775 lines
21 KiB
C
775 lines
21 KiB
C
/**************************************************************************//**
|
|
*
|
|
* @copyright (C) 2020 Nuvoton Technology Corp. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Change Logs:
|
|
* Date Author Notes
|
|
* 2020-12-4 Wayne First version
|
|
*
|
|
******************************************************************************/
|
|
|
|
#include <rtconfig.h>
|
|
|
|
#if defined(BSP_USING_CRYPTO) && defined(RT_USING_HWCRYPTO)
|
|
|
|
#include <rtdevice.h>
|
|
#include <rtdbg.h>
|
|
#include <board.h>
|
|
#include "NuMicro.h"
|
|
#include "drv_sys.h"
|
|
|
|
#include <nu_bitutil.h>
|
|
|
|
/* Private typedef --------------------------------------------------------------*/
|
|
|
|
typedef struct
|
|
{
|
|
uint8_t *pu8SHATempBuf;
|
|
uint32_t u32SHATempBufLen;
|
|
uint32_t u32DMAMode;
|
|
uint32_t u32BlockSize;
|
|
} S_SHA_CONTEXT;
|
|
|
|
/* Private functions ------------------------------------------------------------*/
|
|
static rt_err_t nu_hwcrypto_create(struct rt_hwcrypto_ctx *ctx);
|
|
static void nu_hwcrypto_destroy(struct rt_hwcrypto_ctx *ctx);
|
|
static rt_err_t nu_hwcrypto_clone(struct rt_hwcrypto_ctx *des, const struct rt_hwcrypto_ctx *src);
|
|
static void nu_hwcrypto_reset(struct rt_hwcrypto_ctx *ctx);
|
|
|
|
/* Private variables ------------------------------------------------------------*/
|
|
static const struct rt_hwcrypto_ops nu_hwcrypto_ops =
|
|
{
|
|
.create = nu_hwcrypto_create,
|
|
.destroy = nu_hwcrypto_destroy,
|
|
.copy = nu_hwcrypto_clone,
|
|
.reset = nu_hwcrypto_reset,
|
|
};
|
|
|
|
/* Crypto engine operation ------------------------------------------------------------*/
|
|
|
|
#define NU_HWCRYPTO_AES_NAME "nu_AES"
|
|
#define NU_HWCRYPTO_SHA_NAME "nu_SHA"
|
|
#define NU_HWCRYPTO_PRNG_NAME "nu_PRNG"
|
|
|
|
static struct rt_mutex s_AES_mutex;
|
|
static struct rt_mutex s_SHA_mutex;
|
|
static struct rt_mutex s_PRNG_mutex;
|
|
|
|
static rt_err_t nu_aes_crypt_run(
|
|
rt_bool_t bEncrypt,
|
|
uint32_t u32OpMode,
|
|
uint8_t *pu8Key,
|
|
uint32_t u32KeySize,
|
|
uint8_t *pu8IV,
|
|
uint8_t *pu8InData,
|
|
uint8_t *pu8OutData,
|
|
uint32_t u32DataLen
|
|
)
|
|
{
|
|
uint32_t au32SwapKey[8];
|
|
uint32_t au32SwapIV[4];
|
|
rt_err_t result;
|
|
|
|
au32SwapKey[0] = nu_get32_be(&pu8Key[0]);
|
|
au32SwapKey[1] = nu_get32_be(&pu8Key[4]);
|
|
au32SwapKey[2] = nu_get32_be(&pu8Key[8]);
|
|
au32SwapKey[3] = nu_get32_be(&pu8Key[12]);
|
|
|
|
if ((u32KeySize == AES_KEY_SIZE_192) || (u32KeySize == AES_KEY_SIZE_256))
|
|
{
|
|
au32SwapKey[4] = nu_get32_be(&pu8Key[16]);
|
|
