_BLOCKLEN);
if(SD_OK != status){
return status;
}
}else{
status = SD_PARAMETER_INVALID;
return status;
}
/* send CMD13(SEND_STATUS), addressed card sends its status registers */
sdio_command_response_config(SD_CMD_SEND_STATUS, (uint32_t)card_opration.sd_rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SEND_STATUS);
if(SD_OK != status){
return status;
}
response = sdio_response_get(SDIO_RESPONSE0);
timeout = 400000;
while((0 == (response & SD_R1_READY_FOR_DATA)) && (timeout > 0)){
/* continue to send CMD13 to polling the state of card until buffer empty or timeout */
--timeout;
/* send CMD13(SEND_STATUS), addressed card sends its status registers */
sdio_command_response_config(SD_CMD_SEND_STATUS, (uint32_t)card_opration.sd_rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SEND_STATUS);
if(SD_OK != status){
return status;
}
response = sdio_response_get(SDIO_RESPONSE0);
}
if(0 == timeout){
return SD_ERROR;
}
/* send CMD24(WRITE_BLOCK) to write a block */
sdio_command_response_config(SD_CMD_WRITE_BLOCK, writeaddr, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_WRITE_BLOCK);
if(SD_OK != status){
return status;
}
card_opration.stopcondition = 0;
card_opration.totalnumber_bytes = blocksize;
/* configure the SDIO data transmisson */
sdio_data_config(SD_DATATIMEOUT, card_opration.totalnumber_bytes, datablksize);
sdio_data_transfer_config(SDIO_TRANSDIRECTION_TOCARD, SDIO_TRANSMODE_BLOCK);
sdio_dsm_enable();
if(SD_POLLING_MODE == card_opration.transmode){
/* polling mode */
while(!sdio_flag_get(SDIO_FLAG_DTCRCERR | SDIO_FLAG_DTTMOUT | SDIO_FLAG_TXURE | SDIO_FLAG_DTBLKEND | SDIO_FLAG_STBITE)){
if(RESET != sdio_flag_get(SDIO_FLAG_TFH)){
/* at least 8 words can be written into the FIFO */
if((card_opration.totalnumber_bytes - transbytes) < SD_FIFOHALF_BYTES){
restwords = (card_opration.totalnumber_bytes - transbytes)/4 + (((card_opration.totalnumber_bytes - transbytes)%4 == 0) ? 0 : 1);
for(count = 0; count < restwords; count++){
sdio_data_write(*ptempbuff);
++ptempbuff;
transbytes += 4;
}
}else{
for(count = 0; count < SD_FIFOHALF_WORDS; count++){
sdio_data_write(*(ptempbuff + count));
}
/* 8 words(32 bytes) has been transferred */
ptempbuff += SD_FIFOHALF_WORDS;
transbytes += SD_FIFOHALF_BYTES;
}
}
}
/* whether some error occurs and return it */
if(RESET != sdio_flag_get(SDIO_FLAG_DTCRCERR)){
status = SD_DATA_CRC_ERROR;
sdio_flag_clear(SDIO_FLAG_DTCRCERR);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_DTTMOUT)){
status = SD_DATA_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_DTTMOUT);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_TXURE)){
status = SD_TX_UNDERRUN_ERROR;
sdio_flag_clear(SDIO_FLAG_TXURE);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_STBITE)){
status = SD_START_BIT_ERROR;
sdio_flag_clear(SDIO_FLAG_STBITE);
return status;
}
}else if(SD_DMA_MODE == card_opration.transmode){
/* DMA mode */
/* enable the SDIO corresponding interrupts and DMA */
sdio_interrupt_enable(SDIO_INT_DTCRCERR | SDIO_INT_DTTMOUT | SDIO_INT_TXURE | SDIO_INT_DTEND | SDIO_INT_STBITE);
dma_transfer_config(pwritebuffer, blocksize);
sdio_dma_enable();
#if SDIO_DMA_USE_IPC
sdio_dma_irq_config();
if (RT_EOK != rt_sem_take(&sd.sem, 100)) {
return SD_ERROR;
}
#else
timeout = 400000;
while((RESET == dma_flag_get(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_FTF)) && (timeout > 0)){
timeout--;
if(0 == timeout){
return SD_ERROR;
}
}
#endif
while ((0 == card_opration.transend) && (SD_OK == card_opration.transerror)){
}
if (SD_OK != card_opration.transerror){
return card_opration.transerror;
}
}else{
status = SD_PARAMETER_INVALID;
return status;
}
/* clear the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
/* get the card state and wait the card is out of programming and receiving state */
status = sd_card_state_get(&cardstate);
while((SD_OK == status) && ((SD_CARDSTATE_PROGRAMMING == cardstate) || (SD_CARDSTATE_RECEIVING == cardstate))){
status = sd_card_state_get(&cardstate);
}
return status;
}
/*!
\brief write multiple blocks data to the specified address of a card
\param[in] pwritebuffer: a pointer that store multiple blocks data to be transferred
\param[in] writeaddr: the read data address
\param[in] blocksize: the data block size
\param[in] blocksnumber: number of blocks that will be written
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_multiblocks_write(uint32_t *pwritebuffer, uint32_t writeaddr, uint16_t blocksize, uint32_t blocksnumber)
{
/* initialize the variables */
sd_error_enum status = SD_OK;
uint8_t cardstate = 0;
uint32_t count = 0, align = 0, datablksize = SDIO_DATABLOCKSIZE_1BYTE, *ptempbuff = pwritebuffer;
uint32_t transbytes = 0, restwords = 0;
__IO uint32_t timeout = 0;
if(NULL == pwritebuffer){
status = SD_PARAMETER_INVALID;
return status;
}
card_opration.transerror = SD_OK;
card_opration.transend = 0;
card_opration.totalnumber_bytes = 0;
/* clear all DSM configuration */
sdio_data_config(0, 0, SDIO_DATABLOCKSIZE_1BYTE);
sdio_data_transfer_config(SDIO_TRANSDIRECTION_TOCARD, SDIO_TRANSMODE_BLOCK);
sdio_dsm_disable();
sdio_dma_disable();
/* check whether the card is locked */
if(sdio_response_get(SDIO_RESPONSE0) & SD_CARDSTATE_LOCKED){
status = SD_LOCK_UNLOCK_FAILED;
return status;
}
/* blocksize is fixed in 512B for SDHC card */
if (SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype)
{
blocksize = 512;
writeaddr /= 512;
}
align = blocksize & (blocksize - 1);
if((blocksize > 0) && (blocksize <= 2048) && (0 == align)){
datablksize = sd_datablocksize_get(blocksize);
/* send CMD16(SET_BLOCKLEN) to set the block length */
sdio_command_response_config(SD_CMD_SET_BLOCKLEN, (uint32_t)blocksize, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SET_BLOCKLEN);
if(SD_OK != status){
LOG_D("#st:%d\n", status);
return status;
}
}else{
status = SD_PARAMETER_INVALID;
return status;
}
/* send CMD13(SEND_STATUS), addressed card sends its status registers */
sdio_command_response_config(SD_CMD_SEND_STATUS, (uint32_t)card_opration.sd_rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SEND_STATUS);
if(SD_OK != status){
return status;
}
if(blocksnumber > 1){
if(blocksnumber * blocksize > SD_MAX_DATA_LENGTH){
status = SD_PARAMETER_INVALID;
return status;
}
if((SDIO_STD_CAPACITY_SD_CARD_V1_1 == card_opration.cardtype) || (SDIO_STD_CAPACITY_SD_CARD_V2_0 == card_opration.cardtype) ||
(SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype)){
/* send CMD55(APP_CMD) to indicate next command is application specific command */
sdio_command_response_config(SD_CMD_APP_CMD, (uint32_t)card_opration.sd_rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_APP_CMD);
if(SD_OK != status){
