rt-thread-official/bsp/nuvoton/libraries/n9h30/Driver/Source/nu_fmi.c

921 lines
28 KiB
C

/**************************************************************************//**
* @file fmi.c
* @brief N9H30 FMI eMMC driver source file
*
* @note
* SPDX-License-Identifier: Apache-2.0
* Copyright (C) 2018 Nuvoton Technology Corp. All rights reserved.
*****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "N9H30.h"
#include "nu_sys.h"
#include "nu_fmi.h"
/** @addtogroup N9H30_Device_Driver N9H30 Device Driver
@{
*/
/** @addtogroup N9H30_FMI_Driver FMI Driver
@{
*/
/** @addtogroup N9H30_FMI_EXPORTED_FUNCTIONS FMI Exported Functions
@{
*/
/// @cond HIDDEN_SYMBOLS
#define FMI_BLOCK_SIZE 512
// global variables
// For response R3 (such as ACMD41, CRC-7 is invalid; but FMI controller will still
// calculate CRC-7 and get an error result, software should ignore this error and clear INTSTS [CRC_IF] flag
// _fmi_uR3_CMD is the flag for it. 1 means software should ignore CRC-7 error
unsigned int _fmi_uR3_CMD = 0;
unsigned int _fmi_uR7_CMD = 0;
unsigned char volatile _fmi_eMMCDataReady = FALSE;
unsigned char *_fmi_peMMCBuffer;
unsigned int gFMIReferenceClock;
#ifdef __ICCARM__
#pragma data_alignment = 4096
unsigned char _fmi_uceMMCBuffer[512];
#else
unsigned char _fmi_uceMMCBuffer[512] __attribute__((aligned(4096)));
#endif
int emmc_ok = 0;
unsigned char peMMC_offset = 0;
EMMC_INFO_T eMMC;
void eMMC_CheckRB()
{
while (1)
{
outpw(REG_FMI_EMMCCTL, inpw(REG_FMI_EMMCCTL) | FMI_EMMCCTL_CLK8OEN_Msk);
while (inpw(REG_FMI_EMMCCTL) & FMI_EMMCCTL_CLK8OEN_Msk);
if (inpw(REG_FMI_EMMCINTSTS) & FMI_EMMCINTSTS_DAT0STS_Msk)
break;
}
}
int eMMC_Command(EMMC_INFO_T *pSD, unsigned char ucCmd, unsigned int uArg)
{
volatile int buf;
outpw(REG_FMI_EMMCCMD, uArg);
buf = (inpw(REG_FMI_EMMCCTL) & (~FMI_EMMCCTL_CMDCODE_Msk)) | (ucCmd << 8) | (FMI_EMMCCTL_COEN_Msk);
outpw(REG_FMI_EMMCCTL, buf);
while (inpw(REG_FMI_EMMCCTL) & FMI_EMMCCTL_COEN_Msk)
{
if (pSD->IsCardInsert == FALSE)
return EMMC_NO_CARD;
}
return 0;
}
int eMMC_CmdAndRsp(EMMC_INFO_T *pSD, unsigned char ucCmd, unsigned int uArg, int ntickCount)
{
volatile int buf;
outpw(REG_FMI_EMMCCMD, uArg);
buf = (inpw(REG_FMI_EMMCCTL) & (~FMI_EMMCCTL_CMDCODE_Msk)) | (ucCmd << 8) | (FMI_EMMCCTL_COEN_Msk | FMI_EMMCCTL_RIEN_Msk);
outpw(REG_FMI_EMMCCTL, buf);
if (ntickCount > 0)
{
while (inpw(REG_FMI_EMMCCTL) & FMI_EMMCCTL_RIEN_Msk)
{
if (ntickCount-- == 0)
{
outpw(REG_FMI_EMMCCTL, inpw(REG_FMI_EMMCCTL) | FMI_EMMCCTL_CTLRST_Msk); // reset SD engine
return 2;
}
if (pSD->IsCardInsert == FALSE)
return EMMC_NO_CARD;
}
}
else
{
while (inpw(REG_FMI_EMMCCTL) & FMI_EMMCCTL_RIEN_Msk)
{
if (pSD->IsCardInsert == FALSE)
return EMMC_NO_CARD;