au32SwapKey[5] = nu_get32_be(&pu8Key[20]);
|
|
}
|
|
|
|
if (u32KeySize == AES_KEY_SIZE_256)
|
|
{
|
|
au32SwapKey[6] = nu_get32_be(&pu8Key[24]);
|
|
au32SwapKey[7] = nu_get32_be(&pu8Key[28]);
|
|
}
|
|
|
|
au32SwapIV[0] = nu_get32_be(&pu8IV[0]);
|
|
au32SwapIV[1] = nu_get32_be(&pu8IV[4]);
|
|
au32SwapIV[2] = nu_get32_be(&pu8IV[8]);
|
|
au32SwapIV[3] = nu_get32_be(&pu8IV[12]);
|
|
|
|
result = rt_mutex_take(&s_AES_mutex, RT_WAITING_FOREVER);
|
|
RT_ASSERT(result == RT_EOK);
|
|
|
|
AES_Open(CRPT, bEncrypt, u32OpMode, u32KeySize, AES_IN_OUT_SWAP);
|
|
AES_SetKey(CRPT, (uint32_t *)&au32SwapKey[0], u32KeySize);
|
|
AES_SetInitVect(CRPT, (uint32_t *)au32SwapIV);
|
|
|
|
/* Setup AES DMA Description */
|
|
AES_SetDMATransfer(CRPT, (uint32_t)pu8InData, (uint32_t)pu8OutData, u32DataLen);
|
|
|
|
#if defined(BSP_USING_MMU)
|
|
/* Writeback data in dcache to memory before transferring. */
|
|
{
|
|
/* Flush Src buffer into memory. */
|
|
if (pu8InData)
|
|
mmu_clean_invalidated_dcache((uint32_t)pu8InData, u32DataLen);
|
|
|
|
/* Flush Dst buffer into memory. */
|
|
if (pu8OutData)
|
|
mmu_clean_invalidated_dcache((uint32_t)pu8OutData, u32DataLen);
|
|
}
|
|
#endif
|
|
|
|
/* Clear AES interrupt status */
|
|
AES_CLR_INT_FLAG(CRPT);
|
|
|
|
/* Start AES encryption/decryption */
|
|
AES_Start(CRPT, CRYPTO_DMA_ONE_SHOT);
|
|
|
|
/* Wait done */
|
|
while (!(CRPT->INTSTS & CRPT_INTEN_AESIEN_Msk)) {};
|
|
|
|
if ((u32DataLen % 16) && (CRPT->AES_STS & (CRPT_AES_STS_OUTBUFEMPTY_Msk | CRPT_AES_STS_INBUFEMPTY_Msk)))
|
|
rt_kprintf("AES WARNING - AES Data length(%d) is not enough. -> %d \n", u32DataLen, RT_ALIGN(u32DataLen, 16));
|
|
else if (CRPT->INTSTS & (CRPT_INTSTS_AESEIF_Msk) || (CRPT->AES_STS & (CRPT_AES_STS_BUSERR_Msk | CRPT_AES_STS_CNTERR_Msk)))
|
|
rt_kprintf("AES ERROR - CRPT->INTSTS-%08x, CRPT->AES_STS-%08x\n", CRPT->INTSTS, CRPT->AES_STS);
|
|
|
|
/* Clear AES interrupt status */
|
|
AES_CLR_INT_FLAG(CRPT);
|
|
|
|
result = rt_mutex_release(&s_AES_mutex);
|
|
RT_ASSERT(result == RT_EOK);
|
|
|
|
return RT_EOK;
|
|
}
|
|
|
|
//Using PRNG instead of TRNG
|
|
static void nu_prng_open(uint32_t u32Seed)
|
|
{
|
|
rt_err_t result;
|
|
|
|
result = rt_mutex_take(&s_PRNG_mutex, RT_WAITING_FOREVER);
|
|
RT_ASSERT(result == RT_EOK);
|
|
|
|
//Open PRNG 64 bits
|
|
PRNG_Open(CRPT, PRNG_KEY_SIZE_64, PRNG_SEED_RELOAD, u32Seed);
|
|
|
|
result = rt_mutex_release(&s_PRNG_mutex);
|
|
RT_ASSERT(result == RT_EOK);
|
|
}
|
|
|
|
static rt_uint32_t nu_prng_run(void)
|
|
{
|
|
uint32_t au32RNGValue[2];
|
|
rt_err_t result;
|
|
|
|
result = rt_mutex_take(&s_PRNG_mutex, RT_WAITING_FOREVER);