return status;
}
/* send ACMD23(SET_WR_BLK_ERASE_COUNT) to set the number of write blocks to be preerased before writing */
sdio_command_response_config(SD_APPCMD_SET_WR_BLK_ERASE_COUNT, blocksnumber, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_APPCMD_SET_WR_BLK_ERASE_COUNT);
if(SD_OK != status){
return status;
}
}
/* send CMD25(WRITE_MULTIPLE_BLOCK) to continuously write blocks of data */
sdio_command_response_config(SD_CMD_WRITE_MULTIPLE_BLOCK, writeaddr, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_WRITE_MULTIPLE_BLOCK);
if(SD_OK != status){
return status;
}
card_opration.stopcondition = 1;
card_opration.totalnumber_bytes = blocksnumber * blocksize;
/* configure the SDIO data transmisson */
sdio_data_config(SD_DATATIMEOUT, card_opration.totalnumber_bytes, datablksize);
sdio_data_transfer_config(SDIO_TRANSDIRECTION_TOCARD, SDIO_TRANSMODE_BLOCK);
sdio_dsm_enable();
if(SD_POLLING_MODE == card_opration.transmode){
/* polling mode */
while(!sdio_flag_get(SDIO_FLAG_DTCRCERR | SDIO_FLAG_DTTMOUT | SDIO_FLAG_TXURE | SDIO_FLAG_DTEND | SDIO_FLAG_STBITE)){
if(RESET != sdio_flag_get(SDIO_FLAG_TFH)){
/* at least 8 words can be written into the FIFO */
if(!((card_opration.totalnumber_bytes - transbytes) < SD_FIFOHALF_BYTES)){
for(count = 0; count < SD_FIFOHALF_WORDS; count++){
sdio_data_write(*(ptempbuff + count));
}
/* 8 words(32 bytes) has been transferred */
ptempbuff += SD_FIFOHALF_WORDS;
transbytes += SD_FIFOHALF_BYTES;
}else{
restwords = (card_opration.totalnumber_bytes - transbytes)/4 + (((card_opration.totalnumber_bytes - transbytes)%4 == 0) ? 0 : 1);
for(count = 0; count < restwords; count++){
sdio_data_write(*ptempbuff);
++ptempbuff;
transbytes += 4;
}
}
}
}
/* whether some error occurs and return it */
if(RESET != sdio_flag_get(SDIO_FLAG_DTCRCERR)){
status = SD_DATA_CRC_ERROR;
sdio_flag_clear(SDIO_FLAG_DTCRCERR);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_DTTMOUT)){
status = SD_DATA_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_DTTMOUT);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_TXURE)){
status = SD_TX_UNDERRUN_ERROR;
sdio_flag_clear(SDIO_FLAG_TXURE);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_STBITE)){
status = SD_START_BIT_ERROR;
sdio_flag_clear(SDIO_FLAG_STBITE);
return status;
}
if(RESET != sdio_flag_get(SDIO_FLAG_DTEND)){
if((SDIO_STD_CAPACITY_SD_CARD_V1_1 == card_opration.cardtype) || (SDIO_STD_CAPACITY_SD_CARD_V2_0 == card_opration.cardtype) ||
(SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype)){
/* send CMD12(STOP_TRANSMISSION) to stop transmission */
sdio_command_response_config(SD_CMD_STOP_TRANSMISSION, (uint32_t)0x0, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_STOP_TRANSMISSION);
if(SD_OK != status){
return status;
}
}
}
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
}else if(SD_DMA_MODE == card_opration.transmode){
/* DMA mode */
/* enable SDIO corresponding interrupts and DMA */
sdio_interrupt_enable(SDIO_INT_DTCRCERR | SDIO_INT_DTTMOUT | SDIO_INT_TXURE | SDIO_INT_DTEND | SDIO_INT_STBITE);
sdio_dma_enable();
dma_transfer_config(pwritebuffer, card_opration.totalnumber_bytes);
#if SDIO_DMA_USE_IPC
sdio_dma_irq_config();
if (RT_EOK != rt_sem_take(&sd.sem, 100)) {
return SD_ERROR;
}
#else
timeout = 400000;
while((RESET == dma_flag_get(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_FTF) && (timeout > 0))){
timeout--;
if(0 == timeout){
return SD_ERROR;
}
}
#endif
while((0 == card_opration.transend) && (SD_OK == card_opration.transerror)){
}
if(SD_OK != card_opration.transerror){
return card_opration.transerror;
}
}else{
status = SD_PARAMETER_INVALID;
return status;
}
}
/* clear the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
/* get the card state and wait the card is out of programming and receiving state */
status = sd_card_state_get(&cardstate);
while((SD_OK == status) && ((SD_CARDSTATE_PROGRAMMING == cardstate) || (SD_CARDSTATE_RECEIVING == cardstate))){
status = sd_card_state_get(&cardstate);
}
return status;
}
/*!
\brief erase a continuous area of a card
\param[in] startaddr: the start address
\param[in] endaddr: the end address
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_erase(uint32_t startaddr, uint32_t endaddr)
{
/* initialize the variables */
sd_error_enum status = SD_OK;
uint32_t count = 0, clkdiv = 0;
__IO uint32_t delay = 0;
uint8_t cardstate = 0, tempbyte = 0;
uint16_t tempccc = 0;
/* get the card command classes from CSD */
tempbyte = (uint8_t)((card_opration.sd_csd[1] & SD_MASK_24_31BITS) >> 24);
tempccc = (uint16_t)((uint16_t)tempbyte << 4);
tempbyte = (uint8_t)((card_opration.sd_csd[1] & SD_MASK_16_23BITS) >> 16);
tempccc |= (uint16_t)((uint16_t)(tempbyte & 0xF0) >> 4);
if(0 == (tempccc & SD_CCC_ERASE)){
/* don't support the erase command */
status = SD_FUNCTION_UNSUPPORTED;
return status;
}
clkdiv = (SDIO_CLKCTL & SDIO_CLKCTL_DIV);
clkdiv += ((SDIO_CLKCTL & SDIO_CLKCTL_DIV8)>>31)*256;
clkdiv += 2;
delay = 168000 / clkdiv;
/* check whether the card is locked */
if (sdio_response_get(SDIO_RESPONSE0) & SD_CARDSTATE_LOCKED)
{
status = SD_LOCK_UNLOCK_FAILED;
return(status);
}
/* blocksize is fixed in 512B for SDHC card */
if (SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype)
{
startaddr /= 512;
endaddr /= 512;
}
if((SDIO_STD_CAPACITY_SD_CARD_V1_1 == card_opration.cardtype) || (SDIO_STD_CAPACITY_SD_CARD_V2_0 == card_opration.cardtype) ||
(SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype)){
/* send CMD32(ERASE_WR_BLK_START) to set the address of the first write block to be erased */
sdio_command_response_config(SD_CMD_ERASE_WR_BLK_START, startaddr, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_ERASE_WR_BLK_START);
if(SD_OK != status){
return status;
}
/* send CMD33(ERASE_WR_BLK_END) to set the address of the last write block of the continuous range to be erased */
sdio_command_response_config(SD_CMD_ERASE_WR_BLK_END, endaddr, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_ERASE_WR_BLK_END);
if(SD_OK != status){
return status;
}
}
/* send CMD38(ERASE) to set the address of the first write block to be erased */
sdio_command_response_config(SD_CMD_ERASE, (uint32_t)0x0, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_ERASE);
if(SD_OK != status){
return status;
}
/* loop until the counter is reach to the calculated time */
for(count = 0; count < delay; count++){
}
/* get the card state and wait the card is out of programming and receiving state */
status = sd_card_state_get(&cardstate);
while((SD_OK == status) && ((SD_CARDSTATE_PROGRAMMING == cardstate) || (SD_CARDSTATE_RECEIVING == cardstate))){
status = sd_card_state_get(&cardstate);
}
return status;
}
/*!
