4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-26 20:59:51 +08:00
2017-07-01 11:33:12 +08:00

1799 lines
51 KiB
C

/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright (c) 2016 - 2017 , NXP
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_clock.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/* Macro definition remap workaround. */
#if (defined(MCG_C2_EREFS_MASK) && !(defined(MCG_C2_EREFS0_MASK)))
#define MCG_C2_EREFS0_MASK MCG_C2_EREFS_MASK
#endif
#if (defined(MCG_C2_HGO_MASK) && !(defined(MCG_C2_HGO0_MASK)))
#define MCG_C2_HGO0_MASK MCG_C2_HGO_MASK
#endif
#if (defined(MCG_C2_RANGE_MASK) && !(defined(MCG_C2_RANGE0_MASK)))
#define MCG_C2_RANGE0_MASK MCG_C2_RANGE_MASK
#endif
#if (defined(MCG_C6_CME_MASK) && !(defined(MCG_C6_CME0_MASK)))
#define MCG_C6_CME0_MASK MCG_C6_CME_MASK
#endif
/* PLL fixed multiplier when there is not PRDIV and VDIV. */
#define PLL_FIXED_MULT (375U)
/* Max frequency of the reference clock used for internal clock trim. */
#define TRIM_REF_CLK_MIN (8000000U)
/* Min frequency of the reference clock used for internal clock trim. */
#define TRIM_REF_CLK_MAX (16000000U)
/* Max trim value of fast internal reference clock. */
#define TRIM_FIRC_MAX (5000000U)
/* Min trim value of fast internal reference clock. */
#define TRIM_FIRC_MIN (3000000U)
/* Max trim value of fast internal reference clock. */
#define TRIM_SIRC_MAX (39063U)
/* Min trim value of fast internal reference clock. */
#define TRIM_SIRC_MIN (31250U)
#define MCG_S_IRCST_VAL ((MCG->S & MCG_S_IRCST_MASK) >> MCG_S_IRCST_SHIFT)
#define MCG_S_CLKST_VAL ((MCG->S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT)
#define MCG_S_IREFST_VAL ((MCG->S & MCG_S_IREFST_MASK) >> MCG_S_IREFST_SHIFT)
#define MCG_S_PLLST_VAL ((MCG->S & MCG_S_PLLST_MASK) >> MCG_S_PLLST_SHIFT)
#define MCG_C1_FRDIV_VAL ((MCG->C1 & MCG_C1_FRDIV_MASK) >> MCG_C1_FRDIV_SHIFT)
#define MCG_C2_LP_VAL ((MCG->C2 & MCG_C2_LP_MASK) >> MCG_C2_LP_SHIFT)
#define MCG_C2_RANGE_VAL ((MCG->C2 & MCG_C2_RANGE_MASK) >> MCG_C2_RANGE_SHIFT)
#define MCG_SC_FCRDIV_VAL ((MCG->SC & MCG_SC_FCRDIV_MASK) >> MCG_SC_FCRDIV_SHIFT)
#define MCG_S2_PLLCST_VAL ((MCG->S2 & MCG_S2_PLLCST_MASK) >> MCG_S2_PLLCST_SHIFT)
#define MCG_C7_OSCSEL_VAL ((MCG->C7 & MCG_C7_OSCSEL_MASK) >> MCG_C7_OSCSEL_SHIFT)
#define MCG_C4_DMX32_VAL ((MCG->C4 & MCG_C4_DMX32_MASK) >> MCG_C4_DMX32_SHIFT)
#define MCG_C4_DRST_DRS_VAL ((MCG->C4 & MCG_C4_DRST_DRS_MASK) >> MCG_C4_DRST_DRS_SHIFT)
#define MCG_C7_PLL32KREFSEL_VAL ((MCG->C7 & MCG_C7_PLL32KREFSEL_MASK) >> MCG_C7_PLL32KREFSEL_SHIFT)
#define MCG_C5_PLLREFSEL0_VAL ((MCG->C5 & MCG_C5_PLLREFSEL0_MASK) >> MCG_C5_PLLREFSEL0_SHIFT)
#define MCG_C11_PLLREFSEL1_VAL ((MCG->C11 & MCG_C11_PLLREFSEL1_MASK) >> MCG_C11_PLLREFSEL1_SHIFT)
#define MCG_C11_PRDIV1_VAL ((MCG->C11 & MCG_C11_PRDIV1_MASK) >> MCG_C11_PRDIV1_SHIFT)
#define MCG_C12_VDIV1_VAL ((MCG->C12 & MCG_C12_VDIV1_MASK) >> MCG_C12_VDIV1_SHIFT)
#define MCG_C5_PRDIV0_VAL ((MCG->C5 & MCG_C5_PRDIV0_MASK) >> MCG_C5_PRDIV0_SHIFT)
#define MCG_C6_VDIV0_VAL ((MCG->C6 & MCG_C6_VDIV0_MASK) >> MCG_C6_VDIV0_SHIFT)
#define OSC_MODE_MASK (MCG_C2_EREFS0_MASK | MCG_C2_HGO0_MASK | MCG_C2_RANGE0_MASK)
#define SIM_CLKDIV1_OUTDIV1_VAL ((SIM->CLKDIV1 & SIM_CLKDIV1_OUTDIV1_MASK) >> SIM_CLKDIV1_OUTDIV1_SHIFT)
#define SIM_CLKDIV1_OUTDIV2_VAL ((SIM->CLKDIV1 & SIM_CLKDIV1_OUTDIV2_MASK) >> SIM_CLKDIV1_OUTDIV2_SHIFT)
#define SIM_CLKDIV1_OUTDIV3_VAL ((SIM->CLKDIV1 & SIM_CLKDIV1_OUTDIV3_MASK) >> SIM_CLKDIV1_OUTDIV3_SHIFT)
#define SIM_CLKDIV1_OUTDIV4_VAL ((SIM->CLKDIV1 & SIM_CLKDIV1_OUTDIV4_MASK) >> SIM_CLKDIV1_OUTDIV4_SHIFT)
#define SIM_SOPT1_OSC32KSEL_VAL ((SIM->SOPT1 & SIM_SOPT1_OSC32KSEL_MASK) >> SIM_SOPT1_OSC32KSEL_SHIFT)
#define SIM_SOPT2_PLLFLLSEL_VAL ((SIM->SOPT2 & SIM_SOPT2_PLLFLLSEL_MASK) >> SIM_SOPT2_PLLFLLSEL_SHIFT)
/* MCG_S_CLKST definition. */
enum _mcg_clkout_stat
{
kMCG_ClkOutStatFll, /* FLL. */
kMCG_ClkOutStatInt, /* Internal clock. */
kMCG_ClkOutStatExt, /* External clock. */
kMCG_ClkOutStatPll /* PLL. */
};
/* MCG_S_PLLST definition. */
enum _mcg_pllst
{
kMCG_PllstFll, /* FLL is used. */
kMCG_PllstPll /* PLL is used. */
};
/*******************************************************************************
* Variables
******************************************************************************/
/* Slow internal reference clock frequency. */
static uint32_t s_slowIrcFreq = 32768U;
/* Fast internal reference clock frequency. */
static uint32_t s_fastIrcFreq = 4000000U;
/* External XTAL0 (OSC0) clock frequency. */
uint32_t g_xtal0Freq;
/* External XTAL32K clock frequency. */
uint32_t g_xtal32Freq;
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get the MCG external reference clock frequency.
*
* Get the current MCG external reference clock frequency in Hz. It is
* the frequency select by MCG_C7[OSCSEL]. This is an internal function.
*
* @return MCG external reference clock frequency in Hz.
*/
static uint32_t CLOCK_GetMcgExtClkFreq(void);
/*!
* @brief Get the MCG FLL external reference clock frequency.