|
|
RT_ASSERT(result == RT_EOK);
|
|
|
|
PRNG_Start(CRPT);
|
|
while ((CRPT->PRNG_CTL & CRPT_PRNG_CTL_BUSY_Msk)) {};
|
|
|
|
/* Clear PRNG interrupt status */
|
|
PRNG_CLR_INT_FLAG(CRPT);
|
|
|
|
PRNG_Read(CRPT, &au32RNGValue[0]);
|
|
|
|
result = rt_mutex_release(&s_PRNG_mutex);
|
|
RT_ASSERT(result == RT_EOK);
|
|
|
|
return au32RNGValue[0] ^ au32RNGValue[1];
|
|
}
|
|
|
|
static rt_err_t nu_aes_crypt(struct hwcrypto_symmetric *symmetric_ctx, struct hwcrypto_symmetric_info *symmetric_info)
|
|
{
|
|
uint32_t u32AESOpMode;
|
|
uint32_t u32AESKeySize;
|
|
unsigned char *in, *out;
|
|
unsigned char in_align_flag = 0;
|
|
unsigned char out_align_flag = 0;
|
|
unsigned char iv_temp[16];
|
|
RT_ASSERT(symmetric_ctx != RT_NULL);
|
|
RT_ASSERT(symmetric_info != RT_NULL);
|
|
|
|
if ((symmetric_info->length % 4) != 0)
|
|
{
|
|
return -RT_EINVAL;
|
|
}
|
|
|
|
//Checking key length
|
|
if (symmetric_ctx->key_bitlen == 128)
|
|
{
|
|
u32AESKeySize = AES_KEY_SIZE_128;
|
|
}
|
|
else if (symmetric_ctx->key_bitlen == 192)
|
|
{
|
|
u32AESKeySize = AES_KEY_SIZE_192;
|
|
}
|
|
else if (symmetric_ctx->key_bitlen == 256)
|
|
{
|
|
u32AESKeySize = AES_KEY_SIZE_256;
|
|
}
|
|
else
|
|
{
|
|
return -RT_EINVAL;
|
|
}
|
|
|
|
//Select AES operation mode
|
|
switch (symmetric_ctx->parent.type & (HWCRYPTO_MAIN_TYPE_MASK | HWCRYPTO_SUB_TYPE_MASK))
|
|
{
|
|
case HWCRYPTO_TYPE_AES_ECB:
|
|
u32AESOpMode = AES_MODE_ECB;
|
|
break;
|
|
case HWCRYPTO_TYPE_AES_CBC:
|
|
u32AESOpMode = AES_MODE_CBC;
|
|
break;
|
|
case HWCRYPTO_TYPE_AES_CFB:
|
|
u32AESOpMode = AES_MODE_CFB;
|
|
break;
|
|
case HWCRYPTO_TYPE_AES_OFB:
|
|
u32AESOpMode = AES_MODE_OFB;
|
|
break;
|
|
case HWCRYPTO_TYPE_AES_CTR:
|
|
u32AESOpMode = AES_MODE_CTR;
|
|
break;
|
|
default :
|
|
return -RT_ERROR;
|
|
}
|
|
|
|
in = (unsigned char *)symmetric_info->in;
|
|
out = (unsigned char *)symmetric_info->out;
|
|
|
|
//Checking in/out data buffer address not alignment or out of SRAM
|
|
if (((rt_uint32_t)in % 4) != 0)
|
|
{
|
|
in = rt_malloc(symmetric_info->length);
|
|
if (in == RT_NULL)
|
|
{
|
|
LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, symmetric_info->length);
|
|
return -RT_ENOMEM;
|
|
}
|
|
|
|
rt_memcpy(in, symmetric_info->in, symmetric_info->length);
|
|
in_align_flag = 1;
|
|
}
|
|
|
|
if (((rt_uint32_t)out % 4) != 0)
|
|
{
|
|
out = rt_malloc(symmetric_info->length);
|
|
if (out == RT_NULL)
|
|
{
|
|
if (in_align_flag)
|
|
rt_free(in);
|
|
LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, symmetric_info->length);
|
|
return -RT_ENOMEM;
|
|
}
|
|
|
|
out_align_flag = 1;
|
|
}
|
|
|