\brief process all the interrupts which the corresponding flags are set
\param[in] none
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_interrupts_process(void)
{
card_opration.transerror = SD_OK;
if(RESET != sdio_interrupt_flag_get(SDIO_INT_DTEND)){
/* send CMD12 to stop data transfer in multipule blocks operation */
if(1 == card_opration.stopcondition){
card_opration.transerror = sd_transfer_stop();
}else{
card_opration.transerror = SD_OK;
}
sdio_interrupt_flag_clear(SDIO_INT_DTEND);
/* disable all the interrupts */
sdio_interrupt_disable(SDIO_INT_DTCRCERR | SDIO_INT_DTTMOUT | SDIO_INT_DTEND | SDIO_INT_STBITE |
SDIO_INT_TFH | SDIO_INT_RFH | SDIO_INT_TXURE | SDIO_INT_RXORE);
card_opration.transend = 1;
card_opration.number_bytes = 0;
return card_opration.transerror;
}
if(RESET != sdio_interrupt_flag_get(SDIO_INT_DTCRCERR)){
sdio_interrupt_flag_clear(SDIO_INT_DTCRCERR);
/* disable all the interrupts */
sdio_interrupt_disable(SDIO_INT_DTCRCERR | SDIO_INT_DTTMOUT | SDIO_INT_DTEND | SDIO_INT_STBITE |
SDIO_INT_TFH | SDIO_INT_RFH | SDIO_INT_TXURE | SDIO_INT_RXORE);
card_opration.number_bytes = 0;
card_opration.transerror = SD_DATA_CRC_ERROR;
return card_opration.transerror;
}
if(RESET != sdio_interrupt_flag_get(SDIO_INT_DTTMOUT)){
sdio_interrupt_flag_clear(SDIO_INT_DTTMOUT);
/* disable all the interrupts */
sdio_interrupt_disable(SDIO_INT_DTCRCERR | SDIO_INT_DTTMOUT | SDIO_INT_DTEND | SDIO_INT_STBITE |
SDIO_INT_TFH | SDIO_INT_RFH | SDIO_INT_TXURE | SDIO_INT_RXORE);
card_opration.number_bytes = 0;
card_opration.transerror = SD_DATA_TIMEOUT;
return card_opration.transerror;
}
if(RESET != sdio_interrupt_flag_get(SDIO_INT_STBITE)){
sdio_interrupt_flag_clear(SDIO_INT_STBITE);
/* disable all the interrupts */
sdio_interrupt_disable(SDIO_INT_DTCRCERR | SDIO_INT_DTTMOUT | SDIO_INT_DTEND | SDIO_INT_STBITE |
SDIO_INT_TFH | SDIO_INT_RFH | SDIO_INT_TXURE | SDIO_INT_RXORE);
card_opration.number_bytes = 0;
card_opration.transerror = SD_START_BIT_ERROR;
return card_opration.transerror;
}
if(RESET != sdio_interrupt_flag_get(SDIO_INT_TXURE)){
sdio_interrupt_flag_clear(SDIO_INT_TXURE);
/* disable all the interrupts */
sdio_interrupt_disable(SDIO_INT_DTCRCERR | SDIO_INT_DTTMOUT | SDIO_INT_DTEND | SDIO_INT_STBITE |
SDIO_INT_TFH | SDIO_INT_RFH | SDIO_INT_TXURE | SDIO_INT_RXORE);
card_opration.number_bytes = 0;
card_opration.transerror = SD_TX_UNDERRUN_ERROR;
return card_opration.transerror;
}
if(RESET != sdio_interrupt_flag_get(SDIO_INT_RXORE)){
sdio_interrupt_flag_clear(SDIO_INT_RXORE);
/* disable all the interrupts */
sdio_interrupt_disable(SDIO_INT_DTCRCERR | SDIO_INT_DTTMOUT | SDIO_INT_DTEND | SDIO_INT_STBITE |
SDIO_INT_TFH | SDIO_INT_RFH | SDIO_INT_TXURE | SDIO_INT_RXORE);
card_opration.number_bytes = 0;
card_opration.transerror = SD_RX_OVERRUN_ERROR;
return card_opration.transerror;
}
return card_opration.transerror;
}
/*!
\brief select or deselect a card
\param[in] cardrca: the RCA of a card
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_card_select_deselect(uint16_t cardrca)
{
sd_error_enum status = SD_OK;
/* send CMD7(SELECT/DESELECT_CARD) to select or deselect the card */
sdio_command_response_config(SD_CMD_SELECT_DESELECT_CARD, (uint32_t)(cardrca << SD_RCA_SHIFT), SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
status = r1_error_check(SD_CMD_SELECT_DESELECT_CARD);
return status;
}
/*!
\brief get the card status whose response format R1 contains a 32-bit field
\param[in] none
\param[out] pcardstatus: a pointer that store card status
\retval sd_error_enum
*/
sd_error_enum sd_cardstatus_get(uint32_t *pcardstatus)
{
sd_error_enum status = SD_OK;
if(NULL == pcardstatus){
status = SD_PARAMETER_INVALID;
return status;
}
/* send CMD13(SEND_STATUS), addressed card sends its status register */
sdio_command_response_config(SD_CMD_SEND_STATUS, (uint32_t)card_opration.sd_rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SEND_STATUS);
if(SD_OK != status){
return status;
}
*pcardstatus = sdio_response_get(SDIO_RESPONSE0);
return status;
}
/*!
\brief get the SD status, the size of the SD status is one data block of 512 bit
\param[in] none
\param[out] psdstatus: a pointer that store SD card status
\retval sd_error_enum
*/
sd_error_enum sd_sdstatus_get(uint32_t *psdstatus)
{
sd_error_enum status = SD_OK;
uint32_t count = 0;
/* check whether the card is locked */
if (sdio_response_get(SDIO_RESPONSE0) & SD_CARDSTATE_LOCKED){
status = SD_LOCK_UNLOCK_FAILED;
return(status);
}
/* send CMD16(SET_BLOCKLEN) to set the block length */
sdio_command_response_config(SD_CMD_SET_BLOCKLEN, (uint32_t)64, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SET_BLOCKLEN);
if(SD_OK != status){
return status;
}
/* send CMD55(APP_CMD) to indicate next command is application specific command */
sdio_command_response_config(SD_CMD_APP_CMD, (uint32_t)card_opration.sd_rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_APP_CMD);
if(SD_OK != status){
return status;
}
/* configure the SDIO data transmisson */
sdio_data_config(SD_DATATIMEOUT, (uint32_t)64, SDIO_DATABLOCKSIZE_64BYTES);
sdio_data_transfer_config(SDIO_TRANSDIRECTION_TOSDIO, SDIO_TRANSMODE_BLOCK);
sdio_dsm_enable();
/* send ACMD13(SD_STATUS) to get the SD status */
sdio_command_response_config(SD_APPCMD_SD_STATUS, (uint32_t)0x0, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_APPCMD_SD_STATUS);
if(SD_OK != status){
return status;
}
while(!sdio_flag_get(SDIO_FLAG_DTCRCERR | SDIO_FLAG_DTTMOUT | SDIO_FLAG_RXORE | SDIO_FLAG_DTBLKEND | SDIO_FLAG_STBITE)){
if(RESET != sdio_flag_get(SDIO_FLAG_RFH)){
for(count = 0; count < SD_FIFOHALF_WORDS; count++){
*(psdstatus + count) = sdio_data_read();
}
psdstatus += SD_FIFOHALF_WORDS;
}
}
/* whether some error occurs and return it */
if(RESET != sdio_flag_get(SDIO_FLAG_DTCRCERR)){
status = SD_DATA_CRC_ERROR;
sdio_flag_clear(SDIO_FLAG_DTCRCERR);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_DTTMOUT)){
status = SD_DATA_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_DTTMOUT);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_RXORE)){
status = SD_RX_OVERRUN_ERROR;
sdio_flag_clear(SDIO_FLAG_RXORE);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_STBITE)){
status = SD_START_BIT_ERROR;
sdio_flag_clear(SDIO_FLAG_STBITE);
return status;
}
while(RESET != sdio_flag_get(SDIO_FLAG_RXDTVAL)){
*psdstatus = sdio_data_read();
++psdstatus;
}
/* clear the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
psdstatus -= 16;
for(count = 0; count < 16; count++){
psdstatus[count] = ((psdstatus[count] & SD_MASK_0_7BITS) << 24) |((psdstatus[count] & SD_MASK_8_15BITS) << 8) |
((psdstatus[count] & SD_MASK_16_23BITS) >> 8) |((psdstatus[count] & SD_MASK_24_31BITS) >> 24);
}
return status;
}
/*!
\brief stop an ongoing data transfer
\param[in] none
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_transfer_stop(void)
{
sd_error_enum status = SD_OK;
/* send CMD12(STOP_TRANSMISSION) to stop transmission */
sdio_command_response_config(SD_CMD_STOP_TRANSMISSION, (uint32_t)0x0, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_STOP_TRANSMISSION);
return status;
}
/*!