}
}
if (_fmi_uR7_CMD)
{
if (((inpw(REG_FMI_EMMCRESP1) & 0xff) != 0x55) && ((inpw(REG_FMI_EMMCRESP0) & 0xf) != 0x01))
{
_fmi_uR7_CMD = 0;
return EMMC_CMD8_ERROR;
}
}
if (!_fmi_uR3_CMD)
{
if (inpw(REG_FMI_EMMCINTSTS) & FMI_EMMCINTSTS_CRC7_Msk) // check CRC7
return 0;
else
return EMMC_CRC7_ERROR;
}
else // ignore CRC error for R3 case
{
_fmi_uR3_CMD = 0;
outpw(REG_FMI_EMMCINTSTS, FMI_EMMCINTSTS_CRCIF_Msk);
return 0;
}
}
int eMMC_Swap32(int val)
{
int buf;
buf = val;
val <<= 24;
val |= (buf << 8) & 0xff0000;
val |= (buf >> 8) & 0xff00;
val |= (buf >> 24) & 0xff;
return val;
}
// Get 16 bytes CID or CSD
int eMMC_CmdAndRsp2(EMMC_INFO_T *pSD, unsigned char ucCmd, unsigned int uArg, unsigned int *puR2ptr)
{
unsigned int i, buf;
unsigned int tmpBuf[5];
outpw(REG_FMI_EMMCCMD, uArg);
buf = (inpw(REG_FMI_EMMCCTL) & (~FMI_EMMCCTL_CMDCODE_Msk)) | (ucCmd << 8) | (FMI_EMMCCTL_COEN_Msk | FMI_EMMCCTL_R2EN_Msk);
outpw(REG_FMI_EMMCCTL, buf);
while (inpw(REG_FMI_EMMCCTL) & FMI_EMMCCTL_R2EN_Msk)
{
if (pSD->IsCardInsert == FALSE)
return EMMC_NO_CARD;
}
if (inpw(REG_FMI_EMMCINTSTS) & FMI_EMMCINTSTS_CRC7_Msk)
{
for (i = 0; i < 5; i++)
tmpBuf[i] = eMMC_Swap32(*(int *)(FMI_BA + i * 4));
for (i = 0; i < 4; i++)
*puR2ptr++ = ((tmpBuf[i] & 0x00ffffff) << 8) | ((tmpBuf[i + 1] & 0xff000000) >> 24);
return 0;
}
else
return EMMC_CRC7_ERROR;
}
int eMMC_CmdAndRspDataIn(EMMC_INFO_T *pSD, unsigned char ucCmd, unsigned int uArg)
{
volatile int buf;
outpw(REG_FMI_EMMCCMD, uArg);
buf = (inpw(REG_FMI_EMMCCTL) & (~FMI_EMMCCTL_CMDCODE_Msk)) | (ucCmd << 8) | (FMI_EMMCCTL_COEN_Msk | FMI_EMMCCTL_RIEN_Msk | FMI_EMMCCTL_DIEN_Msk);
outpw(REG_FMI_EMMCCTL, buf);
while (inpw(REG_FMI_EMMCCTL) & FMI_EMMCCTL_RIEN_Msk)
{
if (pSD->IsCardInsert == FALSE)
return EMMC_NO_CARD;
}
while (inpw(REG_FMI_EMMCCTL) & FMI_EMMCCTL_DIEN_Msk)
{
if (pSD->IsCardInsert == FALSE)
return EMMC_NO_CARD;
}
if (!(inpw(REG_FMI_EMMCINTSTS) & FMI_EMMCINTSTS_CRC7_Msk)) // check CRC7
{
return EMMC_CRC7_ERROR;
}
if (!(inpw(REG_FMI_EMMCINTSTS) & FMI_EMMCINTSTS_CRC16_Msk)) // check CRC16
{
return EMMC_CRC16_ERROR;
}
return 0;
}
// there are 3 bits for divider N0, maximum is 8
#define EMMC_CLK_DIV0_MAX 8
// there are 8 bits for divider N1, maximum is 256
#define EMMC_CLK_DIV1_MAX 256
void eMMC_Set_clock(unsigned int clock_khz)
{
UINT32 rate, div0, div1, i;
//--- calculate the rate that 2 divider have to divide
// _fmi_uFMIReferenceClock is the input clock with unit KHz like as APLL/UPLL and
if (clock_khz > gFMIReferenceClock)
{
//sysprintf("ERROR: wrong eMMC clock %dKHz since it is faster than input clock %dKHz !\n", clock_khz, gFMIReferenceClock);
return;
}
rate = gFMIReferenceClock / clock_khz;