*
* Get the current MCG FLL external reference clock frequency in Hz. It is
* the frequency after by MCG_C1[FRDIV]. This is an internal function.
*
* @return MCG FLL external reference clock frequency in Hz.
*/
static uint32_t CLOCK_GetFllExtRefClkFreq(void);
/*!
* @brief Get the MCG FLL reference clock frequency.
*
* Get the current MCG FLL reference clock frequency in Hz. It is
* the frequency select by MCG_C1[IREFS]. This is an internal function.
*
* @return MCG FLL reference clock frequency in Hz.
*/
static uint32_t CLOCK_GetFllRefClkFreq(void);
/*!
* @brief Get the frequency of clock selected by MCG_C2[IRCS].
*
* This clock's two output:
* 1. MCGOUTCLK when MCG_S[CLKST]=0.
* 2. MCGIRCLK when MCG_C1[IRCLKEN]=1.
*
* @return The frequency in Hz.
*/
static uint32_t CLOCK_GetInternalRefClkSelectFreq(void);
/*!
* @brief Get the MCG PLL/PLL0 reference clock frequency.
*
* Get the current MCG PLL/PLL0 reference clock frequency in Hz.
* This is an internal function.
*
* @return MCG PLL/PLL0 reference clock frequency in Hz.
*/
static uint32_t CLOCK_GetPll0RefFreq(void);
/*!
* @brief Calculate the RANGE value base on crystal frequency.
*
* To setup external crystal oscillator, must set the register bits RANGE
* base on the crystal frequency. This function returns the RANGE base on the
* input frequency. This is an internal function.
*
* @param freq Crystal frequency in Hz.
* @return The RANGE value.
*/
static uint8_t CLOCK_GetOscRangeFromFreq(uint32_t freq);
/*******************************************************************************
* Code
******************************************************************************/
#ifndef MCG_USER_CONFIG_FLL_STABLE_DELAY_EN
/*!
* @brief Delay function to wait FLL stable.
*
* Delay function to wait FLL stable in FEI mode or FEE mode, should wait at least
* 1ms. Every time changes FLL setting, should wait this time for FLL stable.
*/
void CLOCK_FllStableDelay(void)
{
/*
Should wait at least 1ms. Because in these modes, the core clock is 100MHz
at most, so this function could obtain the 1ms delay.
*/
volatile uint32_t i = 30000U;
while (i--)
{
__NOP();
}
}
#else /* With MCG_USER_CONFIG_FLL_STABLE_DELAY_EN defined. */
/* Once user defines the MCG_USER_CONFIG_FLL_STABLE_DELAY_EN to use their own delay function, he has to
* create his own CLOCK_FllStableDelay() function in application code. Since the clock functions in this
* file would call the CLOCK_FllStableDelay() regardness how it is defined.
*/
extern void CLOCK_FllStableDelay(void);
#endif /* MCG_USER_CONFIG_FLL_STABLE_DELAY_EN */
static uint32_t CLOCK_GetMcgExtClkFreq(void)
{
uint32_t freq;
switch (MCG_C7_OSCSEL_VAL)
{
case 0U:
/* Please call CLOCK_SetXtal0Freq base on board setting before using OSC0 clock. */
assert(g_xtal0Freq);
freq = g_xtal0Freq;
break;
case 1U:
/* Please call CLOCK_SetXtal32Freq base on board setting before using XTAL32K/RTC_CLKIN clock. */
assert(g_xtal32Freq);
freq = g_xtal32Freq;
break;
case 2U:
freq = MCG_INTERNAL_IRC_48M;
break;
default:
freq = 0U;
break;
}
return freq;
}
static uint32_t CLOCK_GetFllExtRefClkFreq(void)
{
/* FllExtRef = McgExtRef / FllExtRefDiv */
uint8_t frdiv;
uint8_t range;
uint8_t oscsel;
uint32_t freq = CLOCK_GetMcgExtClkFreq();
if (!freq)
{
return freq;
}
frdiv = MCG_C1_FRDIV_VAL;
freq >>= frdiv;
range = MCG_C2_RANGE_VAL;
oscsel = MCG_C7_OSCSEL_VAL;
/*
When should use divider 32, 64, 128, 256, 512, 1024, 1280, 1536.
1. MCG_C7[OSCSEL] selects IRC48M.
2. MCG_C7[OSCSEL] selects OSC0 and MCG_C2[RANGE] is not 0.
*/
if (((0U != range) && (kMCG_OscselOsc == oscsel)) || (kMCG_OscselIrc == oscsel))
{
switch (frdiv)
{
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
freq >>= 5u;
break;
case 6:
/* 64*20=1280 */
freq /= 20u;
break;
case 7:
/* 128*12=1536 */
freq /= 12u;
break;
default:
freq = 0u;
break;
}
}
return freq;
}
static uint32_t CLOCK_GetInternalRefClkSelectFreq(void)
{
if (kMCG_IrcSlow == MCG_S_IRCST_VAL)
{
/* Slow internal reference clock selected*/
return s_slowIrcFreq;
}
else
{
/* Fast internal reference clock selected*/
return s_fastIrcFreq >> MCG_SC_FCRDIV_VAL;
}
}
static uint32_t CLOCK_GetFllRefClkFreq(void)
{
/* If use external reference clock. */
if (kMCG_FllSrcExternal == MCG_S_IREFST_VAL)
{
return CLOCK_GetFllExtRefClkFreq();
}
/* If use internal reference clock. */
else
{
return s_slowIrcFreq;
}
}
static uint32_t CLOCK_GetPll0RefFreq(void)
{
/* MCG external reference clock. */
return CLOCK_GetMcgExtClkFreq();
}
static uint8_t CLOCK_GetOscRangeFromFreq(uint32_t freq)
{
uint8_t range;
if (freq <= 39063U)
{
range = 0U;
}
else if (freq <= 8000000U)
{
range = 1U;
}
else
{
range = 2U;
}
return range;
}
uint32_t CLOCK_GetOsc0ErClkFreq(void)
{
if (OSC0->CR & OSC_CR_ERCLKEN_MASK)
{
/* Please call CLOCK_SetXtal0Freq base on board setting before using OSC0 clock. */
assert(g_xtal0Freq);
return g_xtal0Freq;
}
else
{
return 0U;
}
}
uint32_t CLOCK_GetEr32kClkFreq(void)
{
uint32_t freq;
switch (SIM_SOPT1_OSC32KSEL_VAL)
{
case 0U: /* OSC 32k clock */
freq = (CLOCK_GetOsc0ErClkFreq() == 32768U) ? 32768U : 0U;