\brief lock or unlock a card
\param[in] lockstate: the lock state
\arg SD_LOCK: lock the SD card
\arg SD_UNLOCK: unlock the SD card
\param[out] none
\retval sd_error_enum
*/
sd_error_enum sd_lock_unlock(uint8_t lockstate)
{
sd_error_enum status = SD_OK;
uint8_t cardstate = 0, tempbyte = 0;
uint32_t pwd1 = 0, pwd2 = 0, response = 0, timeout = 0;
uint16_t tempccc = 0;
/* get the card command classes from CSD */
tempbyte = (uint8_t)((card_opration.sd_csd[1] & SD_MASK_24_31BITS) >> 24);
tempccc = (uint16_t)((uint16_t)tempbyte << 4);
tempbyte = (uint8_t)((card_opration.sd_csd[1] & SD_MASK_16_23BITS) >> 16);
tempccc |= (uint16_t)((uint16_t)(tempbyte & 0xF0) >> 4);
if(0 == (tempccc & SD_CCC_LOCK_CARD)){
/* don't support the lock command */
status = SD_FUNCTION_UNSUPPORTED;
return status;
}
/* password pattern */
pwd1 = (0x01020600|lockstate);
pwd2 = 0x03040506;
/* clear all DSM configuration */
sdio_data_config(0, 0, SDIO_DATABLOCKSIZE_1BYTE);
sdio_data_transfer_config(SDIO_TRANSDIRECTION_TOCARD, SDIO_TRANSMODE_BLOCK);
sdio_dsm_disable();
sdio_dma_disable();
/* send CMD16(SET_BLOCKLEN) to set the block length */
sdio_command_response_config(SD_CMD_SET_BLOCKLEN, (uint32_t)8, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SET_BLOCKLEN);
if(SD_OK != status){
return status;
}
/* send CMD13(SEND_STATUS), addressed card sends its status register */
sdio_command_response_config(SD_CMD_SEND_STATUS, (uint32_t)card_opration.sd_rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SEND_STATUS);
if(SD_OK != status){
return status;
}
response = sdio_response_get(SDIO_RESPONSE0);
timeout = 400000;
while((0 == (response & SD_R1_READY_FOR_DATA)) && (timeout > 0)){
/* continue to send CMD13 to polling the state of card until buffer empty or timeout */
--timeout;
/* send CMD13(SEND_STATUS), addressed card sends its status registers */
sdio_command_response_config(SD_CMD_SEND_STATUS, (uint32_t)card_opration.sd_rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SEND_STATUS);
if(SD_OK != status){
return status;
}
response = sdio_response_get(SDIO_RESPONSE0);
}
if(0 == timeout){
return SD_ERROR;
}
/* send CMD42(LOCK_UNLOCK) to set/reset the password or lock/unlock the card */
sdio_command_response_config(SD_CMD_LOCK_UNLOCK, (uint32_t)0x0, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_LOCK_UNLOCK);
if(SD_OK != status){
return status;
}
response = sdio_response_get(SDIO_RESPONSE0);
/* configure the SDIO data transmisson */
sdio_data_config(SD_DATATIMEOUT, (uint32_t)8, SDIO_DATABLOCKSIZE_8BYTES);
sdio_data_transfer_config(SDIO_TRANSDIRECTION_TOCARD, SDIO_TRANSMODE_BLOCK);
sdio_dsm_enable();
/* write password pattern */
sdio_data_write(pwd1);
sdio_data_write(pwd2);
/* whether some error occurs and return it */
if(RESET != sdio_flag_get(SDIO_FLAG_DTCRCERR)){
status = SD_DATA_CRC_ERROR;
sdio_flag_clear(SDIO_FLAG_DTCRCERR);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_DTTMOUT)){
status = SD_DATA_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_DTTMOUT);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_TXURE)){
status = SD_TX_UNDERRUN_ERROR;
sdio_flag_clear(SDIO_FLAG_TXURE);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_STBITE)){
status = SD_START_BIT_ERROR;
sdio_flag_clear(SDIO_FLAG_STBITE);
return status;
}
/* clear the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
/* get the card state and wait the card is out of programming and receiving state */
status = sd_card_state_get(&cardstate);
while((SD_OK == status) && ((SD_CARDSTATE_PROGRAMMING == cardstate) || (SD_CARDSTATE_RECEIVING == cardstate))){
status = sd_card_state_get(&cardstate);
}
return status;
}
/*!
\brief get the data transfer state
\param[in] none
\param[out] none
\retval sd_error_enum
*/
sd_transfer_state_enum sd_transfer_state_get(void)
{
sd_transfer_state_enum transtate = SD_NO_TRANSFER;
if(RESET != sdio_flag_get(SDIO_FLAG_TXRUN | SDIO_FLAG_RXRUN)){
transtate = SD_TRANSFER_IN_PROGRESS;
}
return transtate;
}
/*!
\brief get SD card capacity
\param[in] none
\param[out] none
\retval capacity of the card(KB)
*/
uint32_t sd_card_capacity_get(void)
{
uint8_t tempbyte = 0, devicesize_mult = 0, readblklen = 0;
uint32_t capacity = 0, devicesize = 0;
if((SDIO_STD_CAPACITY_SD_CARD_V1_1 == card_opration.cardtype) || (SDIO_STD_CAPACITY_SD_CARD_V2_0 == card_opration.cardtype)){
/* calculate the c_size(device size) */
tempbyte = (uint8_t)((card_opration.sd_csd[1] & SD_MASK_8_15BITS) >> 8);
devicesize |= (uint32_t)((uint32_t)(tempbyte & 0x03) << 10);
tempbyte = (uint8_t)(card_opration.sd_csd[1] & SD_MASK_0_7BITS);
devicesize |= (uint32_t)((uint32_t)tempbyte << 2);
tempbyte = (uint8_t)((card_opration.sd_csd[2] & SD_MASK_24_31BITS) >> 24);
devicesize |= (uint32_t)((uint32_t)(tempbyte & 0xC0) >> 6);
/* calculate the c_size_mult(device size multiplier) */
tempbyte = (uint8_t)((card_opration.sd_csd[2] & SD_MASK_16_23BITS) >> 16);
devicesize_mult = (tempbyte & 0x03) << 1;
tempbyte = (uint8_t)((card_opration.sd_csd[2] & SD_MASK_8_15BITS) >> 8);
devicesize_mult |= (tempbyte & 0x80) >> 7;
/* calculate the read_bl_len */
tempbyte = (uint8_t)((card_opration.sd_csd[1] & SD_MASK_16_23BITS) >> 16);
readblklen = tempbyte & 0x0F;
/* capacity = BLOCKNR*BLOCK_LEN, BLOCKNR = (C_SIZE+1)*MULT, MULT = 2^(C_SIZE_MULT+2), BLOCK_LEN = 2^READ_BL_LEN */
capacity = (devicesize + 1)*(1 << (devicesize_mult + 2));
capacity *= (1 << readblklen);
/* change the unit of capacity to KByte */
capacity /= 1024;
}else if(SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype){
/* calculate the c_size */
tempbyte = (uint8_t)(card_opration.sd_csd[1] & SD_MASK_0_7BITS);
devicesize = (uint32_t)((uint32_t)(tempbyte & 0x3F) << 16);
tempbyte = (uint8_t)((card_opration.sd_csd[2] & SD_MASK_24_31BITS) >> 24);
devicesize |= (uint32_t)((uint32_t)tempbyte << 8);
tempbyte = (uint8_t)((card_opration.sd_csd[2] & SD_MASK_16_23BITS) >> 16);
devicesize |= (uint32_t)tempbyte;
/* capacity = (c_size+1)*512KByte */
capacity = (devicesize + 1)*512;
}
return capacity;
}
/*!
\brief get the detailed information of the SD card based on received CID and CSD
\param[in] none
\param[out] pcardinfo: a pointer that store the detailed card information
\retval sd_error_enum
*/
sd_error_enum sd_card_information_get(sd_card_info_struct *pcardinfo)
{
sd_error_enum status = SD_OK;
uint8_t tempbyte = 0;
if(NULL == pcardinfo){
status = SD_PARAMETER_INVALID;
return status;
}
/* store the card type and RCA */
pcardinfo->card_type = card_opration.cardtype;
pcardinfo->card_rca = card_opration.sd_rca;
/* CID byte 0 */
tempbyte = (uint8_t)((card_opration.sd_cid[0] & SD_MASK_24_31BITS) >> 24);
pcardinfo->card_cid.mid = tempbyte;
/* CID byte 1 */
tempbyte = (uint8_t)((card_opration.sd_cid[0] & SD_MASK_16_23BITS) >> 16);
