rt-thread-official/bsp/cvitek/drivers/drv_uart.c

298 lines
7.9 KiB
C

/*
* Copyright (c) 2006-2024, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2023/06/25 flyingcys first version
*/
#include <rthw.h>
#include <rtthread.h>
#include <rtdevice.h>
#include "board.h"
#include "drv_uart.h"
#define DBG_TAG "DRV.UART"
#define DBG_LVL DBG_WARNING
#include <rtdbg.h>
/*
* Divide positive or negative dividend by positive divisor and round
* to closest integer. Result is undefined for negative divisors and
* for negative dividends if the divisor variable type is unsigned.
*/
#define DIV_ROUND_CLOSEST(x, divisor)( \
{ \
typeof(x) __x = x; \
typeof(divisor) __d = divisor; \
(((typeof(x))-1) > 0 || \
((typeof(divisor))-1) > 0 || (__x) > 0) ? \
(((__x) + ((__d) / 2)) / (__d)) : \
(((__x) - ((__d) / 2)) / (__d)); \
} \
)
#define BOTH_EMPTY (UART_LSR_TEMT | UART_LSR_THRE)
struct hw_uart_device
{
rt_ubase_t hw_base;
rt_uint32_t irqno;
};
#define BSP_DEFINE_UART_DEVICE(no) \
static struct hw_uart_device _uart##no##_device = \
{ \
UART##no##_BASE, \
UART##no##_IRQ \
}; \
static struct rt_serial_device _serial##no;
#ifdef RT_USING_UART0
BSP_DEFINE_UART_DEVICE(0);
#endif
#ifdef RT_USING_UART1
BSP_DEFINE_UART_DEVICE(1);
#endif
#ifdef RT_USING_UART2
BSP_DEFINE_UART_DEVICE(2);
#endif
#ifdef RT_USING_UART3
BSP_DEFINE_UART_DEVICE(3);
#endif
rt_inline rt_uint32_t dw8250_read32(rt_ubase_t addr, rt_ubase_t offset)
{
return *((volatile rt_uint32_t *)(addr + (offset << UART_REG_SHIFT)));
}
rt_inline void dw8250_write32(rt_ubase_t addr, rt_ubase_t offset, rt_uint32_t value)
{
*((volatile rt_uint32_t *)(addr + (offset << UART_REG_SHIFT))) = value;
if (offset == UART_LCR)
{
int tries = 1000;
/* Make sure LCR write wasn't ignored */
while (tries--)
{
unsigned int lcr = dw8250_read32(addr, UART_LCR);
if ((value & ~UART_LCR_STKP) == (lcr & ~UART_LCR_STKP))
{
return;
}
dw8250_write32(addr, UART_FCR, UART_FCR_DEFVAL);
dw8250_read32(addr, UART_RX);
*((volatile rt_uint32_t *)(addr + (offset << UART_REG_SHIFT))) = value;
}
}
}
static void dw8250_uart_setbrg(rt_ubase_t addr, int baud_divisor)
{
/* to keep serial format, read lcr before writing BKSE */
int lcr_val = dw8250_read32(addr, UART_LCR) & ~UART_LCR_BKSE;
dw8250_write32(addr, UART_LCR, UART_LCR_BKSE | lcr_val);
dw8250_write32(addr, UART_DLL, baud_divisor & 0xff);
dw8250_write32(addr, UART_DLM, (baud_divisor >> 8) & 0xff);
dw8250_write32(addr, UART_LCR, lcr_val);
}
static rt_err_t dw8250_uart_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
rt_base_t base;
struct hw_uart_device *uart;
int clock_divisor;
RT_ASSERT(serial != RT_NULL);
uart = (struct hw_uart_device *)serial->parent.user_data;
base = uart->hw_base;
while (!(dw8250_read32(base, UART_LSR) & UART_LSR_TEMT));
dw8250_write32(base, UART_IER, 0);
dw8250_write32(base, UART_MCR, UART_MCRVAL);
dw8250_write32(base, UART_FCR, UART_FCR_DEFVAL);
/* initialize serial config to 8N1 before writing baudrate */
dw8250_write32(base, UART_LCR, UART_LCR_8N1);
clock_divisor = DIV_ROUND_CLOSEST(UART_INPUT_CLK, 16 * serial->config.baud_rate);
dw8250_uart_setbrg(base, clock_divisor);
return RT_EOK;
}
static rt_err_t dw8250_uart_control(struct rt_serial_device *serial, int cmd, void *arg)
{
struct hw_uart_device *uart;
RT_ASSERT(serial != RT_NULL);
uart = (struct hw_uart_device *)serial->parent.user_data;
switch (cmd)
{
case RT_DEVICE_CTRL_CLR_INT:
/* Disable rx irq */
dw8250_write32(uart->hw_base, UART_IER, !UART_IER_RDI);