// choose slower clock if system clock cannot divisible by wanted clock
if (gFMIReferenceClock % clock_khz != 0)
rate++;
if (rate > (EMMC_CLK_DIV0_MAX * EMMC_CLK_DIV1_MAX)) // the maximum divider for EMMC_CLK is (EMMC_CLK_DIV0_MAX * EMMC_CLK_DIV1_MAX)
{
//sysprintf("ERROR: wrong SD clock %dKHz since it is slower than input clock %dKHz/%d !\n", clock_khz, gFMIReferenceClock, EMMC_CLK_DIV0_MAX * EMMC_CLK_DIV1_MAX);
return;
}
//--- choose a suitable value for first divider
for (div0 = EMMC_CLK_DIV0_MAX; div0 > 0; div0--) // choose the maximum value if can exact division
{
if (rate % div0 == 0)
break;
}
if (div0 == 0) // cannot exact division
{
// if rate <= EMMC_CLK_DIV1_MAX, set div0 to 1 since div1 can exactly divide input clock
div0 = (rate <= EMMC_CLK_DIV1_MAX) ? 1 : EMMC_CLK_DIV0_MAX;
}
//--- calculate the second divider
div1 = rate / div0;
div1 &= 0xFF;
//sysprintf("Set_clock(): wanted clock=%d, rate=%d, div0=%d, div1=%d\n", clock_khz, rate, div0, div1);
//--- setup register
outpw(REG_CLK_DIVCTL3, (inpw(REG_CLK_DIVCTL3) & ~0x18) | (0x3 << 3));
outpw(REG_CLK_DIVCTL3, (inpw(REG_CLK_DIVCTL3) & ~0x7) | (div0 - 1));
outpw(REG_CLK_DIVCTL3, (inpw(REG_CLK_DIVCTL3) & ~0xff00) | ((div1 - 1) << 8));
for (i = 0; i < 1000; i++); // waiting for clock become stable
return;
}
// Initial
int eMMC_Init(EMMC_INFO_T *pSD)
{
int volatile i, status;
unsigned int resp;
unsigned int CIDBuffer[4];
unsigned int volatile u32CmdTimeOut;
// set the clock to 300KHz
eMMC_Set_clock(300);
// power ON 74 clock
outpw(REG_FMI_EMMCCTL, inpw(REG_FMI_EMMCCTL) | FMI_EMMCCTL_CLK74OEN_Msk);
while (inpw(REG_FMI_EMMCCTL) & FMI_EMMCCTL_CLK74OEN_Msk);
eMMC_Command(pSD, 0, 0); // reset all cards
for (i = 0x1000; i > 0; i--);
// initial SDHC
_fmi_uR7_CMD = 1;
u32CmdTimeOut = 5000;
i = eMMC_CmdAndRsp(pSD, 8, 0x00000155, u32CmdTimeOut);
if (i == 0)
{
// SD 2.0
eMMC_CmdAndRsp(pSD, 55, 0x00, u32CmdTimeOut);
_fmi_uR3_CMD = 1;
eMMC_CmdAndRsp(pSD, 41, 0x40ff8000, u32CmdTimeOut); // 2.7v-3.6v
resp = inpw(REG_FMI_EMMCRESP0);
while (!(resp & 0x00800000)) // check if card is ready
{
eMMC_CmdAndRsp(pSD, 55, 0x00, u32CmdTimeOut);
_fmi_uR3_CMD = 1;
eMMC_CmdAndRsp(pSD, 41, 0x40ff8000, u32CmdTimeOut); // 3.0v-3.4v
resp = inpw(REG_FMI_EMMCRESP0);
}
if (resp & 0x00400000)
pSD->CardType = EMMC_TYPE_SD_HIGH;
else
pSD->CardType = EMMC_TYPE_SD_LOW;
}
else
{
// SD 1.1
eMMC_Command(pSD, 0, 0); // reset all cards
for (i = 0x100; i > 0; i--);
i = eMMC_CmdAndRsp(pSD, 55, 0x00, u32CmdTimeOut);
if (i == 2) // MMC memory
{
eMMC_Command(pSD, 0, 0); // reset
for (i = 0x100; i > 0; i--);
_fmi_uR3_CMD = 1;
if (eMMC_CmdAndRsp(pSD, 1, 0x40ff8000, u32CmdTimeOut) != 2) // eMMC memory
{
resp = inpw(REG_FMI_EMMCRESP0);