|
if ((u32AESOpMode == AES_MODE_CBC) && (symmetric_info->mode == HWCRYPTO_MODE_DECRYPT))
|
|
{
|
|
uint32_t loop;
|
|
|
|
loop = (symmetric_info->length - 1) / 16;
|
|
rt_memcpy(iv_temp, in + (loop * 16), 16);
|
|
}
|
|
|
|
nu_aes_crypt_run(symmetric_info->mode == HWCRYPTO_MODE_ENCRYPT ? TRUE : FALSE, u32AESOpMode, symmetric_ctx->key, u32AESKeySize, symmetric_ctx->iv, in, out, symmetric_info->length);
|
|
|
|
if (u32AESOpMode == AES_MODE_CBC)
|
|
{
|
|
if (symmetric_info->mode == HWCRYPTO_MODE_DECRYPT)
|
|
{
|
|
rt_memcpy(symmetric_ctx->iv, iv_temp, 16);
|
|
}
|
|
else
|
|
{
|
|
uint32_t loop;
|
|
|
|
loop = (symmetric_info->length - 1) / 16;
|
|
rt_memcpy(symmetric_ctx->iv, out + (loop * 16), 16);
|
|
}
|
|
}
|
|
|
|
if (out_align_flag)
|
|
{
|
|
rt_memcpy(symmetric_info->out, out, symmetric_info->length);
|
|
rt_free(out);
|
|
}
|
|
|
|
if (in_align_flag)
|
|
{
|
|
rt_free(in);
|
|
}
|
|
|
|
return RT_EOK;
|
|
}
|
|
|
|
static void SHABlockUpdate(uint32_t u32OpMode, uint32_t u32SrcAddr, uint32_t u32Len, uint32_t u32Mode)
|
|
{
|
|
SHA_Open(CRPT, u32OpMode, SHA_IN_OUT_SWAP, 0);
|
|
|
|
//Setup SHA DMA
|
|
SHA_SetDMATransfer(CRPT, u32SrcAddr, u32Len);
|
|
|
|
if (u32Mode == CRYPTO_DMA_FIRST)
|
|
{
|
|
u32Mode = CRYPTO_DMA_CONTINUE;
|
|
}
|
|
|
|
#if defined(BSP_USING_MMU)
|
|
/* Writeback data in dcache to memory before transferring. */
|
|
{
|
|
/* Flush Src buffer into memory. */
|
|
if (u32SrcAddr)
|
|
mmu_clean_invalidated_dcache(u32SrcAddr, u32Len);
|
|
}
|
|
#endif
|
|
|
|
//Start SHA
|
|
SHA_CLR_INT_FLAG(CRPT);
|
|
SHA_Start(CRPT, u32Mode);
|
|
|
|
/* Wait done */
|
|
while (!(CRPT->INTSTS & CRPT_INTSTS_HMACIF_Msk)) {};
|
|
|
|
if (CRPT->INTSTS & (CRPT_INTSTS_HMACEIF_Msk) || (CRPT->HMAC_STS & (CRPT_HMAC_STS_DMAERR_Msk)))
|
|
rt_kprintf("SHA ERROR - CRPT->INTSTS-%08x, CRPT->HMAC_STS-%08x\n", CRPT->INTSTS, CRPT->HMAC_STS);
|
|
|
|
/* Clear SHA interrupt status */
|
|
SHA_CLR_INT_FLAG(CRPT);
|
|
}
|
|
|
|
static rt_err_t nu_sha_hash_run(
|
|
S_SHA_CONTEXT *psSHACtx,
|
|
uint32_t u32OpMode,
|
|
uint8_t *pu8InData,
|
|
uint32_t u32DataLen
|
|
)
|
|
{
|
|
rt_err_t result;
|
|
|
|
RT_ASSERT(psSHACtx != RT_NULL);
|
|
RT_ASSERT(pu8InData != RT_NULL);
|
|
|
|
result = rt_mutex_take(&s_SHA_mutex, RT_WAITING_FOREVER);
|
|
RT_ASSERT(result == RT_EOK);
|
|
|
|
uint8_t *pu8SrcAddr = (uint8_t *)pu8InData;
|
|
uint32_t u32CopyLen = 0;
|
|
|
|
while ((psSHACtx->u32SHATempBufLen + u32DataLen) > psSHACtx->u32BlockSize)
|
|
{
|
|
if (psSHACtx->pu8SHATempBuf)
|
|
{
|
|
if (psSHACtx->u32SHATempBufLen == psSHACtx->u32BlockSize)
|
|
{
|
|
//Trigger SHA block update
|