break;
case 2U: /* RTC 32k clock */
/* Please call CLOCK_SetXtal32Freq base on board setting before using XTAL32K/RTC_CLKIN clock. */
assert(g_xtal32Freq);
freq = g_xtal32Freq;
break;
case 3U: /* LPO clock */
freq = LPO_CLK_FREQ;
break;
default:
freq = 0U;
break;
}
return freq;
}
uint32_t CLOCK_GetPllFllSelClkFreq(void)
{
uint32_t freq;
switch (SIM_SOPT2_PLLFLLSEL_VAL)
{
case 0U: /* FLL. */
freq = CLOCK_GetFllFreq();
break;
case 1U: /* PLL. */
freq = CLOCK_GetPll0Freq();
break;
case 3U: /* MCG IRC48M. */
freq = MCG_INTERNAL_IRC_48M;
break;
default:
freq = 0U;
break;
}
return freq;
}
uint32_t CLOCK_GetPlatClkFreq(void)
{
return CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV1_VAL + 1);
}
uint32_t CLOCK_GetFlashClkFreq(void)
{
return CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV4_VAL + 1);
}
uint32_t CLOCK_GetFlexBusClkFreq(void)
{
return CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV3_VAL + 1);
}
uint32_t CLOCK_GetBusClkFreq(void)
{
return CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV2_VAL + 1);
}
uint32_t CLOCK_GetCoreSysClkFreq(void)
{
return CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV1_VAL + 1);
}
uint32_t CLOCK_GetFreq(clock_name_t clockName)
{
uint32_t freq;
switch (clockName)
{
case kCLOCK_CoreSysClk:
case kCLOCK_PlatClk:
freq = CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV1_VAL + 1);
break;
case kCLOCK_BusClk:
freq = CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV2_VAL + 1);
break;
case kCLOCK_FlexBusClk:
freq = CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV3_VAL + 1);
break;
case kCLOCK_FlashClk:
freq = CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV4_VAL + 1);
break;
case kCLOCK_PllFllSelClk:
freq = CLOCK_GetPllFllSelClkFreq();
break;
case kCLOCK_Er32kClk:
freq = CLOCK_GetEr32kClkFreq();
break;
case kCLOCK_Osc0ErClk:
freq = CLOCK_GetOsc0ErClkFreq();
break;
case kCLOCK_McgFixedFreqClk:
freq = CLOCK_GetFixedFreqClkFreq();
break;
case kCLOCK_McgInternalRefClk:
freq = CLOCK_GetInternalRefClkFreq();
break;
case kCLOCK_McgFllClk:
freq = CLOCK_GetFllFreq();
break;
case kCLOCK_McgPll0Clk:
freq = CLOCK_GetPll0Freq();
break;
case kCLOCK_McgIrc48MClk:
freq = MCG_INTERNAL_IRC_48M;
break;
case kCLOCK_LpoClk:
freq = LPO_CLK_FREQ;
break;
default:
freq = 0U;
break;
}
return freq;
}
void CLOCK_SetSimConfig(sim_clock_config_t const *config)
{
SIM->CLKDIV1 = config->clkdiv1;
CLOCK_SetPllFllSelClock(config->pllFllSel);
CLOCK_SetEr32kClock(config->er32kSrc);
}
bool CLOCK_EnableUsbfs0Clock(clock_usb_src_t src, uint32_t freq)
{
bool ret = true;
CLOCK_DisableClock(kCLOCK_Usbfs0);
if (kCLOCK_UsbSrcExt == src)
{
SIM->SOPT2 &= ~SIM_SOPT2_USBSRC_MASK;
}
else
{
switch (freq)
{
case 120000000U:
SIM->CLKDIV2 = SIM_CLKDIV2_USBDIV(4) | SIM_CLKDIV2_USBFRAC(1);
break;
case 96000000U:
SIM->CLKDIV2 = SIM_CLKDIV2_USBDIV(1) | SIM_CLKDIV2_USBFRAC(0);
break;
case 72000000U:
SIM->CLKDIV2 = SIM_CLKDIV2_USBDIV(2) | SIM_CLKDIV2_USBFRAC(1);
break;
case 48000000U:
SIM->CLKDIV2 = SIM_CLKDIV2_USBDIV(0) | SIM_CLKDIV2_USBFRAC(0);
break;
default:
ret = false;
break;
}
SIM->SOPT2 = ((SIM->SOPT2 & ~(SIM_SOPT2_PLLFLLSEL_MASK | SIM_SOPT2_USBSRC_MASK)) | (uint32_t)src);
}
CLOCK_EnableClock(kCLOCK_Usbfs0);
if (kCLOCK_UsbSrcIrc48M == src)
{
USB0->CLK_RECOVER_IRC_EN = 0x03U;
USB0->CLK_RECOVER_CTRL |= USB_CLK_RECOVER_CTRL_CLOCK_RECOVER_EN_MASK;
}
return ret;
}
uint32_t CLOCK_GetOutClkFreq(void)
{
uint32_t mcgoutclk;
uint32_t clkst = MCG_S_CLKST_VAL;
switch (clkst)
{
case kMCG_ClkOutStatPll:
mcgoutclk = CLOCK_GetPll0Freq();
break;
case kMCG_ClkOutStatFll:
mcgoutclk = CLOCK_GetFllFreq();
break;
case kMCG_ClkOutStatInt:
mcgoutclk = CLOCK_GetInternalRefClkSelectFreq();
break;
case kMCG_ClkOutStatExt:
mcgoutclk = CLOCK_GetMcgExtClkFreq();
break;
default:
mcgoutclk = 0U;
break;
}
return mcgoutclk;
}
uint32_t CLOCK_GetFllFreq(void)
{
static const uint16_t fllFactorTable[4][2] = {{640, 732}, {1280, 1464}, {1920, 2197}, {2560, 2929}};
uint8_t drs, dmx32;
uint32_t freq;
/* If FLL is not enabled currently, then return 0U. */
if ((MCG->C2 & MCG_C2_LP_MASK) || (MCG->S & MCG_S_PLLST_MASK))
{
return 0U;
}
/* Get FLL reference clock frequency. */
freq = CLOCK_GetFllRefClkFreq();
if (!freq)
{
return freq;
}
drs = MCG_C4_DRST_DRS_VAL;
dmx32 = MCG_C4_DMX32_VAL;
return freq * fllFactorTable[drs][dmx32];
}
uint32_t CLOCK_GetInternalRefClkFreq(void)
{
/* If MCGIRCLK is gated. */
if (!(MCG->C1 & MCG_C1_IRCLKEN_MASK))
{
return 0U;
}
return CLOCK_GetInternalRefClkSelectFreq();
}
uint32_t CLOCK_GetFixedFreqClkFreq(void)
{
uint32_t freq = CLOCK_GetFllRefClkFreq();
/* MCGFFCLK must be no more than MCGOUTCLK/8. */
if ((freq) && (freq <= (CLOCK_GetOutClkFreq() / 8U)))
{
return freq;
}
else
{
return 0U;
}
}
uint32_t CLOCK_GetPll0Freq(void)
{
uint32_t mcgpll0clk;
/* If PLL0 is not enabled, return 0. */
if (!(MCG->S & MCG_S_LOCK0_MASK))
{
return 0U;
}
mcgpll0clk = CLOCK_GetPll0RefFreq();
/*
* Please call CLOCK_SetXtal0Freq base on board setting before using OSC0 clock.
* Please call CLOCK_SetXtal1Freq base on board setting before using OSC1 clock.