while (!(resp & 0x00800000)) // check if card is ready
{
_fmi_uR3_CMD = 1;
eMMC_CmdAndRsp(pSD, 1, 0x40ff8000, u32CmdTimeOut); // high voltage
resp = inpw(REG_FMI_EMMCRESP0);
}
if (resp & 0x00400000)
pSD->CardType = EMMC_TYPE_EMMC;
else
pSD->CardType = EMMC_TYPE_MMC;
}
else
{
pSD->CardType = EMMC_TYPE_UNKNOWN;
return EMMC_ERR_DEVICE;
}
}
else if (i == 0) // SD Memory
{
_fmi_uR3_CMD = 1;
eMMC_CmdAndRsp(pSD, 41, 0x00ff8000, u32CmdTimeOut); // 3.0v-3.4v
resp = inpw(REG_FMI_EMMCRESP0);
while (!(resp & 0x00800000)) // check if card is ready
{
eMMC_CmdAndRsp(pSD, 55, 0x00, u32CmdTimeOut);
_fmi_uR3_CMD = 1;
eMMC_CmdAndRsp(pSD, 41, 0x00ff8000, u32CmdTimeOut); // 3.0v-3.4v
resp = inpw(REG_FMI_EMMCRESP0);
}
pSD->CardType = EMMC_TYPE_SD_LOW;
}
else
{
pSD->CardType = EMMC_TYPE_UNKNOWN;
return EMMC_INIT_ERROR;
}
}
// CMD2, CMD3
if (pSD->CardType != EMMC_TYPE_UNKNOWN)
{
eMMC_CmdAndRsp2(pSD, 2, 0x00, CIDBuffer);
if ((pSD->CardType == EMMC_TYPE_MMC) || (pSD->CardType == EMMC_TYPE_EMMC))
{
if ((status = eMMC_CmdAndRsp(pSD, 3, 0x10000, 0)) != 0) // set RCA
return status;
pSD->RCA = 0x10000;
}
else
{
if ((status = eMMC_CmdAndRsp(pSD, 3, 0x00, 0)) != 0) // get RCA
return status;
else
pSD->RCA = (inpw(REG_FMI_EMMCRESP0) << 8) & 0xffff0000;
}
}
#if 0
if (pSD->CardType == EMMC_TYPE_SD_HIGH)
sysprintf("This is high capacity SD memory card\n");
if (pSD->CardType == EMMC_TYPE_SD_LOW)
sysprintf("This is standard capacity SD memory card\n");
if (pSD->CardType == EMMC_TYPE_EMMC)
sysprintf("This is eMMC memory card\n");
#endif
return 0;
}
int eMMC_SwitchToHighSpeed(EMMC_INFO_T *pSD)
{
int volatile status = 0;
unsigned short current_comsumption, busy_status0;
outpw(REG_FMI_DMASA, (unsigned int)_fmi_peMMCBuffer); // set DMA transfer starting address
outpw(REG_FMI_EMMCBLEN, 63); // 512 bit
if ((status = eMMC_CmdAndRspDataIn(pSD, 6, 0x00ffff01)) != 0)
return 1;
current_comsumption = _fmi_peMMCBuffer[0] << 8 | _fmi_peMMCBuffer[1];
if (!current_comsumption)
return 1;
busy_status0 = _fmi_peMMCBuffer[28] << 8 | _fmi_peMMCBuffer[29];
if (!busy_status0) // function ready
{
outpw(REG_FMI_DMASA, (unsigned int)_fmi_peMMCBuffer); // set DMA transfer starting address
outpw(REG_FMI_EMMCBLEN, 63); // 512 bit
if ((status = eMMC_CmdAndRspDataIn(pSD, 6, 0x80ffff01)) != 0)
return 1;
// function change timing: 8 clocks
outpw(REG_FMI_EMMCCTL, inpw(REG_FMI_EMMCCTL) | FMI_EMMCCTL_CLK8OEN_Msk);
while (inpw(REG_FMI_EMMCCTL) & FMI_EMMCCTL_CLK8OEN_Msk);
current_comsumption = _fmi_peMMCBuffer[0] << 8 | _fmi_peMMCBuffer[1];
if (!current_comsumption)
return 1;
return 0;
}
else
return 1;
}
int eMMC_SelectCardType(EMMC_INFO_T *pSD)
{
int volatile status = 0;
//unsigned int arg;