|
SHABlockUpdate(u32OpMode, (uint32_t)psSHACtx->pu8SHATempBuf, psSHACtx->u32BlockSize, psSHACtx->u32DMAMode);
|
|
psSHACtx->u32DMAMode = CRYPTO_DMA_CONTINUE;
|
|
//free SHATempBuff
|
|
rt_free(psSHACtx->pu8SHATempBuf);
|
|
psSHACtx->pu8SHATempBuf = NULL;
|
|
psSHACtx->u32SHATempBufLen = 0;
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
u32CopyLen = psSHACtx->u32BlockSize - psSHACtx->u32SHATempBufLen;
|
|
if (u32DataLen < u32CopyLen)
|
|
u32CopyLen = u32DataLen;
|
|
rt_memcpy(psSHACtx->pu8SHATempBuf + psSHACtx->u32SHATempBufLen, pu8SrcAddr, u32CopyLen);
|
|
psSHACtx->u32SHATempBufLen += u32CopyLen;
|
|
pu8SrcAddr += u32CopyLen;
|
|
u32DataLen -= u32CopyLen;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if ((uint32_t) pu8SrcAddr & 3) //address not aligned 4
|
|
{
|
|
psSHACtx->pu8SHATempBuf = rt_malloc(psSHACtx->u32BlockSize);
|
|
|
|
if (psSHACtx->pu8SHATempBuf == RT_NULL)
|
|
{
|
|
LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, psSHACtx->u32BlockSize);
|
|
result = rt_mutex_release(&s_SHA_mutex);
|
|
RT_ASSERT(result == RT_EOK);
|
|
return -RT_ENOMEM;
|
|
}
|
|
|
|
rt_memcpy(psSHACtx->pu8SHATempBuf, pu8SrcAddr, psSHACtx->u32BlockSize);
|
|
psSHACtx->u32SHATempBufLen = psSHACtx->u32BlockSize;
|
|
pu8SrcAddr += psSHACtx->u32BlockSize;
|
|
u32DataLen -= psSHACtx->u32BlockSize;
|
|
continue;
|
|
}
|
|
|
|
//Trigger SHA block update
|
|
SHABlockUpdate(u32OpMode, (uint32_t)pu8SrcAddr, psSHACtx->u32BlockSize, psSHACtx->u32DMAMode);
|
|
psSHACtx->u32DMAMode = CRYPTO_DMA_CONTINUE;
|
|
|
|
pu8SrcAddr += psSHACtx->u32BlockSize;
|
|
u32DataLen -= psSHACtx->u32BlockSize;
|
|
}
|
|
|
|
if (u32DataLen)
|
|
{
|
|
if (psSHACtx->pu8SHATempBuf == NULL)
|
|
{
|
|
psSHACtx->pu8SHATempBuf = rt_malloc(psSHACtx->u32BlockSize);
|
|
|
|
if (psSHACtx->pu8SHATempBuf == RT_NULL)
|
|
{
|
|
LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, psSHACtx->u32BlockSize);
|
|
result = rt_mutex_release(&s_SHA_mutex);
|
|
RT_ASSERT(result == RT_EOK);
|
|
return -RT_ENOMEM;
|
|
}
|
|
|
|
psSHACtx->u32SHATempBufLen = 0;
|
|
}
|
|
|
|
rt_memcpy(psSHACtx->pu8SHATempBuf, pu8SrcAddr, u32DataLen);
|
|
psSHACtx->u32SHATempBufLen += u32DataLen;
|
|
}
|
|
|
|
result = rt_mutex_release(&s_SHA_mutex);
|
|
RT_ASSERT(result == RT_EOK);
|
|
|
|
return RT_EOK;
|
|
}
|
|
|
|
static rt_err_t nu_sha_update(struct hwcrypto_hash *hash_ctx, const rt_uint8_t *in, rt_size_t length)
|
|
{
|
|
uint32_t u32SHAOpMode;
|
|
unsigned char *nu_in;
|
|
unsigned char in_align_flag = 0;
|
|
RT_ASSERT(hash_ctx != RT_NULL);
|
|
RT_ASSERT(in != RT_NULL);
|
|
|
|
//Select SHA operation mode
|
|