*/
assert(mcgpll0clk);
mcgpll0clk /= (FSL_FEATURE_MCG_PLL_PRDIV_BASE + MCG_C5_PRDIV0_VAL);
mcgpll0clk *= (FSL_FEATURE_MCG_PLL_VDIV_BASE + MCG_C6_VDIV0_VAL);
return mcgpll0clk;
}
status_t CLOCK_SetExternalRefClkConfig(mcg_oscsel_t oscsel)
{
bool needDelay;
uint32_t i;
#if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM)
/* If change MCG_C7[OSCSEL] and external reference clock is system clock source, return error. */
if ((MCG_C7_OSCSEL_VAL != oscsel) && (!(MCG->S & MCG_S_IREFST_MASK)))
{
return kStatus_MCG_SourceUsed;
}
#endif /* MCG_CONFIG_CHECK_PARAM */
if (MCG_C7_OSCSEL_VAL != oscsel)
{
/* If change OSCSEL, need to delay, ERR009878. */
needDelay = true;
}
else
{
needDelay = false;
}
MCG->C7 = (MCG->C7 & ~MCG_C7_OSCSEL_MASK) | MCG_C7_OSCSEL(oscsel);
if (needDelay)
{
/* ERR009878 Delay at least 50 micro-seconds for external clock change valid. */
i = 1500U;
while (i--)
{
__NOP();
}
}
return kStatus_Success;
}
status_t CLOCK_SetInternalRefClkConfig(uint8_t enableMode, mcg_irc_mode_t ircs, uint8_t fcrdiv)
{
uint32_t mcgOutClkState = MCG_S_CLKST_VAL;
mcg_irc_mode_t curIrcs = (mcg_irc_mode_t)MCG_S_IRCST_VAL;
uint8_t curFcrdiv = MCG_SC_FCRDIV_VAL;
#if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM)
/* If MCGIRCLK is used as system clock source. */
if (kMCG_ClkOutStatInt == mcgOutClkState)
{
/* If need to change MCGIRCLK source or driver, return error. */
if (((kMCG_IrcFast == curIrcs) && (fcrdiv != curFcrdiv)) || (ircs != curIrcs))
{
return kStatus_MCG_SourceUsed;
}
}
#endif
/* If need to update the FCRDIV. */
if (fcrdiv != curFcrdiv)
{
/* If fast IRC is in use currently, change to slow IRC. */
if ((kMCG_IrcFast == curIrcs) && ((mcgOutClkState == kMCG_ClkOutStatInt) || (MCG->C1 & MCG_C1_IRCLKEN_MASK)))
{
MCG->C2 = ((MCG->C2 & ~MCG_C2_IRCS_MASK) | (MCG_C2_IRCS(kMCG_IrcSlow)));
while (MCG_S_IRCST_VAL != kMCG_IrcSlow)
{
}
}
/* Update FCRDIV. */
MCG->SC = (MCG->SC & ~(MCG_SC_FCRDIV_MASK | MCG_SC_ATMF_MASK | MCG_SC_LOCS0_MASK)) | MCG_SC_FCRDIV(fcrdiv);
}
/* Set internal reference clock selection. */
MCG->C2 = (MCG->C2 & ~MCG_C2_IRCS_MASK) | (MCG_C2_IRCS(ircs));
MCG->C1 = (MCG->C1 & ~(MCG_C1_IRCLKEN_MASK | MCG_C1_IREFSTEN_MASK)) | (uint8_t)enableMode;
/* If MCGIRCLK is used, need to wait for MCG_S_IRCST. */
if ((mcgOutClkState == kMCG_ClkOutStatInt) || (enableMode & kMCG_IrclkEnable))
{
while (MCG_S_IRCST_VAL != ircs)
{
}
}
return kStatus_Success;
}
uint32_t CLOCK_CalcPllDiv(uint32_t refFreq, uint32_t desireFreq, uint8_t *prdiv, uint8_t *vdiv)
{
uint8_t ret_prdiv; /* PRDIV to return. */
uint8_t ret_vdiv; /* VDIV to return. */
uint8_t prdiv_min; /* Min PRDIV value to make reference clock in allowed range. */
uint8_t prdiv_max; /* Max PRDIV value to make reference clock in allowed range. */
uint8_t prdiv_cur; /* PRDIV value for iteration. */
uint8_t vdiv_cur; /* VDIV value for iteration. */
uint32_t ret_freq = 0U; /* PLL output fequency to return. */
uint32_t diff = 0xFFFFFFFFU; /* Difference between desireFreq and return frequency. */
uint32_t ref_div; /* Reference frequency after PRDIV. */
/*
Steps:
1. Get allowed prdiv with such rules:
1). refFreq / prdiv >= FSL_FEATURE_MCG_PLL_REF_MIN.
2). refFreq / prdiv <= FSL_FEATURE_MCG_PLL_REF_MAX.
2. For each allowed prdiv, there are two candidate vdiv values:
1). (desireFreq / (refFreq / prdiv)).
2). (desireFreq / (refFreq / prdiv)) + 1.
If could get the precise desired frequency, return current prdiv and
vdiv directly. Otherwise choose the one which is closer to desired
frequency.
*/
/* Reference frequency is out of range. */
if ((refFreq < FSL_FEATURE_MCG_PLL_REF_MIN) ||
(refFreq > (FSL_FEATURE_MCG_PLL_REF_MAX * (FSL_FEATURE_MCG_PLL_PRDIV_MAX + FSL_FEATURE_MCG_PLL_PRDIV_BASE))))
{
return 0U;
}
/* refFreq/PRDIV must in a range. First get the allowed PRDIV range. */
prdiv_max = refFreq / FSL_FEATURE_MCG_PLL_REF_MIN;
prdiv_min = (refFreq + FSL_FEATURE_MCG_PLL_REF_MAX - 1U) / FSL_FEATURE_MCG_PLL_REF_MAX;
/* PRDIV traversal. */
for (prdiv_cur = prdiv_max; prdiv_cur >= prdiv_min; prdiv_cur--)
{
/* Reference frequency after PRDIV. */
ref_div = refFreq / prdiv_cur;
vdiv_cur = desireFreq / ref_div;
if ((vdiv_cur < FSL_FEATURE_MCG_PLL_VDIV_BASE - 1U) || (vdiv_cur > FSL_FEATURE_MCG_PLL_VDIV_BASE + 31U))
{
/* No VDIV is available with this PRDIV. */
continue;
}
ret_freq = vdiv_cur * ref_div;
if (vdiv_cur >= FSL_FEATURE_MCG_PLL_VDIV_BASE)
{
if (ret_freq == desireFreq) /* If desire frequency is got. */
{
*prdiv = prdiv_cur - FSL_FEATURE_MCG_PLL_PRDIV_BASE;
*vdiv = vdiv_cur - FSL_FEATURE_MCG_PLL_VDIV_BASE;
return ret_freq;
}
/* New PRDIV/VDIV is closer. */
if (diff > desireFreq - ret_freq)
{
diff = desireFreq - ret_freq;
ret_prdiv = prdiv_cur;
ret_vdiv = vdiv_cur;
}
}
vdiv_cur++;
if (vdiv_cur <= (FSL_FEATURE_MCG_PLL_VDIV_BASE + 31U))
{
ret_freq += ref_div;
/* New PRDIV/VDIV is closer. */
if (diff > ret_freq - desireFreq)
{
diff = ret_freq - desireFreq;
ret_prdiv = prdiv_cur;
ret_vdiv = vdiv_cur;
}
}
}
if (0xFFFFFFFFU != diff)
{
/* PRDIV/VDIV found. */
*prdiv = ret_prdiv - FSL_FEATURE_MCG_PLL_PRDIV_BASE;
*vdiv = ret_vdiv - FSL_FEATURE_MCG_PLL_VDIV_BASE;
ret_freq = (refFreq / ret_prdiv) * ret_vdiv;
return ret_freq;
}
else
{
/* No proper PRDIV/VDIV found. */
return 0U;
}
}
void CLOCK_EnablePll0(mcg_pll_config_t const *config)
{
assert(config);
uint8_t mcg_c5 = 0U;
mcg_c5 |= MCG_C5_PRDIV0(config->prdiv);
MCG->C5 = mcg_c5; /* Disable the PLL first. */
MCG->C6 = (MCG->C6 & ~MCG_C6_VDIV0_MASK) | MCG_C6_VDIV0(config->vdiv);
/* Set enable mode. */
MCG->C5 |= ((uint32_t)kMCG_PllEnableIndependent | (uint32_t)config->enableMode);
/* Wait for PLL lock. */
while (!(MCG->S & MCG_S_LOCK0_MASK))
{
}
}
void CLOCK_SetOsc0MonitorMode(mcg_monitor_mode_t mode)
{
/* Clear the previous flag, MCG_SC[LOCS0]. */
MCG->SC &= ~MCG_SC_ATMF_MASK;
if (kMCG_MonitorNone == mode)
{
MCG->C6 &= ~MCG_C6_CME0_MASK;
}
else
{
if (kMCG_MonitorInt == mode)
{
MCG->C2 &= ~MCG_C2_LOCRE0_MASK;
}
else
{
MCG->C2 |= MCG_C2_LOCRE0_MASK;
}
MCG->C6 |= MCG_C6_CME0_MASK;
}
}
void CLOCK_SetRtcOscMonitorMode(mcg_monitor_mode_t mode)
{
uint8_t mcg_c8 = MCG->C8;