if ((status = eMMC_CmdAndRsp(pSD, 7, pSD->RCA, 0)) != 0)
return status;
eMMC_CheckRB();
// if SD card set 4bit
if (pSD->CardType == EMMC_TYPE_SD_HIGH)
{
_fmi_peMMCBuffer = (unsigned char *)((unsigned int)_fmi_uceMMCBuffer);
outpw(REG_FMI_DMASA, (unsigned int)_fmi_peMMCBuffer); // set DMA transfer starting address
outpw(REG_FMI_EMMCBLEN, 0x07); // 64 bit
if ((status = eMMC_CmdAndRsp(pSD, 55, pSD->RCA, 0)) != 0)
return status;
if ((status = eMMC_CmdAndRspDataIn(pSD, 51, 0x00)) != 0)
return status;
if ((_fmi_uceMMCBuffer[0] & 0xf) == 0x2)
{
status = eMMC_SwitchToHighSpeed(pSD);
if (status == 0)
{
/* divider */
eMMC_Set_clock(SDHC_FREQ);
}
}
if ((status = eMMC_CmdAndRsp(pSD, 55, pSD->RCA, 0)) != 0)
return status;
if ((status = eMMC_CmdAndRsp(pSD, 6, 0x02, 0)) != 0) // set bus width
return status;
outpw(REG_FMI_EMMCCTL, inpw(REG_FMI_EMMCCTL) | FMI_EMMCCTL_DBW_Msk);
}
else if (pSD->CardType == EMMC_TYPE_SD_LOW)
{
_fmi_peMMCBuffer = (unsigned char *)((unsigned int)_fmi_uceMMCBuffer);
outpw(REG_FMI_DMASA, (unsigned int) _fmi_peMMCBuffer); // set DMA transfer starting address
outpw(REG_FMI_EMMCBLEN, 0x07); // 64 bit
if ((status = eMMC_CmdAndRsp(pSD, 55, pSD->RCA, 0)) != 0)
return status;
if ((status = eMMC_CmdAndRspDataIn(pSD, 51, 0x00)) != 0)
return status;
// set data bus width. ACMD6 for SD card, SDCR_DBW for host.
if ((status = eMMC_CmdAndRsp(pSD, 55, pSD->RCA, 0)) != 0)
return status;
if ((status = eMMC_CmdAndRsp(pSD, 6, 0x02, 0)) != 0) // set bus width
return status;
outpw(REG_FMI_EMMCCTL, inpw(REG_FMI_EMMCCTL) | FMI_EMMCCTL_DBW_Msk);
}
else if (pSD->CardType == EMMC_TYPE_MMC)
{
outpw(REG_FMI_EMMCCTL, inpw(REG_FMI_EMMCCTL) & ~FMI_EMMCCTL_DBW_Msk);
}
else if (pSD->CardType == EMMC_TYPE_EMMC)
{
//--- sent CMD6 to MMC card to set bus width to 4 bits mode, skymedi only support 1-bit
// set CMD6 argument Access field to 3, Index to 183, Value to 1 (4-bit mode)
// arg = (3 << 24) | (183 << 16) | (1 << 8);
// if ((status = eMMC_CmdAndRsp(pSD, 6, arg, 0)) != 0)
// return status;
// eMMC_CheckRB();
// outpw(REG_FMI_EMMCCTL, inpw(REG_FMI_EMMCCTL)| FMI_EMMCCTL_DBW_Msk);
outpw(REG_FMI_EMMCCTL, inpw(REG_FMI_EMMCCTL) & ~FMI_EMMCCTL_DBW_Msk);
}
if ((status = eMMC_CmdAndRsp(pSD, 16, FMI_BLOCK_SIZE, 0)) != 0) // set block length
return status;
outpw(REG_FMI_EMMCBLEN, FMI_BLOCK_SIZE - 1); // set the block size
eMMC_Command(pSD, 7, 0);
outpw(REG_FMI_EMMCCTL, inpw(REG_FMI_EMMCCTL) | FMI_EMMCCTL_CLK8OEN_Msk);
while (inpw(REG_FMI_EMMCCTL) & FMI_EMMCCTL_CLK8OEN_Msk);
outpw(REG_FMI_EMMCINTEN, inpw(REG_FMI_EMMCINTEN) | FMI_EMMCINTEN_BLKDIEN_Msk);
return 0;
}
void eMMC_Get_info(EMMC_INFO_T *pSD)
{
unsigned int R_LEN, C_Size, MULT, size;
unsigned int Buffer[4];
unsigned char *ptr;