rt_hw_interrupt_mask(uart->irqno);
break;
case RT_DEVICE_CTRL_SET_INT:
/* Enable rx irq */
dw8250_write32(uart->hw_base, UART_IER, UART_IER_RDI);
rt_hw_interrupt_umask(uart->irqno);
break;
}
return RT_EOK;
}
static int dw8250_uart_putc(struct rt_serial_device *serial, char c)
{
rt_base_t base;
struct hw_uart_device *uart;
RT_ASSERT(serial != RT_NULL);
uart = (struct hw_uart_device *)serial->parent.user_data;
base = uart->hw_base;
while ((dw8250_read32(base, UART_LSR) & BOTH_EMPTY) != BOTH_EMPTY);
dw8250_write32(base, UART_TX, c);
return 1;
}
static int dw8250_uart_getc(struct rt_serial_device *serial)
{
int ch = -1;
rt_base_t base;
struct hw_uart_device *uart;
RT_ASSERT(serial != RT_NULL);
uart = (struct hw_uart_device *)serial->parent.user_data;
base = uart->hw_base;
if (dw8250_read32(base, UART_LSR) & UART_LSR_DR)
{
ch = dw8250_read32(base, UART_RX) & 0xff;
}
return ch;
}
static const struct rt_uart_ops _uart_ops =
{
dw8250_uart_configure,
dw8250_uart_control,
dw8250_uart_putc,
dw8250_uart_getc,
};
static void rt_hw_uart_isr(int irqno, void *param)
{
unsigned int iir, status;
struct rt_serial_device *serial = (struct rt_serial_device *)param;
struct hw_uart_device *uart = (struct hw_uart_device *)serial->parent.user_data;
iir = dw8250_read32(uart->hw_base, UART_IIR);
/* If don't do this in non-DMA mode then the "RX TIMEOUT" interrupt will fire forever. */
if ((iir & 0x3f) == UART_IIR_RX_TIMEOUT)
{
status = dw8250_read32(uart->hw_base, UART_LSR);
if (!(status & (UART_LSR_DR | UART_LSR_BI)))
{
dw8250_read32(uart->hw_base, UART_RX);
}
}
if (!(iir & UART_IIR_NO_INT))
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
}
if ((iir & UART_IIR_BUSY) == UART_IIR_BUSY)
{
/* Clear the USR */
dw8250_read32(uart->hw_base, UART_USR);
return;
}
}
int rt_hw_uart_init(void)
{
struct hw_uart_device* uart;
struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
config.baud_rate = 115200;
#define BSP_INSTALL_UART_DEVICE(no) \
uart = &_uart##no##_device; \
_serial##no.ops = &_uart_ops; \
_serial##no.config = config; \
rt_hw_serial_register(&_serial##no, "uart" #no, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX, uart); \
rt_hw_interrupt_install(uart->irqno, rt_hw_uart_isr, &_serial##no, "uart" #no);
#ifdef RT_USING_UART0
PINMUX_CONFIG(UART0_RX, UART0_RX);
PINMUX_CONFIG(UART0_TX, UART0_TX);
BSP_INSTALL_UART_DEVICE(0);
#if defined(ARCH_ARM)
uart->hw_base = (rt_size_t)rt_ioremap((void*)uart->hw_base, 0x10000);
#endif /* defined(ARCH_ARM) */
#endif
#ifdef RT_USING_UART1
PINMUX_CONFIG(IIC0_SDA, UART1_RX);
PINMUX_CONFIG(IIC0_SCL, UART1_TX);
BSP_INSTALL_UART_DEVICE(1);
#if defined(ARCH_ARM)
uart->hw_base = (rt_size_t)rt_ioremap((void*)uart->hw_base, 0x10000);
#endif /* defined(ARCH_ARM) */
#endif
#ifdef RT_USING_UART2
PINMUX_CONFIG(SD1_D1, UART2_RX);
PINMUX_CONFIG(SD1_D2, UART2_TX);
BSP_INSTALL_UART_DEVICE(2);
#if defined(ARCH_ARM)
uart->hw_base = (rt_size_t)rt_ioremap((void*)uart->hw_base, 0x10000);
#endif /* defined(ARCH_ARM) */
#endif
#ifdef RT_USING_UART3
PINMUX_CONFIG(SD1_D1, UART3_RX);
PINMUX_CONFIG(SD1_D2, UART3_TX);
BSP_INSTALL_UART_DEVICE(3);
#if defined(ARCH_ARM)
uart->hw_base = (rt_size_t)rt_ioremap((void*)uart->hw_base, 0x10000);
#endif /* defined(ARCH_ARM) */
#endif
#ifdef RT_USING_UART4
PINMUX_CONFIG(SD1_GP0, UART4_RX);
PINMUX_CONFIG(SD1_GP1, UART4_TX);
BSP_INSTALL_UART_DEVICE(4);
#if defined(ARCH_ARM)
uart->hw_base = (rt_size_t)rt_ioremap((void*)uart->hw_base, 0x10000);
#endif /* defined(ARCH_ARM) */
#endif
return 0;
}