mcg_c8 &= ~(MCG_C8_CME1_MASK | MCG_C8_LOCRE1_MASK);
if (kMCG_MonitorNone != mode)
{
if (kMCG_MonitorReset == mode)
{
mcg_c8 |= MCG_C8_LOCRE1_MASK;
}
mcg_c8 |= MCG_C8_CME1_MASK;
}
MCG->C8 = mcg_c8;
}
void CLOCK_SetPll0MonitorMode(mcg_monitor_mode_t mode)
{
uint8_t mcg_c8;
/* Clear previous flag. */
MCG->S = MCG_S_LOLS0_MASK;
if (kMCG_MonitorNone == mode)
{
MCG->C6 &= ~MCG_C6_LOLIE0_MASK;
}
else
{
mcg_c8 = MCG->C8;
mcg_c8 &= ~MCG_C8_LOCS1_MASK;
if (kMCG_MonitorInt == mode)
{
mcg_c8 &= ~MCG_C8_LOLRE_MASK;
}
else
{
mcg_c8 |= MCG_C8_LOLRE_MASK;
}
MCG->C8 = mcg_c8;
MCG->C6 |= MCG_C6_LOLIE0_MASK;
}
}
uint32_t CLOCK_GetStatusFlags(void)
{
uint32_t ret = 0U;
uint8_t mcg_s = MCG->S;
if (MCG->SC & MCG_SC_LOCS0_MASK)
{
ret |= kMCG_Osc0LostFlag;
}
if (mcg_s & MCG_S_OSCINIT0_MASK)
{
ret |= kMCG_Osc0InitFlag;
}
if (MCG->C8 & MCG_C8_LOCS1_MASK)
{
ret |= kMCG_RtcOscLostFlag;
}
if (mcg_s & MCG_S_LOLS0_MASK)
{
ret |= kMCG_Pll0LostFlag;
}
if (mcg_s & MCG_S_LOCK0_MASK)
{
ret |= kMCG_Pll0LockFlag;
}
return ret;
}
void CLOCK_ClearStatusFlags(uint32_t mask)
{
uint8_t reg;
if (mask & kMCG_Osc0LostFlag)
{
MCG->SC &= ~MCG_SC_ATMF_MASK;
}
if (mask & kMCG_RtcOscLostFlag)
{
reg = MCG->C8;
MCG->C8 = reg;
}
if (mask & kMCG_Pll0LostFlag)
{
MCG->S = MCG_S_LOLS0_MASK;
}
}
void CLOCK_InitOsc0(osc_config_t const *config)
{
uint8_t range = CLOCK_GetOscRangeFromFreq(config->freq);
OSC_SetCapLoad(OSC0, config->capLoad);
OSC_SetExtRefClkConfig(OSC0, &config->oscerConfig);
MCG->C2 = ((MCG->C2 & ~OSC_MODE_MASK) | MCG_C2_RANGE(range) | (uint8_t)config->workMode);
if ((kOSC_ModeExt != config->workMode) && (OSC0->CR & OSC_CR_ERCLKEN_MASK))
{
/* Wait for stable. */
while (!(MCG->S & MCG_S_OSCINIT0_MASK))
{
}
}
}
void CLOCK_DeinitOsc0(void)
{
OSC0->CR = 0U;
MCG->C2 &= ~OSC_MODE_MASK;
}
status_t CLOCK_TrimInternalRefClk(uint32_t extFreq, uint32_t desireFreq, uint32_t *actualFreq, mcg_atm_select_t atms)
{
uint32_t multi; /* extFreq / desireFreq */
uint32_t actv; /* Auto trim value. */
uint8_t mcg_sc;
static const uint32_t trimRange[2][2] = {
/* Min Max */
{TRIM_SIRC_MIN, TRIM_SIRC_MAX}, /* Slow IRC. */
{TRIM_FIRC_MIN, TRIM_FIRC_MAX} /* Fast IRC. */
};
if ((extFreq > TRIM_REF_CLK_MAX) || (extFreq < TRIM_REF_CLK_MIN))
{
return kStatus_MCG_AtmBusClockInvalid;
}
/* Check desired frequency range. */
if ((desireFreq < trimRange[atms][0]) || (desireFreq > trimRange[atms][1]))
{
return kStatus_MCG_AtmDesiredFreqInvalid;
}
/*
Make sure internal reference clock is not used to generate bus clock.
Here only need to check (MCG_S_IREFST == 1).
*/
if (MCG_S_IREFST(kMCG_FllSrcInternal) == (MCG->S & MCG_S_IREFST_MASK))
{
return kStatus_MCG_AtmIrcUsed;
}
multi = extFreq / desireFreq;
actv = multi * 21U;
if (kMCG_AtmSel4m == atms)
{
actv *= 128U;
}
/* Now begin to start trim. */
MCG->ATCVL = (uint8_t)actv;
MCG->ATCVH = (uint8_t)(actv >> 8U);
mcg_sc = MCG->SC;
mcg_sc &= ~(MCG_SC_ATMS_MASK | MCG_SC_LOCS0_MASK);
mcg_sc |= (MCG_SC_ATMF_MASK | MCG_SC_ATMS(atms));
MCG->SC = (mcg_sc | MCG_SC_ATME_MASK);
/* Wait for finished. */
while (MCG->SC & MCG_SC_ATME_MASK)
{
}
/* Error occurs? */
if (MCG->SC & MCG_SC_ATMF_MASK)
{
/* Clear the failed flag. */
MCG->SC = mcg_sc;
return kStatus_MCG_AtmHardwareFail;
}
*actualFreq = extFreq / multi;
if (kMCG_AtmSel4m == atms)
{
s_fastIrcFreq = *actualFreq;
}
else
{
s_slowIrcFreq = *actualFreq;
}
return kStatus_Success;
}
mcg_mode_t CLOCK_GetMode(void)
{
mcg_mode_t mode = kMCG_ModeError;
uint32_t clkst = MCG_S_CLKST_VAL;
uint32_t irefst = MCG_S_IREFST_VAL;
uint32_t lp = MCG_C2_LP_VAL;
uint32_t pllst = MCG_S_PLLST_VAL;
/*------------------------------------------------------------------
Mode and Registers
____________________________________________________________________
Mode | CLKST | IREFST | PLLST | LP
____________________________________________________________________
FEI | 00(FLL) | 1(INT) | 0(FLL) | X
____________________________________________________________________
FEE | 00(FLL) | 0(EXT) | 0(FLL) | X
____________________________________________________________________
FBE | 10(EXT) | 0(EXT) | 0(FLL) | 0(NORMAL)
____________________________________________________________________
FBI | 01(INT) | 1(INT) | 0(FLL) | 0(NORMAL)
____________________________________________________________________
BLPI | 01(INT) | 1(INT) | 0(FLL) | 1(LOW POWER)
____________________________________________________________________
BLPE | 10(EXT) | 0(EXT) | X | 1(LOW POWER)
____________________________________________________________________
PEE | 11(PLL) | 0(EXT) | 1(PLL) | X
____________________________________________________________________
PBE | 10(EXT) | 0(EXT) | 1(PLL) | O(NORMAL)
____________________________________________________________________
PBI | 01(INT) | 1(INT) | 1(PLL) | 0(NORMAL)
____________________________________________________________________
PEI | 11(PLL) | 1(INT) | 1(PLL) | X
____________________________________________________________________
----------------------------------------------------------------------*/
switch (clkst)
{
case kMCG_ClkOutStatFll:
if (kMCG_FllSrcExternal == irefst)
{
mode = kMCG_ModeFEE;
}
else
{
mode = kMCG_ModeFEI;
}
break;
case kMCG_ClkOutStatInt:
if (lp)
{
mode = kMCG_ModeBLPI;
}
else
{
{
mode = kMCG_ModeFBI;
}
}
break;
case kMCG_ClkOutStatExt:
if (lp)
{
mode = kMCG_ModeBLPE;
}
else
{
if (kMCG_PllstPll == pllst)
{
mode = kMCG_ModePBE;
}
else
{
mode = kMCG_ModeFBE;
}
}
break;
case kMCG_ClkOutStatPll:
{
mode = kMCG_ModePEE;
}
break;
default:
break;
}
return mode;
}
status_t CLOCK_SetFeiMode(mcg_dmx32_t dmx32, mcg_drs_t drs, void (*fllStableDelay)(void))
{
uint8_t mcg_c4;
bool change_drs = false;
#if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM)
mcg_mode_t mode = CLOCK_GetMode();
if (!((kMCG_ModeFEI == mode) || (kMCG_ModeFBI == mode) || (kMCG_ModeFBE == mode) || (kMCG_ModeFEE == mode)))
{
return kStatus_MCG_ModeUnreachable;
}
#endif
mcg_c4 = MCG->C4;
/*
Errata: ERR007993
Workaround: Invert MCG_C4[DMX32] or change MCG_C4[DRST_DRS] before
reference clock source changes, then reset to previous value after
reference clock changes.