eMMC_CmdAndRsp2(pSD, 9, pSD->RCA, Buffer);
if ((pSD->CardType == EMMC_TYPE_MMC) || (pSD->CardType == EMMC_TYPE_EMMC))
{
// for MMC/eMMC card
if ((Buffer[0] & 0xc0000000) == 0xc0000000)
{
// CSD_STRUCTURE [127:126] is 3
// CSD version depend on EXT_CSD register in eMMC v4.4 for card size > 2GB
eMMC_CmdAndRsp(pSD, 7, pSD->RCA, 0);
ptr = (unsigned char *)((unsigned int)_fmi_uceMMCBuffer);
outpw(REG_FMI_DMASA, (unsigned int)ptr); // set DMA transfer starting address
outpw(REG_FMI_EMMCBLEN, 511); // read 512 bytes for EXT_CSD
if (eMMC_CmdAndRspDataIn(pSD, 8, 0x00) != 0)
return;
eMMC_Command(pSD, 7, 0);
outpw(REG_FMI_EMMCCTL, inpw(REG_FMI_EMMCCTL) | FMI_EMMCCTL_CLK8OEN_Msk);
while (inpw(REG_FMI_EMMCCTL) & FMI_EMMCCTL_CLK8OEN_Msk);
pSD->totalSectorN = (*(unsigned int *)(ptr + 212));
pSD->diskSize = pSD->totalSectorN / 2;
}
else
{
// CSD version v1.0/1.1/1.2 in eMMC v4.4 spec for card size <= 2GB
R_LEN = (Buffer[1] & 0x000f0000) >> 16;
C_Size = ((Buffer[1] & 0x000003ff) << 2) | ((Buffer[2] & 0xc0000000) >> 30);
MULT = (Buffer[2] & 0x00038000) >> 15;
size = (C_Size + 1) * (1 << (MULT + 2)) * (1 << R_LEN);
pSD->diskSize = size / 1024;
pSD->totalSectorN = size / 512;
}
}
else
{
if (Buffer[0] & 0xc0000000)
{
C_Size = ((Buffer[1] & 0x0000003f) << 16) | ((Buffer[2] & 0xffff0000) >> 16);
size = (C_Size + 1) * 512; // Kbytes
pSD->diskSize = size;
pSD->totalSectorN = size << 1;
}
else
{
R_LEN = (Buffer[1] & 0x000f0000) >> 16;
C_Size = ((Buffer[1] & 0x000003ff) << 2) | ((Buffer[2] & 0xc0000000) >> 30);
MULT = (Buffer[2] & 0x00038000) >> 15;
size = (C_Size + 1) * (1 << (MULT + 2)) * (1 << R_LEN);
pSD->diskSize = size / 1024;
pSD->totalSectorN = size / 512;
}
}
pSD->sectorSize = 512;
//sysprintf("The size is %d KB\n", pSD->diskSize);
}
/// @endcond HIDDEN_SYMBOLS
/**
* @brief This function use to tell FMI eMMC engine clock.
*
* @param[in] u32Clock Set current eMMC engine clock
*
* @return None
*/
void FMI_SetReferenceClock(unsigned int u32Clock)
{
gFMIReferenceClock = u32Clock; // kHz
}
/**
* @brief This function use to reset FMI eMMC function.
*
* @return None
*/
void eMMC_Open(void)
{
// enable DMAC
outpw(REG_FMI_DMACTL, FMI_DMACTL_DMARST_Msk);
while (inpw(REG_FMI_DMACTL) & FMI_DMACTL_DMARST_Msk);
outpw(REG_FMI_DMACTL, FMI_DMACTL_DMAEN_Msk);
//Reset Global
outpw(REG_FMI_CTL, FMI_CTL_CTLRST_Msk);
while (inpw(REG_FMI_CTL) & FMI_CTL_CTLRST_Msk);
// enable eMMC
outpw(REG_FMI_CTL, FMI_CTL_EMMCEN_Msk);
outpw(REG_FMI_EMMCCTL, inpw(REG_FMI_EMMCCTL) | FMI_EMMCCTL_CTLRST_Msk);
while (inpw(REG_FMI_EMMCCTL) & FMI_EMMCCTL_CTLRST_Msk);
memset(&eMMC, 0, sizeof(EMMC_INFO_T));
eMMC.IsCardInsert = 1;
}
/**
* @brief This function use to initial eMMC card.