pcardinfo->card_cid.oid = (uint16_t)((uint16_t)tempbyte << 8);
/* CID byte 2 */
tempbyte = (uint8_t)((card_opration.sd_cid[0] & SD_MASK_8_15BITS) >> 8);
pcardinfo->card_cid.oid |= (uint16_t)tempbyte;
/* CID byte 3 */
tempbyte = (uint8_t)(card_opration.sd_cid[0] & SD_MASK_0_7BITS);
pcardinfo->card_cid.pnm0 = (uint32_t)((uint32_t)tempbyte << 24);
/* CID byte 4 */
tempbyte = (uint8_t)((card_opration.sd_cid[1] & SD_MASK_24_31BITS) >> 24);
pcardinfo->card_cid.pnm0 |= (uint32_t)((uint32_t)tempbyte << 16);
/* CID byte 5 */
tempbyte = (uint8_t)((card_opration.sd_cid[1] & SD_MASK_16_23BITS) >> 16);
pcardinfo->card_cid.pnm0 |= (uint32_t)((uint32_t)tempbyte << 8);
/* CID byte 6 */
tempbyte = (uint8_t)((card_opration.sd_cid[1] & SD_MASK_8_15BITS) >> 8);
pcardinfo->card_cid.pnm0 |= (uint32_t)(tempbyte);
/* CID byte 7 */
tempbyte = (uint8_t)(card_opration.sd_cid[1] & SD_MASK_0_7BITS);
pcardinfo->card_cid.pnm1 = tempbyte;
/* CID byte 8 */
tempbyte = (uint8_t)((card_opration.sd_cid[2] & SD_MASK_24_31BITS) >> 24);
pcardinfo->card_cid.prv = tempbyte;
/* CID byte 9 */
tempbyte = (uint8_t)((card_opration.sd_cid[2] & SD_MASK_16_23BITS) >> 16);
pcardinfo->card_cid.psn = (uint32_t)((uint32_t)tempbyte << 24);
/* CID byte 10 */
tempbyte = (uint8_t)((card_opration.sd_cid[2] & SD_MASK_8_15BITS) >> 8);
pcardinfo->card_cid.psn |= (uint32_t)((uint32_t)tempbyte << 16);
/* CID byte 11 */
tempbyte = (uint8_t)(card_opration.sd_cid[2] & SD_MASK_0_7BITS);
pcardinfo->card_cid.psn |= (uint32_t)tempbyte;
/* CID byte 12 */
tempbyte = (uint8_t)((card_opration.sd_cid[3] & SD_MASK_24_31BITS) >> 24);
pcardinfo->card_cid.psn |= (uint32_t)tempbyte;
/* CID byte 13 */
tempbyte = (uint8_t)((card_opration.sd_cid[3] & SD_MASK_16_23BITS) >> 16);
pcardinfo->card_cid.mdt = (uint16_t)((uint16_t)(tempbyte & 0x0F) << 8);
/* CID byte 14 */
tempbyte = (uint8_t)((card_opration.sd_cid[3] & SD_MASK_8_15BITS) >> 8);
pcardinfo->card_cid.mdt |= (uint16_t)tempbyte;
/* CID byte 15 */
tempbyte = (uint8_t)(card_opration.sd_cid[3] & SD_MASK_0_7BITS);
pcardinfo->card_cid.cid_crc = (tempbyte & 0xFE) >> 1;
/* CSD byte 0 */
tempbyte = (uint8_t)((card_opration.sd_csd[0] & SD_MASK_24_31BITS) >> 24);
pcardinfo->card_csd.csd_struct = (tempbyte & 0xC0) >> 6;
/* CSD byte 1 */
tempbyte = (uint8_t)((card_opration.sd_csd[0] & SD_MASK_16_23BITS) >> 16);
pcardinfo->card_csd.taac = tempbyte;
/* CSD byte 2 */
tempbyte = (uint8_t)((card_opration.sd_csd[0] & SD_MASK_8_15BITS) >> 8);
pcardinfo->card_csd.nsac = tempbyte;
/* CSD byte 3 */
tempbyte = (uint8_t)(card_opration.sd_csd[0] & SD_MASK_0_7BITS);
pcardinfo->card_csd.tran_speed = tempbyte;
/* CSD byte 4 */
tempbyte = (uint8_t)((card_opration.sd_csd[1] & SD_MASK_24_31BITS) >> 24);
pcardinfo->card_csd.ccc = (uint16_t)((uint16_t)tempbyte << 4);
/* CSD byte 5 */
tempbyte = (uint8_t)((card_opration.sd_csd[1] & SD_MASK_16_23BITS) >> 16);
pcardinfo->card_csd.ccc |= (uint16_t)((uint16_t)(tempbyte & 0xF0) >> 4);
pcardinfo->card_csd.read_bl_len = tempbyte & 0x0F;
/* CSD byte 6 */
tempbyte = (uint8_t)((card_opration.sd_csd[1] & SD_MASK_8_15BITS) >> 8);
pcardinfo->card_csd.read_bl_partial = (tempbyte & 0x80) >> 7;
pcardinfo->card_csd.write_blk_misalign = (tempbyte & 0x40) >> 6;
pcardinfo->card_csd.read_blk_misalign = (tempbyte & 0x20) >> 5;
pcardinfo->card_csd.dsp_imp = (tempbyte & 0x10) >> 4;
if((SDIO_STD_CAPACITY_SD_CARD_V1_1 == card_opration.cardtype) || (SDIO_STD_CAPACITY_SD_CARD_V2_0 == card_opration.cardtype)){
/* card is SDSC card, CSD version 1.0 */
pcardinfo->card_csd.c_size = (uint32_t)((uint32_t)(tempbyte & 0x03) << 10);
/* CSD byte 7 */
tempbyte = (uint8_t)(card_opration.sd_csd[1] & SD_MASK_0_7BITS);
pcardinfo->card_csd.c_size |= (uint32_t)((uint32_t)tempbyte << 2);
/* CSD byte 8 */
tempbyte = (uint8_t)((card_opration.sd_csd[2] & SD_MASK_24_31BITS) >> 24);
pcardinfo->card_csd.c_size |= (uint32_t)((uint32_t)(tempbyte & 0xC0) >> 6);
pcardinfo->card_csd.vdd_r_curr_min = (tempbyte & 0x38) >> 3;
pcardinfo->card_csd.vdd_r_curr_max = tempbyte & 0x07;
/* CSD byte 9 */
tempbyte = (uint8_t)((card_opration.sd_csd[2] & SD_MASK_16_23BITS) >> 16);
pcardinfo->card_csd.vdd_w_curr_min = (tempbyte & 0xE0) >> 5;
pcardinfo->card_csd.vdd_w_curr_max = (tempbyte & 0x1C) >> 2;
pcardinfo->card_csd.c_size_mult = (tempbyte & 0x03) << 1;
/* CSD byte 10 */
tempbyte = (uint8_t)((card_opration.sd_csd[2] & SD_MASK_8_15BITS) >> 8);
pcardinfo->card_csd.c_size_mult |= (tempbyte & 0x80) >> 7;
/* calculate the card block size and capacity */
pcardinfo->card_blocksize = 1 << (pcardinfo->card_csd.read_bl_len);
pcardinfo->card_capacity = pcardinfo->card_csd.c_size + 1;
pcardinfo->card_capacity *= (1 << (pcardinfo->card_csd.c_size_mult + 2));
pcardinfo->card_capacity *= pcardinfo->card_blocksize;
}else if(SDIO_HIGH_CAPACITY_SD_CARD == card_opration.cardtype){
/* card is SDHC card, CSD version 2.0 */
/* CSD byte 7 */
tempbyte = (uint8_t)(card_opration.sd_csd[1] & SD_MASK_0_7BITS);
pcardinfo->card_csd.c_size = (uint32_t)((uint32_t)(tempbyte & 0x3F) << 16);
/* CSD byte 8 */
tempbyte = (uint8_t)((card_opration.sd_csd[2] & SD_MASK_24_31BITS) >> 24);
pcardinfo->card_csd.c_size |= (uint32_t)((uint32_t)tempbyte << 8);
/* CSD byte 9 */
tempbyte = (uint8_t)((card_opration.sd_csd[2] & SD_MASK_16_23BITS) >> 16);
pcardinfo->card_csd.c_size |= (uint32_t)tempbyte;
/* calculate the card block size and capacity */
pcardinfo->card_blocksize = 512;
pcardinfo->card_capacity = (pcardinfo->card_csd.c_size + 1) * 512 *1024;
}
pcardinfo->card_csd.erase_blk_en = (tempbyte & 0x40) >> 6;
pcardinfo->card_csd.sector_size = (tempbyte & 0x3F) << 1;
/* CSD byte 11 */
tempbyte = (uint8_t)(card_opration.sd_csd[2] & SD_MASK_0_7BITS);
pcardinfo->card_csd.sector_size |= (tempbyte & 0x80) >> 7;
pcardinfo->card_csd.wp_grp_size = (tempbyte & 0x7F);
/* CSD byte 12 */
tempbyte = (uint8_t)((card_opration.sd_csd[3] & SD_MASK_24_31BITS) >> 24);
pcardinfo->card_csd.wp_grp_enable = (tempbyte & 0x80) >> 7;
pcardinfo->card_csd.r2w_factor = (tempbyte & 0x1C) >> 2;
pcardinfo->card_csd.write_bl_len = (tempbyte & 0x03) << 2;
/* CSD byte 13 */
tempbyte = (uint8_t)((card_opration.sd_csd[3] & SD_MASK_16_23BITS) >> 16);
pcardinfo->card_csd.write_bl_len |= (tempbyte & 0xC0) >> 6;
pcardinfo->card_csd.write_bl_partial = (tempbyte & 0x20) >> 5;
/* CSD byte 14 */
tempbyte = (uint8_t)((card_opration.sd_csd[3] & SD_MASK_8_15BITS) >> 8);
pcardinfo->card_csd.file_format_grp = (tempbyte & 0x80) >> 7;
pcardinfo->card_csd.copy_flag = (tempbyte & 0x40) >> 6;
pcardinfo->card_csd.perm_write_protect = (tempbyte & 0x20) >> 5;
pcardinfo->card_csd.tmp_write_protect = (tempbyte & 0x10) >> 4;
pcardinfo->card_csd.file_format = (tempbyte & 0x0C) >> 2;
/* CSD byte 15 */
tempbyte = (uint8_t)(card_opration.sd_csd[3] & SD_MASK_0_7BITS);
pcardinfo->card_csd.csd_crc = (tempbyte & 0xFE) >> 1;
return status;
}
/*!