*/
if (kMCG_FllSrcExternal == MCG_S_IREFST_VAL)
{
change_drs = true;
/* Change the LSB of DRST_DRS. */
MCG->C4 ^= (1U << MCG_C4_DRST_DRS_SHIFT);
}
/* Set CLKS and IREFS. */
MCG->C1 =
((MCG->C1 & ~(MCG_C1_CLKS_MASK | MCG_C1_IREFS_MASK))) | (MCG_C1_CLKS(kMCG_ClkOutSrcOut) /* CLKS = 0 */
| MCG_C1_IREFS(kMCG_FllSrcInternal)); /* IREFS = 1 */
/* Wait and check status. */
while (kMCG_FllSrcInternal != MCG_S_IREFST_VAL)
{
}
/* Errata: ERR007993 */
if (change_drs)
{
MCG->C4 = mcg_c4;
}
/* In FEI mode, the MCG_C4[DMX32] is set to 0U. */
MCG->C4 = (mcg_c4 & ~(MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS_MASK)) | (MCG_C4_DMX32(dmx32) | MCG_C4_DRST_DRS(drs));
/* Check MCG_S[CLKST] */
while (kMCG_ClkOutStatFll != MCG_S_CLKST_VAL)
{
}
/* Wait for FLL stable time. */
if (fllStableDelay)
{
fllStableDelay();
}
return kStatus_Success;
}
status_t CLOCK_SetFeeMode(uint8_t frdiv, mcg_dmx32_t dmx32, mcg_drs_t drs, void (*fllStableDelay)(void))
{
uint8_t mcg_c4;
bool change_drs = false;
#if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM)
mcg_mode_t mode = CLOCK_GetMode();
if (!((kMCG_ModeFEE == mode) || (kMCG_ModeFBI == mode) || (kMCG_ModeFBE == mode) || (kMCG_ModeFEI == mode)))
{
return kStatus_MCG_ModeUnreachable;
}
#endif
mcg_c4 = MCG->C4;
/*
Errata: ERR007993
Workaround: Invert MCG_C4[DMX32] or change MCG_C4[DRST_DRS] before
reference clock source changes, then reset to previous value after
reference clock changes.
*/
if (kMCG_FllSrcInternal == MCG_S_IREFST_VAL)
{
change_drs = true;
/* Change the LSB of DRST_DRS. */
MCG->C4 ^= (1U << MCG_C4_DRST_DRS_SHIFT);
}
/* Set CLKS and IREFS. */
MCG->C1 = ((MCG->C1 & ~(MCG_C1_CLKS_MASK | MCG_C1_FRDIV_MASK | MCG_C1_IREFS_MASK)) |
(MCG_C1_CLKS(kMCG_ClkOutSrcOut) /* CLKS = 0 */
| MCG_C1_FRDIV(frdiv) /* FRDIV */
| MCG_C1_IREFS(kMCG_FllSrcExternal))); /* IREFS = 0 */
/* If use external crystal as clock source, wait for it stable. */
if (MCG_C7_OSCSEL(kMCG_OscselOsc) == (MCG->C7 & MCG_C7_OSCSEL_MASK))
{
if (MCG->C2 & MCG_C2_EREFS_MASK)
{
while (!(MCG->S & MCG_S_OSCINIT0_MASK))
{
}
}
}
/* Wait and check status. */
while (kMCG_FllSrcExternal != MCG_S_IREFST_VAL)
{
}
/* Errata: ERR007993 */
if (change_drs)
{
MCG->C4 = mcg_c4;
}
/* Set DRS and DMX32. */
mcg_c4 = ((mcg_c4 & ~(MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS_MASK)) | (MCG_C4_DMX32(dmx32) | MCG_C4_DRST_DRS(drs)));
MCG->C4 = mcg_c4;
/* Wait for DRST_DRS update. */
while (MCG->C4 != mcg_c4)
{
}
/* Check MCG_S[CLKST] */
while (kMCG_ClkOutStatFll != MCG_S_CLKST_VAL)
{
}
/* Wait for FLL stable time. */
if (fllStableDelay)
{
fllStableDelay();
}
return kStatus_Success;
}
status_t CLOCK_SetFbiMode(mcg_dmx32_t dmx32, mcg_drs_t drs, void (*fllStableDelay)(void))
{
uint8_t mcg_c4;
bool change_drs = false;
#if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM)
mcg_mode_t mode = CLOCK_GetMode();
if (!((kMCG_ModeFEE == mode) || (kMCG_ModeFBI == mode) || (kMCG_ModeFBE == mode) || (kMCG_ModeFEI == mode) ||
(kMCG_ModeBLPI == mode)))
{
return kStatus_MCG_ModeUnreachable;
}
#endif
mcg_c4 = MCG->C4;
MCG->C2 &= ~MCG_C2_LP_MASK; /* Disable lowpower. */
/*
Errata: ERR007993
Workaround: Invert MCG_C4[DMX32] or change MCG_C4[DRST_DRS] before
reference clock source changes, then reset to previous value after
reference clock changes.
*/
if (kMCG_FllSrcExternal == MCG_S_IREFST_VAL)
{
change_drs = true;
/* Change the LSB of DRST_DRS. */
MCG->C4 ^= (1U << MCG_C4_DRST_DRS_SHIFT);
}
/* Set CLKS and IREFS. */
MCG->C1 =
((MCG->C1 & ~(MCG_C1_CLKS_MASK | MCG_C1_IREFS_MASK)) | (MCG_C1_CLKS(kMCG_ClkOutSrcInternal) /* CLKS = 1 */
| MCG_C1_IREFS(kMCG_FllSrcInternal))); /* IREFS = 1 */
/* Wait and check status. */
while (kMCG_FllSrcInternal != MCG_S_IREFST_VAL)
{
}
/* Errata: ERR007993 */
if (change_drs)
{
MCG->C4 = mcg_c4;
}
while (kMCG_ClkOutStatInt != MCG_S_CLKST_VAL)
{
}
MCG->C4 = (mcg_c4 & ~(MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS_MASK)) | (MCG_C4_DMX32(dmx32) | MCG_C4_DRST_DRS(drs));
/* Wait for FLL stable time. */
if (fllStableDelay)
{
fllStableDelay();
}
return kStatus_Success;
}
status_t CLOCK_SetFbeMode(uint8_t frdiv, mcg_dmx32_t dmx32, mcg_drs_t drs, void (*fllStableDelay)(void))
{
uint8_t mcg_c4;
bool change_drs = false;
#if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM)
mcg_mode_t mode = CLOCK_GetMode();
if (!((kMCG_ModeFEE == mode) || (kMCG_ModeFBI == mode) || (kMCG_ModeFBE == mode) || (kMCG_ModeFEI == mode) ||
(kMCG_ModePBE == mode) || (kMCG_ModeBLPE == mode)))
{
return kStatus_MCG_ModeUnreachable;
}
#endif
/* Change to FLL mode. */
MCG->C6 &= ~MCG_C6_PLLS_MASK;
while (MCG->S & MCG_S_PLLST_MASK)
{
}
/* Set LP bit to enable the FLL */
MCG->C2 &= ~MCG_C2_LP_MASK;
mcg_c4 = MCG->C4;
/*
Errata: ERR007993
Workaround: Invert MCG_C4[DMX32] or change MCG_C4[DRST_DRS] before
reference clock source changes, then reset to previous value after
reference clock changes.