*
* @return None
*/
void eMMC_Probe(void)
{
// Disable FMI interrupt
outpw(REG_FMI_INTEN, 0);
outpw(REG_FMI_EMMCCTL, inpw(REG_FMI_EMMCCTL) & ~(FMI_EMMCCTL_SDNWR_Msk | FMI_EMMCCTL_BLKCNT_Msk | FMI_EMMCCTL_DBW_Msk));
outpw(REG_FMI_EMMCCTL, inpw(REG_FMI_EMMCCTL) | (0x09 << FMI_EMMCCTL_SDNWR_Pos) | (0x01 << FMI_EMMCCTL_BLKCNT_Pos));
if (eMMC_Init(&eMMC) < 0)
return;
/* divider */
if ((eMMC.CardType == EMMC_TYPE_MMC) || (eMMC.CardType == EMMC_TYPE_EMMC))
eMMC_Set_clock(MMC_FREQ);
else
eMMC_Set_clock(SD_FREQ);
eMMC_Get_info(&eMMC);
if (eMMC_SelectCardType(&eMMC))
return;
emmc_ok = 1;
}
/**
* @brief This function use to read data from eMMC card.
*
* @param[out] pu8BufAddr The buffer to receive the data from eMMC card.
* @param[in] u32StartSec The start read sector address.
* @param[in] u32SecCount The the read sector number of data
*
* @return None
*/
unsigned int eMMC_Read(unsigned char *pu8BufAddr, unsigned int u32StartSec, unsigned int u32SecCount)
{
char volatile bIsSendCmd = FALSE;
unsigned int volatile reg;
int volatile i, loop, status;
unsigned int blksize = FMI_BLOCK_SIZE;
EMMC_INFO_T *pSD;
pSD = &eMMC;
//--- check input parameters
if (u32SecCount == 0)
return EMMC_SELECT_ERROR;
if ((status = eMMC_CmdAndRsp(pSD, 7, pSD->RCA, 0)) != 0)
return status;
eMMC_CheckRB();
outpw(REG_FMI_EMMCBLEN, blksize - 1); // the actual byte count is equal to (BLEN+1)
if ((pSD->CardType == EMMC_TYPE_SD_HIGH) || (pSD->CardType == EMMC_TYPE_EMMC))
outpw(REG_FMI_EMMCCMD, u32StartSec);
else
outpw(REG_FMI_EMMCCMD, u32StartSec * blksize);
outpw(REG_FMI_DMASA, (unsigned int)pu8BufAddr);
loop = u32SecCount / 255;
for (i = 0; i < loop; i++)
{
_fmi_eMMCDataReady = FALSE;
reg = inpw(REG_FMI_EMMCCTL) & ~FMI_EMMCCTL_CMDCODE_Msk;
reg = reg | 0xff0000;
if (bIsSendCmd == FALSE)
{
outpw(REG_FMI_EMMCCTL, reg | (18 << 8) | (FMI_EMMCCTL_COEN_Msk | FMI_EMMCCTL_RIEN_Msk | FMI_EMMCCTL_DIEN_Msk));
bIsSendCmd = TRUE;
}
else
outpw(REG_FMI_EMMCCTL, reg | FMI_EMMCCTL_DIEN_Msk);
while (!_fmi_eMMCDataReady)
{
// if ((inpw(REG_FMI_EMMCINTSTS) & FMI_EMMCINTSTS_BLKDIF_Msk) && (!(inpw(REG_FMI_EMMCCTL) & FMI_EMMCCTL_DIEN_Msk))) {
// outpw(REG_FMI_EMMCINTSTS, FMI_EMMCINTSTS_BLKDIF_Msk);
// break;
// }
if (pSD->IsCardInsert == FALSE)
return EMMC_NO_CARD;
}
if (!(inpw(REG_FMI_EMMCINTSTS) & FMI_EMMCINTSTS_CRC7_Msk)) // check CRC7
{
return EMMC_CRC7_ERROR;
}
if (!(inpw(REG_FMI_EMMCINTSTS) & FMI_EMMCINTSTS_CRC16_Msk)) // check CRC16
{
return EMMC_CRC16_ERROR;
}
}
loop = u32SecCount % 255;
if (loop != 0)
{
_fmi_eMMCDataReady = FALSE;
reg = inpw(REG_FMI_EMMCCTL) & (~FMI_EMMCCTL_CMDCODE_Msk);
reg = reg & (~FMI_EMMCCTL_BLKCNT_Msk);
reg |= (loop << 16);
if (bIsSendCmd == FALSE)
{