\brief check if the command sent error occurs
\param[in] none
\param[out] none
\retval sd_error_enum
*/
static sd_error_enum cmdsent_error_check(void)
{
sd_error_enum status = SD_OK;
uint32_t timeout = 400000;
/* check command sent flag */
while((RESET == sdio_flag_get(SDIO_FLAG_CMDSEND)) && (timeout > 0)){
--timeout;
}
/* command response is timeout */
if(0 == timeout){
status = SD_CMD_RESP_TIMEOUT;
return status;
}
/* if the command is sent, clear the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
return status;
}
/*!
\brief check if error type for R1 response
\param[in] resp: content of response
\param[out] none
\retval sd_error_enum
*/
static sd_error_enum r1_error_type_check(uint32_t resp)
{
sd_error_enum status = SD_ERROR;
/* check which error occurs */
if(resp & SD_R1_OUT_OF_RANGE){
status = SD_OUT_OF_RANGE;
}else if(resp & SD_R1_ADDRESS_ERROR){
status = SD_ADDRESS_ERROR;
}else if(resp & SD_R1_BLOCK_LEN_ERROR){
status = SD_BLOCK_LEN_ERROR;
}else if(resp & SD_R1_ERASE_SEQ_ERROR){
status = SD_ERASE_SEQ_ERROR;
}else if(resp & SD_R1_ERASE_PARAM){
status = SD_ERASE_PARAM;
}else if(resp & SD_R1_WP_VIOLATION){
status = SD_WP_VIOLATION;
}else if(resp & SD_R1_LOCK_UNLOCK_FAILED){
status = SD_LOCK_UNLOCK_FAILED;
}else if(resp & SD_R1_COM_CRC_ERROR){
status = SD_COM_CRC_ERROR;
}else if(resp & SD_R1_ILLEGAL_COMMAND){
status = SD_ILLEGAL_COMMAND;
}else if(resp & SD_R1_CARD_ECC_FAILED){
status = SD_CARD_ECC_FAILED;
}else if(resp & SD_R1_CC_ERROR){
status = SD_CC_ERROR;
}else if(resp & SD_R1_GENERAL_UNKNOWN_ERROR){
status = SD_GENERAL_UNKNOWN_ERROR;
}else if(resp & SD_R1_CSD_OVERWRITE){
status = SD_CSD_OVERWRITE;
}else if(resp & SD_R1_WP_ERASE_SKIP){
status = SD_WP_ERASE_SKIP;
}else if(resp & SD_R1_CARD_ECC_DISABLED){
status = SD_CARD_ECC_DISABLED;
}else if(resp & SD_R1_ERASE_RESET){
status = SD_ERASE_RESET;
}else if(resp & SD_R1_AKE_SEQ_ERROR){
status = SD_AKE_SEQ_ERROR;
}
return status;
}
/*!
\brief check if error occurs for R1 response
\param[in] cmdindex: the index of command
\param[out] none
\retval sd_error_enum
*/
static sd_error_enum r1_error_check(uint8_t cmdindex)
{
sd_error_enum status = SD_OK;
uint32_t reg_status = 0, resp_r1 = 0;
/* store the content of SDIO_STAT */
reg_status = SDIO_STAT;
while(!(reg_status & (SDIO_FLAG_CCRCERR | SDIO_FLAG_CMDTMOUT | SDIO_FLAG_CMDRECV))){
reg_status = SDIO_STAT;
}
/* check whether an error or timeout occurs or command response received */
if(reg_status & SDIO_FLAG_CCRCERR){
status = SD_CMD_CRC_ERROR;
sdio_flag_clear(SDIO_FLAG_CCRCERR);
return status;
}else if(reg_status & SDIO_FLAG_CMDTMOUT){
status = SD_CMD_RESP_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_CMDTMOUT);
return status;
}
/* check whether the last response command index is the desired one */
if(sdio_command_index_get() != cmdindex){
status = SD_ILLEGAL_COMMAND;
return status;
}
/* clear all the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
/* get the SDIO response register 0 for checking */
resp_r1 = sdio_response_get(SDIO_RESPONSE0);
if(SD_ALLZERO == (resp_r1 & SD_R1_ERROR_BITS)){
/* no error occurs, return SD_OK */
status = SD_OK;
return status;
}
/* if some error occurs, return the error type */
status = r1_error_type_check(resp_r1);
return status;
}
/*!
\brief check if error occurs for R2 response
\param[in] none
\param[out] none
\retval sd_error_enum
*/
static sd_error_enum r2_error_check(void)
{
sd_error_enum status = SD_OK;
uint32_t reg_status = 0;
/* store the content of SDIO_STAT */
reg_status = SDIO_STAT;
while(!(reg_status & (SDIO_FLAG_CCRCERR | SDIO_FLAG_CMDTMOUT | SDIO_FLAG_CMDRECV))){
reg_status = SDIO_STAT;
}
/* check whether an error or timeout occurs or command response received */
if(reg_status & SDIO_FLAG_CCRCERR){
status = SD_CMD_CRC_ERROR;
sdio_flag_clear(SDIO_FLAG_CCRCERR);
return status;
}else if(reg_status & SDIO_FLAG_CMDTMOUT){
status = SD_CMD_RESP_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_CMDTMOUT);
return status;
}
/* clear all the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
return status;
}
/*!
\brief check if error occurs for R3 response
\param[in] none
\param[out] none
\retval sd_error_enum
*/
static sd_error_enum r3_error_check(void)
{
sd_error_enum status = SD_OK;
uint32_t reg_status = 0;
/* store the content of SDIO_STAT */
reg_status = SDIO_STAT;
while(!(reg_status & (SDIO_FLAG_CCRCERR | SDIO_FLAG_CMDTMOUT | SDIO_FLAG_CMDRECV))){
reg_status = SDIO_STAT;
}
if(reg_status & SDIO_FLAG_CMDTMOUT){
status = SD_CMD_RESP_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_CMDTMOUT);
return status;
}
/* clear all the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
return status;
}
/*!
\brief check if error occurs for R6 response
\param[in] cmdindex: the index of command
\param[out] prca: a pointer that store the RCA of card
\retval sd_error_enum
*/
static sd_error_enum r6_error_check(uint8_t cmdindex, uint16_t *prca)
{
sd_error_enum status = SD_OK;
uint32_t reg_status = 0, response = 0;
/* store the content of SDIO_STAT */
reg_status = SDIO_STAT;
while(!(reg_status & (SDIO_FLAG_CCRCERR | SDIO_FLAG_CMDTMOUT | SDIO_FLAG_CMDRECV))){
reg_status = SDIO_STAT;
}
/* check whether an error or timeout occurs or command response received */
if(reg_status & SDIO_FLAG_CCRCERR){
status = SD_CMD_CRC_ERROR;
sdio_flag_clear(SDIO_FLAG_CCRCERR);
return status;
}else if(reg_status & SDIO_FLAG_CMDTMOUT){
status = SD_CMD_RESP_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_CMDTMOUT);
return status;
}
/* check whether the last response command index is the desired one */
if(sdio_command_index_get() != cmdindex){
status = SD_ILLEGAL_COMMAND;
return status;
}
/* clear all the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
/* get the SDIO response register 0 for checking */
response = sdio_response_get(SDIO_RESPONSE0);
if(SD_ALLZERO == (response & (SD_R6_COM_CRC_ERROR | SD_R6_ILLEGAL_COMMAND | SD_R6_GENERAL_UNKNOWN_ERROR))){
*prca = (uint16_t)(response >> 16);
return status;
}
/* if some error occurs, return the error type */
if(response & SD_R6_COM_CRC_ERROR){
status = SD_COM_CRC_ERROR;
}else if(response & SD_R6_ILLEGAL_COMMAND){
status = SD_ILLEGAL_COMMAND;
}else if(response & SD_R6_GENERAL_UNKNOWN_ERROR){
status = SD_GENERAL_UNKNOWN_ERROR;
}
return status;
}
/*!
\brief check if error occurs for R7 response
\param[in] none
\param[out] none
\retval sd_error_enum
*/
static sd_error_enum r7_error_check(void)
{
sd_error_enum status = SD_ERROR;
uint32_t reg_status = 0, timeout = 400000;
/* store the content of SDIO_STAT */
reg_status = SDIO_STAT;
while(!(reg_status & (SDIO_FLAG_CCRCERR | SDIO_FLAG_CMDTMOUT | SDIO_FLAG_CMDRECV)) && (timeout > 0)){
reg_status = SDIO_STAT;
--timeout;
}
/* check the flags */
if((reg_status & SDIO_FLAG_CMDTMOUT) || (0 == timeout)){
status = SD_CMD_RESP_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_CMDTMOUT);
return status;
}
if(reg_status & SDIO_FLAG_CMDRECV){
status = SD_OK;
sdio_flag_clear(SDIO_FLAG_CMDRECV);
return status;
}
return status;
}
/*!