*/
if (kMCG_FllSrcInternal == MCG_S_IREFST_VAL)
{
change_drs = true;
/* Change the LSB of DRST_DRS. */
MCG->C4 ^= (1U << MCG_C4_DRST_DRS_SHIFT);
}
/* Set CLKS and IREFS. */
MCG->C1 = ((MCG->C1 & ~(MCG_C1_CLKS_MASK | MCG_C1_FRDIV_MASK | MCG_C1_IREFS_MASK)) |
(MCG_C1_CLKS(kMCG_ClkOutSrcExternal) /* CLKS = 2 */
| MCG_C1_FRDIV(frdiv) /* FRDIV = frdiv */
| MCG_C1_IREFS(kMCG_FllSrcExternal))); /* IREFS = 0 */
/* If use external crystal as clock source, wait for it stable. */
if (MCG_C7_OSCSEL(kMCG_OscselOsc) == (MCG->C7 & MCG_C7_OSCSEL_MASK))
{
if (MCG->C2 & MCG_C2_EREFS_MASK)
{
while (!(MCG->S & MCG_S_OSCINIT0_MASK))
{
}
}
}
/* Wait for Reference clock Status bit to clear */
while (kMCG_FllSrcExternal != MCG_S_IREFST_VAL)
{
}
/* Errata: ERR007993 */
if (change_drs)
{
MCG->C4 = mcg_c4;
}
/* Set DRST_DRS and DMX32. */
mcg_c4 = ((mcg_c4 & ~(MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS_MASK)) | (MCG_C4_DMX32(dmx32) | MCG_C4_DRST_DRS(drs)));
/* Wait for clock status bits to show clock source is ext ref clk */
while (kMCG_ClkOutStatExt != MCG_S_CLKST_VAL)
{
}
/* Wait for fll stable time. */
if (fllStableDelay)
{
fllStableDelay();
}
return kStatus_Success;
}
status_t CLOCK_SetBlpiMode(void)
{
#if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM)
if (MCG_S_CLKST_VAL != kMCG_ClkOutStatInt)
{
return kStatus_MCG_ModeUnreachable;
}
#endif /* MCG_CONFIG_CHECK_PARAM */
/* Set LP. */
MCG->C2 |= MCG_C2_LP_MASK;
return kStatus_Success;
}
status_t CLOCK_SetBlpeMode(void)
{
#if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM)
if (MCG_S_CLKST_VAL != kMCG_ClkOutStatExt)
{
return kStatus_MCG_ModeUnreachable;
}
#endif
/* Set LP bit to enter BLPE mode. */
MCG->C2 |= MCG_C2_LP_MASK;
return kStatus_Success;
}
status_t CLOCK_SetPbeMode(mcg_pll_clk_select_t pllcs, mcg_pll_config_t const *config)
{
assert(config);
/*
This function is designed to change MCG to PBE mode from PEE/BLPE/FBE,
but with this workflow, the source mode could be all modes except PEI/PBI.
*/
MCG->C2 &= ~MCG_C2_LP_MASK; /* Disable lowpower. */
/* Change to use external clock first. */
MCG->C1 = ((MCG->C1 & ~(MCG_C1_CLKS_MASK | MCG_C1_IREFS_MASK)) | MCG_C1_CLKS(kMCG_ClkOutSrcExternal));
/* Wait for CLKST clock status bits to show clock source is ext ref clk */
while ((MCG->S & (MCG_S_IREFST_MASK | MCG_S_CLKST_MASK)) !=
(MCG_S_IREFST(kMCG_FllSrcExternal) | MCG_S_CLKST(kMCG_ClkOutStatExt)))
{
}
/* Disable PLL first, then configure PLL. */
MCG->C6 &= ~MCG_C6_PLLS_MASK;
while (MCG->S & MCG_S_PLLST_MASK)
{
}
/* Configure the PLL. */
{
CLOCK_EnablePll0(config);
}
/* Change to PLL mode. */
MCG->C6 |= MCG_C6_PLLS_MASK;
/* Wait for PLL mode changed. */
while (!(MCG->S & MCG_S_PLLST_MASK))
{
}
return kStatus_Success;
}
status_t CLOCK_SetPeeMode(void)
{
#if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM)
mcg_mode_t mode = CLOCK_GetMode();
if (kMCG_ModePBE != mode)
{
return kStatus_MCG_ModeUnreachable;
}
#endif
/* Change to use PLL/FLL output clock first. */
MCG->C1 = (MCG->C1 & ~MCG_C1_CLKS_MASK) | MCG_C1_CLKS(kMCG_ClkOutSrcOut);
/* Wait for clock status bits to update */
while (MCG_S_CLKST_VAL != kMCG_ClkOutStatPll)
{
}
return kStatus_Success;
}
status_t CLOCK_ExternalModeToFbeModeQuick(void)
{
#if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM)
if (MCG->S & MCG_S_IREFST_MASK)
{
return kStatus_MCG_ModeInvalid;
}
#endif /* MCG_CONFIG_CHECK_PARAM */
/* Disable low power */
MCG->C2 &= ~MCG_C2_LP_MASK;
MCG->C1 = ((MCG->C1 & ~MCG_C1_CLKS_MASK) | MCG_C1_CLKS(kMCG_ClkOutSrcExternal));
while (MCG_S_CLKST_VAL != kMCG_ClkOutStatExt)
{
}
/* Disable PLL. */
MCG->C6 &= ~MCG_C6_PLLS_MASK;
while (MCG->S & MCG_S_PLLST_MASK)
{
}
return kStatus_Success;
}
status_t CLOCK_InternalModeToFbiModeQuick(void)
{
#if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM)
if (!(MCG->S & MCG_S_IREFST_MASK))
{
return kStatus_MCG_ModeInvalid;
}
#endif
/* Disable low power */
MCG->C2 &= ~MCG_C2_LP_MASK;
MCG->C1 = ((MCG->C1 & ~MCG_C1_CLKS_MASK) | MCG_C1_CLKS(kMCG_ClkOutSrcInternal));
while (MCG_S_CLKST_VAL != kMCG_ClkOutStatInt)
{
}
return kStatus_Success;
}
status_t CLOCK_BootToFeiMode(mcg_dmx32_t dmx32, mcg_drs_t drs, void (*fllStableDelay)(void))
{
return CLOCK_SetFeiMode(dmx32, drs, fllStableDelay);
}
status_t CLOCK_BootToFeeMode(
mcg_oscsel_t oscsel, uint8_t frdiv, mcg_dmx32_t dmx32, mcg_drs_t drs, void (*fllStableDelay)(void))
{
CLOCK_SetExternalRefClkConfig(oscsel);
return CLOCK_SetFeeMode(frdiv, dmx32, drs, fllStableDelay);
}
status_t CLOCK_BootToBlpiMode(uint8_t fcrdiv, mcg_irc_mode_t ircs, uint8_t ircEnableMode)
{
/* If reset mode is FEI mode, set MCGIRCLK and always success. */
CLOCK_SetInternalRefClkConfig(ircEnableMode, ircs, fcrdiv);
/* If reset mode is not BLPI, first enter FBI mode. */
MCG->C1 = (MCG->C1 & ~MCG_C1_CLKS_MASK) | MCG_C1_CLKS(kMCG_ClkOutSrcInternal);
while (MCG_S_CLKST_VAL != kMCG_ClkOutStatInt)
{
}
/* Enter BLPI mode. */
MCG->C2 |= MCG_C2_LP_MASK;
return kStatus_Success;
}
status_t CLOCK_BootToBlpeMode(mcg_oscsel_t oscsel)