switch (hash_ctx->parent.type & (HWCRYPTO_MAIN_TYPE_MASK | HWCRYPTO_SUB_TYPE_MASK))
|
|
{
|
|
case HWCRYPTO_TYPE_SHA1:
|
|
u32SHAOpMode = SHA_MODE_SHA1;
|
|
break;
|
|
case HWCRYPTO_TYPE_SHA224:
|
|
u32SHAOpMode = SHA_MODE_SHA224;
|
|
break;
|
|
case HWCRYPTO_TYPE_SHA256:
|
|
u32SHAOpMode = SHA_MODE_SHA256;
|
|
break;
|
|
case HWCRYPTO_TYPE_SHA384:
|
|
u32SHAOpMode = SHA_MODE_SHA384;
|
|
break;
|
|
case HWCRYPTO_TYPE_SHA512:
|
|
u32SHAOpMode = SHA_MODE_SHA512;
|
|
break;
|
|
default :
|
|
return -RT_ERROR;
|
|
}
|
|
|
|
nu_in = (unsigned char *)in;
|
|
|
|
//Checking in data buffer address not alignment or out of SRAM
|
|
if (((rt_uint32_t)nu_in % 4) != 0)
|
|
{
|
|
nu_in = rt_malloc(length);
|
|
if (nu_in == RT_NULL)
|
|
{
|
|
LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, length);
|
|
return -RT_ENOMEM;
|
|
}
|
|
|
|
rt_memcpy(nu_in, in, length);
|
|
in_align_flag = 1;
|
|
}
|
|
|
|
nu_sha_hash_run(hash_ctx->parent.contex, u32SHAOpMode, nu_in, length);
|
|
|
|
if (in_align_flag)
|
|
{
|
|
rt_free(nu_in);
|
|
}
|
|
|
|
return RT_EOK;
|
|
}
|
|
|
|
static rt_err_t nu_sha_finish(struct hwcrypto_hash *hash_ctx, rt_uint8_t *out, rt_size_t length)
|
|
{
|
|
unsigned char *nu_out;
|
|
unsigned char out_align_flag = 0;
|
|
uint32_t u32SHAOpMode;
|
|
S_SHA_CONTEXT *psSHACtx = RT_NULL;
|
|
RT_ASSERT(hash_ctx != RT_NULL);
|
|
RT_ASSERT(out != RT_NULL);
|
|
|
|
psSHACtx = hash_ctx->parent.contex;
|
|
|
|
//Check SHA Hash value buffer length
|
|
switch (hash_ctx->parent.type & (HWCRYPTO_MAIN_TYPE_MASK | HWCRYPTO_SUB_TYPE_MASK))
|
|
{
|
|
case HWCRYPTO_TYPE_SHA1:
|
|
u32SHAOpMode = SHA_MODE_SHA1;
|
|
if (length < 5UL)
|
|
{
|
|
return -RT_EINVAL;
|
|
}
|
|
break;
|
|
case HWCRYPTO_TYPE_SHA224:
|
|
u32SHAOpMode = SHA_MODE_SHA224;
|
|
if (length < 7UL)
|
|
{
|
|
return -RT_EINVAL;
|
|
}
|
|
break;
|
|
case HWCRYPTO_TYPE_SHA256:
|
|
u32SHAOpMode = SHA_MODE_SHA256;
|
|
if (length < 8UL)
|
|
{
|
|
return -RT_EINVAL;
|
|
}
|
|
break;
|
|
case HWCRYPTO_TYPE_SHA384:
|
|
u32SHAOpMode = SHA_MODE_SHA384;
|
|
if (length < 12UL)
|
|
{
|
|
return -RT_EINVAL;
|
|
}
|
|
break;
|
|
case HWCRYPTO_TYPE_SHA512:
|
|
u32SHAOpMode = SHA_MODE_SHA512;
|
|
if (length < 16UL)
|
|
{
|
|
return -RT_EINVAL;
|
|
}
|
|
break;
|
|
default :
|
|
return -RT_ERROR;
|
|
}
|
|
|
|
nu_out = (unsigned char *)out;
|
|
|
|
//Checking out data buffer address alignment or not
|
|
if (((rt_uint32_t)nu_out % 4) != 0)
|
|
{
|
|
nu_out = rt_malloc(length);
|
|
if (nu_out == RT_NULL)
|
|
{
|
|
LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, length);
|
|
return -RT_ENOMEM;
|
|
}
|
|
|
|
out_align_flag = 1;