\brief get the state which the card is in
\param[in] none
\param[out] pcardstate: a pointer that store the card state
\arg SD_CARDSTATE_IDLE: card is in idle state
\arg SD_CARDSTATE_READY: card is in ready state
\arg SD_CARDSTATE_IDENTIFICAT: card is in identificat state
\arg SD_CARDSTATE_STANDBY: card is in standby state
\arg SD_CARDSTATE_TRANSFER: card is in transfer state
\arg SD_CARDSTATE_DATA: card is in data state
\arg SD_CARDSTATE_RECEIVING: card is in receiving state
\arg SD_CARDSTATE_PROGRAMMING: card is in programming state
\arg SD_CARDSTATE_DISCONNECT: card is in disconnect state
\arg SD_CARDSTATE_LOCKED: card is in locked state
\retval sd_error_enum
*/
static sd_error_enum sd_card_state_get(uint8_t *pcardstate)
{
sd_error_enum status = SD_OK;
__IO uint32_t reg_status = 0, response = 0;
/* send CMD13(SEND_STATUS), addressed card sends its status register */
sdio_command_response_config(SD_CMD_SEND_STATUS, (uint32_t)card_opration.sd_rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* store the content of SDIO_STAT */
reg_status = SDIO_STAT;
while(!(reg_status & (SDIO_FLAG_CCRCERR | SDIO_FLAG_CMDTMOUT | SDIO_FLAG_CMDRECV))){
reg_status = SDIO_STAT;
}
/* check whether an error or timeout occurs or command response received */
if(reg_status & SDIO_FLAG_CCRCERR){
status = SD_CMD_CRC_ERROR;
sdio_flag_clear(SDIO_FLAG_CCRCERR);
return status;
}else if(reg_status & SDIO_FLAG_CMDTMOUT){
status = SD_CMD_RESP_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_CMDTMOUT);
return status;
}
/* command response received, store the response command index */
reg_status = (uint32_t)sdio_command_index_get();
if(reg_status != (uint32_t)SD_CMD_SEND_STATUS){
status = SD_ILLEGAL_COMMAND;
return status;
}
/* clear all the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
/* get the SDIO response register 0 for checking */
response = sdio_response_get(SDIO_RESPONSE0);
*pcardstate = (uint8_t)((response >> 9) & 0x0000000F);
if(SD_ALLZERO == (response & SD_R1_ERROR_BITS)){
/* no error occurs, return SD_OK */
status = SD_OK;
return status;
}
/* if some error occurs, return the error type */
status = r1_error_type_check(response);
return status;
}
/*!
\brief configure the bus width mode
\param[in] buswidth: the bus width
\arg SD_BUS_WIDTH_1BIT: 1-bit bus width
\arg SD_BUS_WIDTH_4BIT: 4-bit bus width
\param[out] none
\retval sd_error_enum
*/
static sd_error_enum sd_bus_width_config(uint32_t buswidth)
{
sd_error_enum status = SD_OK;
/* check whether the card is locked */
if(sdio_response_get(SDIO_RESPONSE0) & SD_CARDSTATE_LOCKED){
status = SD_LOCK_UNLOCK_FAILED;
return status;
}
/* get the SCR register */
status = sd_scr_get(card_opration.sd_rca, card_opration.sd_scr);
if(SD_OK != status){
return status;
}
if(SD_BUS_WIDTH_1BIT == buswidth){
if(SD_ALLZERO != (card_opration.sd_scr[1] & buswidth)){
/* send CMD55(APP_CMD) to indicate next command is application specific command */
sdio_command_response_config(SD_CMD_APP_CMD, (uint32_t)card_opration.sd_rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_APP_CMD);
if(SD_OK != status){
return status;
}
/* send ACMD6(SET_BUS_WIDTH) to define the data bus width */
sdio_command_response_config(SD_APPCMD_SET_BUS_WIDTH, (uint32_t)0x0, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_APPCMD_SET_BUS_WIDTH);
if(SD_OK != status){
return status;
}
}else{
status = SD_OPERATION_IMPROPER;
}
return status;
}else if(SD_BUS_WIDTH_4BIT == buswidth){
if(SD_ALLZERO != (card_opration.sd_scr[1] & buswidth)){
/* send CMD55(APP_CMD) to indicate next command is application specific command */
sdio_command_response_config(SD_CMD_APP_CMD, (uint32_t)card_opration.sd_rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_APP_CMD);
if(SD_OK != status){
return status;
}
/* send ACMD6(SET_BUS_WIDTH) to define the data bus width */
sdio_command_response_config(SD_APPCMD_SET_BUS_WIDTH, (uint32_t)0x2, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_APPCMD_SET_BUS_WIDTH);
if(SD_OK != status){
return status;
}
}else{
status = SD_OPERATION_IMPROPER;
}
return status;
}else{
status = SD_PARAMETER_INVALID;
return status;
}
}
/*!
\brief get the SCR of corresponding card
\param[in] rca: RCA of a card
\param[out] pscr: a pointer that store the SCR content
\retval sd_error_enum
*/
static sd_error_enum sd_scr_get(uint16_t rca, uint32_t *pscr)
{
sd_error_enum status = SD_OK;
uint32_t temp_scr[2] = {0, 0}, idx_scr = 0;
/* send CMD16(SET_BLOCKLEN) to set block length */
sdio_command_response_config(SD_CMD_SET_BLOCKLEN, (uint32_t)8, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_SET_BLOCKLEN);
if(SD_OK != status){
return status;
}
/* send CMD55(APP_CMD) to indicate next command is application specific command */
sdio_command_response_config(SD_CMD_APP_CMD, (uint32_t)rca << SD_RCA_SHIFT, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_CMD_APP_CMD);
if(SD_OK != status){
return status;
}
/* configure SDIO data */
sdio_data_config(SD_DATATIMEOUT, (uint32_t)8, SDIO_DATABLOCKSIZE_8BYTES);
sdio_data_transfer_config(SDIO_TRANSMODE_BLOCK, SDIO_TRANSDIRECTION_TOSDIO);
sdio_dsm_enable();
/* send ACMD51(SEND_SCR) to read the SD configuration register */
sdio_command_response_config(SD_APPCMD_SEND_SCR, (uint32_t)0x0, SDIO_RESPONSETYPE_SHORT);
sdio_wait_type_set(SDIO_WAITTYPE_NO);
sdio_csm_enable();
/* check if some error occurs */
status = r1_error_check(SD_APPCMD_SEND_SCR);
if(SD_OK != status){
return status;
}
/* store the received SCR */
while(!sdio_flag_get(SDIO_FLAG_DTCRCERR | SDIO_FLAG_DTTMOUT | SDIO_FLAG_RXORE | SDIO_FLAG_DTBLKEND | SDIO_FLAG_STBITE)){
if(RESET != sdio_flag_get(SDIO_FLAG_RXDTVAL)){
*(temp_scr + idx_scr) = sdio_data_read();
++idx_scr;
}
}
/* check whether some error occurs */
if(RESET != sdio_flag_get(SDIO_FLAG_DTCRCERR)){
status = SD_DATA_CRC_ERROR;
sdio_flag_clear(SDIO_FLAG_DTCRCERR);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_DTTMOUT)){
status = SD_DATA_TIMEOUT;
sdio_flag_clear(SDIO_FLAG_DTTMOUT);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_RXORE)){
status = SD_RX_OVERRUN_ERROR;
sdio_flag_clear(SDIO_FLAG_RXORE);
return status;
}else if(RESET != sdio_flag_get(SDIO_FLAG_STBITE)){
status = SD_START_BIT_ERROR;
sdio_flag_clear(SDIO_FLAG_STBITE);
return status;
}
/* clear all the SDIO_INTC flags */
sdio_flag_clear(SDIO_MASK_INTC_FLAGS);
/* readjust the temp SCR value */
*(pscr) = ((temp_scr[1] & SD_MASK_0_7BITS) << 24) | ((temp_scr[1] & SD_MASK_8_15BITS) << 8) |
((temp_scr[1] & SD_MASK_16_23BITS) >> 8) | ((temp_scr[1] & SD_MASK_24_31BITS) >> 24);
*(pscr + 1) = ((temp_scr[0] & SD_MASK_0_7BITS) << 24) | ((temp_scr[0] & SD_MASK_8_15BITS) << 8) |
((temp_scr[0] & SD_MASK_16_23BITS) >> 8) | ((temp_scr[0] & SD_MASK_24_31BITS) >> 24);
return status;
}
/*!