{
CLOCK_SetExternalRefClkConfig(oscsel);
/* Set to FBE mode. */
MCG->C1 =
((MCG->C1 & ~(MCG_C1_CLKS_MASK | MCG_C1_IREFS_MASK)) | (MCG_C1_CLKS(kMCG_ClkOutSrcExternal) /* CLKS = 2 */
| MCG_C1_IREFS(kMCG_FllSrcExternal))); /* IREFS = 0 */
/* If use external crystal as clock source, wait for it stable. */
if (MCG_C7_OSCSEL(kMCG_OscselOsc) == (MCG->C7 & MCG_C7_OSCSEL_MASK))
{
if (MCG->C2 & MCG_C2_EREFS_MASK)
{
while (!(MCG->S & MCG_S_OSCINIT0_MASK))
{
}
}
}
/* Wait for MCG_S[CLKST] and MCG_S[IREFST]. */
while ((MCG->S & (MCG_S_IREFST_MASK | MCG_S_CLKST_MASK)) !=
(MCG_S_IREFST(kMCG_FllSrcExternal) | MCG_S_CLKST(kMCG_ClkOutStatExt)))
{
}
/* In FBE now, start to enter BLPE. */
MCG->C2 |= MCG_C2_LP_MASK;
return kStatus_Success;
}
status_t CLOCK_BootToPeeMode(mcg_oscsel_t oscsel, mcg_pll_clk_select_t pllcs, mcg_pll_config_t const *config)
{
assert(config);
CLOCK_SetExternalRefClkConfig(oscsel);
CLOCK_SetPbeMode(pllcs, config);
/* Change to use PLL output clock. */
MCG->C1 = (MCG->C1 & ~MCG_C1_CLKS_MASK) | MCG_C1_CLKS(kMCG_ClkOutSrcOut);
while (MCG_S_CLKST_VAL != kMCG_ClkOutStatPll)
{
}
return kStatus_Success;
}
/*
The transaction matrix. It defines the path for mode switch, the row is for
current mode and the column is target mode.
For example, switch from FEI to PEE:
1. Current mode FEI, next mode is mcgModeMatrix[FEI][PEE] = FBE, so swith to FBE.
2. Current mode FBE, next mode is mcgModeMatrix[FBE][PEE] = PBE, so swith to PBE.
3. Current mode PBE, next mode is mcgModeMatrix[PBE][PEE] = PEE, so swith to PEE.
Thus the MCG mode has changed from FEI to PEE.
*/
static const mcg_mode_t mcgModeMatrix[8][8] = {
{kMCG_ModeFEI, kMCG_ModeFBI, kMCG_ModeFBI, kMCG_ModeFEE, kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeFBE,
kMCG_ModeFBE}, /* FEI */
{kMCG_ModeFEI, kMCG_ModeFBI, kMCG_ModeBLPI, kMCG_ModeFEE, kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeFBE,
kMCG_ModeFBE}, /* FBI */
{kMCG_ModeFBI, kMCG_ModeFBI, kMCG_ModeBLPI, kMCG_ModeFBI, kMCG_ModeFBI, kMCG_ModeFBI, kMCG_ModeFBI,
kMCG_ModeFBI}, /* BLPI */
{kMCG_ModeFEI, kMCG_ModeFBI, kMCG_ModeFBI, kMCG_ModeFEE, kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeFBE,
kMCG_ModeFBE}, /* FEE */
{kMCG_ModeFEI, kMCG_ModeFBI, kMCG_ModeFBI, kMCG_ModeFEE, kMCG_ModeFBE, kMCG_ModeBLPE, kMCG_ModePBE,
kMCG_ModePBE}, /* FBE */
{kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeBLPE, kMCG_ModePBE,
kMCG_ModePBE}, /* BLPE */
{kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeBLPE, kMCG_ModePBE,
kMCG_ModePEE}, /* PBE */
{kMCG_ModePBE, kMCG_ModePBE, kMCG_ModePBE, kMCG_ModePBE, kMCG_ModePBE, kMCG_ModePBE, kMCG_ModePBE,
kMCG_ModePBE} /* PEE */
/* FEI FBI BLPI FEE FBE BLPE PBE PEE */
};
status_t CLOCK_SetMcgConfig(const mcg_config_t *config)
{
mcg_mode_t next_mode;
status_t status = kStatus_Success;
mcg_pll_clk_select_t pllcs = kMCG_PllClkSelPll0;
/* If need to change external clock, MCG_C7[OSCSEL]. */
if (MCG_C7_OSCSEL_VAL != config->oscsel)
{
/* If external clock is in use, change to FEI first. */
if (!(MCG->S & MCG_S_IRCST_MASK))
{
CLOCK_ExternalModeToFbeModeQuick();
CLOCK_SetFeiMode(config->dmx32, config->drs, (void (*)(void))0);
}
CLOCK_SetExternalRefClkConfig(config->oscsel);
}
/* Re-configure MCGIRCLK, if MCGIRCLK is used as system clock source, then change to FEI/PEI first. */
if (MCG_S_CLKST_VAL == kMCG_ClkOutStatInt)
{
MCG->C2 &= ~MCG_C2_LP_MASK; /* Disable lowpower. */
{
CLOCK_SetFeiMode(config->dmx32, config->drs, CLOCK_FllStableDelay);
}
}
/* Configure MCGIRCLK. */
CLOCK_SetInternalRefClkConfig(config->irclkEnableMode, config->ircs, config->fcrdiv);
next_mode = CLOCK_GetMode();
do
{
next_mode = mcgModeMatrix[next_mode][config->mcgMode];
switch (next_mode)
{
case kMCG_ModeFEI:
status = CLOCK_SetFeiMode(config->dmx32, config->drs, CLOCK_FllStableDelay);
break;
case kMCG_ModeFEE:
status = CLOCK_SetFeeMode(config->frdiv, config->dmx32, config->drs, CLOCK_FllStableDelay);
break;
case kMCG_ModeFBI:
status = CLOCK_SetFbiMode(config->dmx32, config->drs, (void (*)(void))0);
break;
case kMCG_ModeFBE:
status = CLOCK_SetFbeMode(config->frdiv, config->dmx32, config->drs, (void (*)(void))0);
break;
case kMCG_ModeBLPI:
status = CLOCK_SetBlpiMode();
break;
case kMCG_ModeBLPE:
status = CLOCK_SetBlpeMode();
break;
case kMCG_ModePBE:
/* If target mode is not PBE or PEE, then only need to set CLKS = EXT here. */
if ((kMCG_ModePEE == config->mcgMode) || (kMCG_ModePBE == config->mcgMode))
{
{
status = CLOCK_SetPbeMode(pllcs, &config->pll0Config);
}
}
else
{
MCG->C1 = ((MCG->C1 & ~MCG_C1_CLKS_MASK) | MCG_C1_CLKS(kMCG_ClkOutSrcExternal));
while (MCG_S_CLKST_VAL != kMCG_ClkOutStatExt)
{
}
}
break;
case kMCG_ModePEE:
status = CLOCK_SetPeeMode();
break;
default:
break;
}
if (kStatus_Success != status)
{
return status;
}
} while (next_mode != config->mcgMode);
if (config->pll0Config.enableMode & kMCG_PllEnableIndependent)
{
CLOCK_EnablePll0(&config->pll0Config);
}
else
{
MCG->C5 &= ~(uint32_t)kMCG_PllEnableIndependent;
}
return kStatus_Success;
}