|
|
}
|
|
|
|
if (psSHACtx->pu8SHATempBuf)
|
|
{
|
|
if (psSHACtx->u32DMAMode == CRYPTO_DMA_FIRST)
|
|
SHABlockUpdate(u32SHAOpMode, (uint32_t)psSHACtx->pu8SHATempBuf, psSHACtx->u32SHATempBufLen, CRYPTO_DMA_ONE_SHOT);
|
|
else
|
|
SHABlockUpdate(u32SHAOpMode, (uint32_t)psSHACtx->pu8SHATempBuf, psSHACtx->u32SHATempBufLen, CRYPTO_DMA_LAST);
|
|
|
|
//free SHATempBuf
|
|
rt_free(psSHACtx->pu8SHATempBuf);
|
|
psSHACtx->pu8SHATempBuf = RT_NULL;
|
|
psSHACtx->u32SHATempBufLen = 0;
|
|
}
|
|
else
|
|
{
|
|
SHABlockUpdate(u32SHAOpMode, (uint32_t)NULL, 0, CRYPTO_DMA_LAST);
|
|
}
|
|
|
|
SHA_Read(CRPT, (uint32_t *)nu_out);
|
|
|
|
if (out_align_flag)
|
|
{
|
|
rt_memcpy(out, nu_out, length);
|
|
rt_free(nu_out);
|
|
}
|
|
|
|
return RT_EOK;
|
|
}
|
|
|
|
static rt_uint32_t nu_prng_rand(struct hwcrypto_rng *ctx)
|
|
{
|
|
return nu_prng_run();
|
|
}
|
|
|
|
static const struct hwcrypto_symmetric_ops nu_aes_ops =
|
|
{
|
|
.crypt = nu_aes_crypt,
|
|
};
|
|
|
|
static const struct hwcrypto_hash_ops nu_sha_ops =
|
|
{
|
|
.update = nu_sha_update,
|
|
.finish = nu_sha_finish,
|
|
};
|
|
|
|
/* PRNG operation ------------------------------------------------------------*/
|
|
static const struct hwcrypto_rng_ops nu_rng_ops =
|
|
{
|
|
.update = nu_prng_rand,
|
|
};
|
|
|
|
/* Register crypto interface ----------------------------------------------------------*/
|
|
static rt_err_t nu_hwcrypto_create(struct rt_hwcrypto_ctx *ctx)
|
|
{
|
|
rt_err_t res = RT_EOK;
|
|
RT_ASSERT(ctx != RT_NULL);
|
|
|
|
switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK)
|
|
{
|
|
|
|
case HWCRYPTO_TYPE_AES:
|
|
{
|
|
ctx->contex = RT_NULL;
|
|
//Setup AES operation
|
|
((struct hwcrypto_symmetric *)ctx)->ops = &nu_aes_ops;
|
|
break;
|
|
}
|
|
|
|
case HWCRYPTO_TYPE_SHA1:
|
|
case HWCRYPTO_TYPE_SHA2:
|
|
{
|
|
ctx->contex = rt_malloc(sizeof(S_SHA_CONTEXT));
|
|
|
|
if (ctx->contex == RT_NULL)
|
|
return -RT_ERROR;
|
|
|
|
rt_memset(ctx->contex, 0, sizeof(S_SHA_CONTEXT));
|
|
//Setup SHA2 operation
|
|
((struct hwcrypto_hash *)ctx)->ops = &nu_sha_ops;
|
|
break;
|
|
}
|
|
|
|
case HWCRYPTO_TYPE_RNG:
|
|
{
|
|
ctx->contex = RT_NULL;
|
|
((struct hwcrypto_rng *)ctx)->ops = &nu_rng_ops;
|
|
#if defined(NU_PRNG_USE_SEED)
|
|
nu_prng_open(NU_PRNG_SEED_VALUE);
|
|
#else
|
|
nu_prng_open(rt_tick_get());
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
default:
|
|
res = -RT_ERROR;
|
|
break;
|
|
}
|
|
|
|
nu_hwcrypto_reset(ctx);
|
|
|
|
return res;
|
|
}
|
|
|
|
static void nu_hwcrypto_destroy(struct rt_hwcrypto_ctx *ctx)
|
|
{
|
|
RT_ASSERT(ctx != RT_NULL);
|
|
|
|
if (ctx->contex)