\brief get the data block size
\param[in] bytesnumber: the number of bytes
\param[out] none
\retval data block size
\arg SDIO_DATABLOCKSIZE_1BYTE: block size = 1 byte
\arg SDIO_DATABLOCKSIZE_2BYTES: block size = 2 bytes
\arg SDIO_DATABLOCKSIZE_4BYTES: block size = 4 bytes
\arg SDIO_DATABLOCKSIZE_8BYTES: block size = 8 bytes
\arg SDIO_DATABLOCKSIZE_16BYTES: block size = 16 bytes
\arg SDIO_DATABLOCKSIZE_32BYTES: block size = 32 bytes
\arg SDIO_DATABLOCKSIZE_64BYTES: block size = 64 bytes
\arg SDIO_DATABLOCKSIZE_128BYTES: block size = 128 bytes
\arg SDIO_DATABLOCKSIZE_256BYTES: block size = 256 bytes
\arg SDIO_DATABLOCKSIZE_512BYTES: block size = 512 bytes
\arg SDIO_DATABLOCKSIZE_1024BYTES: block size = 1024 bytes
\arg SDIO_DATABLOCKSIZE_2048BYTES: block size = 2048 bytes
\arg SDIO_DATABLOCKSIZE_4096BYTES: block size = 4096 bytes
\arg SDIO_DATABLOCKSIZE_8192BYTES: block size = 8192 bytes
\arg SDIO_DATABLOCKSIZE_16384BYTES: block size = 16384 bytes
*/
static uint32_t sd_datablocksize_get(uint16_t bytesnumber)
{
uint8_t exp_val = 0;
/* calculate the exponent of 2 */
while(1 != bytesnumber){
bytesnumber >>= 1;
++exp_val;
}
return DATACTL_BLKSZ(exp_val);
}
/*!
\brief configure the GPIO of SDIO interface
\param[in] none
\param[out] none
\retval none
*/
static void gpio_config(void)
{
/* configure the SDIO_DAT0(PC8), SDIO_DAT1(PC9), SDIO_DAT2(PC10), SDIO_DAT3(PC11), SDIO_CLK(PC12) and SDIO_CMD(PD2) */
gpio_af_set(SDIO_CLK_PORT, GPIO_AF_12, SDIO_CLK_PIN);
gpio_af_set(SDIO_CMD_PORT, GPIO_AF_12, SDIO_CMD_PIN);
gpio_af_set(SDIO_D0_PORT, GPIO_AF_12, SDIO_D0_PIN);
gpio_af_set(SDIO_D1_PORT, GPIO_AF_12, SDIO_D1_PIN);
gpio_af_set(SDIO_D2_PORT, GPIO_AF_12, SDIO_D2_PIN);
gpio_af_set(SDIO_D3_PORT, GPIO_AF_12, SDIO_D3_PIN);
gpio_mode_set(SDIO_CLK_PORT, GPIO_MODE_AF, GPIO_PUPD_NONE, SDIO_CLK_PIN);
gpio_output_options_set(SDIO_CLK_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_25MHZ, SDIO_CLK_PIN);
gpio_mode_set(SDIO_CMD_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP, SDIO_CMD_PIN);
gpio_output_options_set(SDIO_CMD_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_25MHZ, SDIO_CMD_PIN);
gpio_mode_set(SDIO_D0_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP, SDIO_D0_PIN);
gpio_output_options_set(SDIO_D0_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_25MHZ, SDIO_D0_PIN);
gpio_mode_set(SDIO_D1_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP, SDIO_D1_PIN);
gpio_output_options_set(SDIO_D1_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_25MHZ, SDIO_D1_PIN);
gpio_mode_set(SDIO_D2_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP, SDIO_D2_PIN);
gpio_output_options_set(SDIO_D2_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_25MHZ, SDIO_D2_PIN);
gpio_mode_set(SDIO_D3_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP, SDIO_D3_PIN);
gpio_output_options_set(SDIO_D3_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_25MHZ, SDIO_D3_PIN);
}
/*!
\brief configure the RCU of SDIO and DMA
\param[in] none
\param[out] none
\retval none
*/
static void rcu_config(void)
{
rcu_periph_clock_enable(SDIO_GPIO_CLK);
rcu_periph_clock_enable(SDIO_GPIO_CMD);
rcu_periph_clock_enable(SDIO_GPIO_D0);
rcu_periph_clock_enable(SDIO_GPIO_D1);
rcu_periph_clock_enable(SDIO_GPIO_D2);
rcu_periph_clock_enable(SDIO_GPIO_D3);
rcu_periph_clock_enable(SDIO_PERI_CLOCK);
rcu_periph_clock_enable(SDIO_DMA_CLOCK);
}
/*!
\brief configure the DMA1 channel 3 for transferring data
\param[in] srcbuf: a pointer point to a buffer which will be transferred
\param[in] bufsize: the size of buffer(not used in flow controller is peripheral)
\param[out] none
\retval none
*/
static void dma_transfer_config(uint32_t *srcbuf, uint32_t bufsize)
{
dma_multi_data_parameter_struct dma_struct;
/* clear all the interrupt flags */
dma_flag_clear(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_FEE);
dma_flag_clear(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_SDE);
dma_flag_clear(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_TAE);
dma_flag_clear(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_HTF);
dma_flag_clear(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_FTF);
dma_channel_disable(SDIO_DMA, SDIO_DMA_CHANNEL);
dma_deinit(SDIO_DMA, SDIO_DMA_CHANNEL);
/* configure the DMA1 channel 3 */
dma_struct.periph_addr = (uint32_t)SDIO_FIFO_ADDR;
dma_struct.memory0_addr = (uint32_t)srcbuf;
dma_struct.direction = DMA_MEMORY_TO_PERIPH;
dma_struct.number = 0;
dma_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_struct.periph_width = DMA_PERIPH_WIDTH_32BIT;
dma_struct.memory_width = DMA_MEMORY_WIDTH_32BIT;
dma_struct.priority = DMA_PRIORITY_ULTRA_HIGH;
dma_struct.periph_burst_width = DMA_PERIPH_BURST_4_BEAT;
dma_struct.memory_burst_width = DMA_MEMORY_BURST_4_BEAT;
dma_struct.circular_mode = DMA_CIRCULAR_MODE_DISABLE;
dma_struct.critical_value = DMA_FIFO_4_WORD;
dma_multi_data_mode_init(SDIO_DMA, SDIO_DMA_CHANNEL, &dma_struct);
dma_flow_controller_config(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLOW_CONTROLLER_PERI);
dma_channel_subperipheral_select(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_SUBPERI4);
dma_channel_enable(SDIO_DMA, SDIO_DMA_CHANNEL);
}
/*!
\brief configure the DMA1 channel 3 for receiving data
\param[in] dstbuf: a pointer point to a buffer which will receive data
\param[in] bufsize: the size of buffer(not used in flow controller is peripheral)
\param[out] none
\retval none
*/
static void dma_receive_config(uint32_t *dstbuf, uint32_t bufsize)
{
dma_multi_data_parameter_struct dma_struct;
/* clear all the interrupt flags */
dma_flag_clear(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_FEE);
dma_flag_clear(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_SDE);
dma_flag_clear(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_TAE);
dma_flag_clear(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_HTF);
dma_flag_clear(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLAG_FTF);
dma_channel_disable(SDIO_DMA, SDIO_DMA_CHANNEL);
dma_deinit(SDIO_DMA, SDIO_DMA_CHANNEL);
/* configure the DMA1 channel 3 */
dma_struct.periph_addr = (uint32_t)SDIO_FIFO_ADDR;
dma_struct.memory0_addr = (uint32_t)dstbuf;
dma_struct.direction = DMA_PERIPH_TO_MEMORY;
dma_struct.number = 0;
dma_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_struct.periph_width = DMA_PERIPH_WIDTH_32BIT;
dma_struct.memory_width = DMA_MEMORY_WIDTH_32BIT;
dma_struct.priority = DMA_PRIORITY_ULTRA_HIGH;
dma_struct.periph_burst_width = DMA_PERIPH_BURST_4_BEAT;
dma_struct.memory_burst_width = DMA_MEMORY_BURST_4_BEAT;
dma_struct.critical_value = DMA_FIFO_4_WORD;
dma_struct.circular_mode = DMA_CIRCULAR_MODE_DISABLE;
dma_multi_data_mode_init(SDIO_DMA, SDIO_DMA_CHANNEL, &dma_struct);
dma_flow_controller_config(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_FLOW_CONTROLLER_PERI);
dma_channel_subperipheral_select(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_SUBPERI4);
dma_channel_enable(SDIO_DMA, SDIO_DMA_CHANNEL);
}
#if SDIO_DMA_USE_IPC
static void sdio_dma_irq_config(void)
{
dma_interrupt_enable(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_CHXCTL_FTFIE);
nvic_irq_enable(SDIO_DMA_IRQ, 0, 1);
}
void SDIO_DMA_IRQ_HANDLER(void)
{
rt_interrupt_enter();
if(dma_interrupt_flag_get(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_INT_FLAG_FTF)) {
dma_interrupt_flag_clear(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_INT_FLAG_FTF);
dma_interrupt_disable(SDIO_DMA, SDIO_DMA_CHANNEL, DMA_CHXCTL_FTFIE);
rt_sem_release(&sd.sem);
}
rt_interrupt_leave();
}
#endif /* SDIO_DMA_USE_IPC */
#endif /* RT_USING_SDIO */