|
|
rt_free(ctx->contex);
|
|
}
|
|
|
|
static rt_err_t nu_hwcrypto_clone(struct rt_hwcrypto_ctx *des, const struct rt_hwcrypto_ctx *src)
|
|
{
|
|
rt_err_t res = RT_EOK;
|
|
RT_ASSERT(des != RT_NULL);
|
|
RT_ASSERT(src != RT_NULL);
|
|
|
|
if (des->contex && src->contex)
|
|
{
|
|
rt_memcpy(des->contex, src->contex, sizeof(struct rt_hwcrypto_ctx));
|
|
}
|
|
else
|
|
return -RT_EINVAL;
|
|
return res;
|
|
}
|
|
|
|
static void nu_hwcrypto_reset(struct rt_hwcrypto_ctx *ctx)
|
|
{
|
|
switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK)
|
|
{
|
|
case HWCRYPTO_TYPE_RNG:
|
|
{
|
|
#if defined(NU_PRNG_USE_SEED)
|
|
nu_prng_open(NU_PRNG_SEED_VALUE);
|
|
#else
|
|
nu_prng_open(rt_tick_get());
|
|
#endif
|
|
break;
|
|
}
|
|
case HWCRYPTO_TYPE_SHA1:
|
|
case HWCRYPTO_TYPE_SHA2:
|
|
{
|
|
S_SHA_CONTEXT *psSHACtx = (S_SHA_CONTEXT *)ctx->contex;
|
|
|
|
if (psSHACtx->pu8SHATempBuf)
|
|
{
|
|
rt_free(psSHACtx->pu8SHATempBuf);
|
|
}
|
|
|
|
psSHACtx->pu8SHATempBuf = RT_NULL;
|
|
psSHACtx->u32SHATempBufLen = 0;
|
|
psSHACtx->u32DMAMode = CRYPTO_DMA_FIRST;
|
|
|
|
if ((ctx->type == HWCRYPTO_TYPE_SHA384) || (ctx->type == HWCRYPTO_TYPE_SHA512))
|
|
{
|
|
psSHACtx->u32BlockSize = 128;
|
|
}
|
|
else
|
|
{
|
|
psSHACtx->u32BlockSize = 64;
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Init and register nu_hwcrypto_dev */
|
|
|
|
int nu_hwcrypto_device_init(void)
|
|
{
|
|
rt_err_t result;
|
|
static struct rt_hwcrypto_device nu_hwcrypto_dev;
|
|
|
|
nu_hwcrypto_dev.ops = &nu_hwcrypto_ops;
|
|
nu_hwcrypto_dev.id = 0;
|
|
nu_hwcrypto_dev.user_data = &nu_hwcrypto_dev;
|
|
|
|
nu_sys_ipclk_enable(CRYPTOCKEN);
|
|
nu_sys_ip_reset(CRYPTORST);
|
|
|
|
/* init cipher mutex */
|
|
#if defined(RT_HWCRYPTO_USING_AES)
|
|
result = rt_mutex_init(&s_AES_mutex, NU_HWCRYPTO_AES_NAME, RT_IPC_FLAG_PRIO);
|
|
RT_ASSERT(result == RT_EOK);
|
|
AES_ENABLE_INT(CRPT);
|
|
#endif
|
|
|
|
#if defined(RT_HWCRYPTO_USING_SHA1) || defined(RT_HWCRYPTO_USING_SHA2)
|
|
result = rt_mutex_init(&s_SHA_mutex, NU_HWCRYPTO_SHA_NAME, RT_IPC_FLAG_PRIO);
|
|
RT_ASSERT(result == RT_EOK);
|
|
SHA_ENABLE_INT(CRPT);
|
|
#endif
|
|
|
|
#if defined(RT_HWCRYPTO_USING_RNG)
|
|
result = rt_mutex_init(&s_PRNG_mutex, NU_HWCRYPTO_PRNG_NAME, RT_IPC_FLAG_PRIO);
|
|
RT_ASSERT(result == RT_EOK);
|
|
#endif
|
|
|
|
/* register hwcrypto operation */
|
|
result = rt_hwcrypto_register(&nu_hwcrypto_dev, RT_HWCRYPTO_DEFAULT_NAME);
|
|
RT_ASSERT(result == RT_EOK);
|
|
|
|
return 0;
|
|
}
|
|
INIT_DEVICE_EXPORT(nu_hwcrypto_device_init);
|
|
|
|
#endif //#if defined(BSP_USING_CRYPTO) && defined(RT_USING_HWCRYPTO)
|