outpw(REG_FMI_EMMCCTL, reg | (18 << 8) | (FMI_EMMCCTL_COEN_Msk | FMI_EMMCCTL_RIEN_Msk | FMI_EMMCCTL_DIEN_Msk));
bIsSendCmd = TRUE;
}
else
outpw(REG_FMI_EMMCCTL, reg | FMI_EMMCCTL_DIEN_Msk);
while (!_fmi_eMMCDataReady)
{
// if ((inpw(REG_FMI_EMMCINTSTS) & FMI_EMMCINTSTS_BLKDIF_Msk) && (!(inpw(REG_FMI_EMMCCTL) & FMI_EMMCCTL_DIEN_Msk))) {
// outpw(REG_FMI_EMMCINTSTS, FMI_EMMCINTSTS_BLKDIF_Msk);
// break;
// }
if (pSD->IsCardInsert == FALSE)
return EMMC_NO_CARD;
}
if (!(inpw(REG_FMI_EMMCINTSTS) & FMI_EMMCINTSTS_CRC7_Msk)) // check CRC7
{
return EMMC_CRC7_ERROR;
}
if (!(inpw(REG_FMI_EMMCINTSTS) & FMI_EMMCINTSTS_CRC16_Msk)) // check CRC16
{
return EMMC_CRC16_ERROR;
}
}
if (eMMC_CmdAndRsp(pSD, 12, 0, 0)) // stop command
{
//sysprintf("stop command fail !!\n");
return EMMC_CRC7_ERROR;
}
eMMC_CheckRB();
eMMC_Command(pSD, 7, 0);
outpw(REG_FMI_EMMCCTL, inpw(REG_FMI_EMMCCTL) | FMI_EMMCCTL_CLK8OEN_Msk);
while (inpw(REG_FMI_EMMCCTL) & FMI_EMMCCTL_CLK8OEN_Msk);
return 0;
}
/**
* @brief This function use to write data to eMMC card.
*
* @param[in] pu8BufAddr The buffer to send the data to SD card.
* @param[in] u32StartSec The start write sector address.
* @param[in] u32SecCount The the write sector number of data.
*
* @return - \ref EMMC_SELECT_ERROR u32SecCount is zero.
* - \ref EMMC_NO_CARD SD card be removed.
* - \ref EMMC_CRC_ERROR CRC error happen.
* - \ref EMMC_CRC7_ERROR CRC7 error happen.
* - \ref Successful Write data to eMMC card success.
*/
unsigned int eMMC_Write(unsigned char *pu8BufAddr, unsigned int u32StartSec, unsigned int u32SecCount)
{
char volatile bIsSendCmd = FALSE;
unsigned int volatile reg;
int volatile i, loop, status;
EMMC_INFO_T *pSD;
pSD = &eMMC;
//--- check input parameters
if (u32SecCount == 0)
return EMMC_SELECT_ERROR;
if ((status = eMMC_CmdAndRsp(pSD, 7, pSD->RCA, 0)) != 0)
return status;
eMMC_CheckRB();
// According to SD Spec v2.0/ eMMC v4.4, the write CMD block size MUST be 512, and the start address MUST be 512*n.
outpw(REG_FMI_EMMCBLEN, FMI_BLOCK_SIZE - 1); // set the block size
if ((pSD->CardType == EMMC_TYPE_SD_HIGH) || (pSD->CardType == EMMC_TYPE_EMMC))
outpw(REG_FMI_EMMCCMD, u32StartSec);
else
outpw(REG_FMI_EMMCCMD, u32StartSec * FMI_BLOCK_SIZE); // set start address for CMD
outpw(REG_FMI_DMASA, (unsigned int)pu8BufAddr);
loop = u32SecCount / 255; // the maximum block count is 0xFF=255
for (i = 0; i < loop; i++)
{
_fmi_eMMCDataReady = FALSE;
reg = inpw(REG_FMI_EMMCCTL) & 0xff00c080;
reg = reg | 0xff0000;
if (!bIsSendCmd)
{
outpw(REG_FMI_EMMCCTL, reg | (25 << 8) | (FMI_EMMCCTL_COEN_Msk | FMI_EMMCCTL_RIEN_Msk | FMI_EMMCCTL_DOEN_Msk));
bIsSendCmd = TRUE;
}
else
outpw(REG_FMI_EMMCCTL, reg | FMI_EMMCCTL_DOEN_Msk);
while (!_fmi_eMMCDataReady)
{
// if ((inpw(REG_FMI_EMMCINTSTS) & FMI_EMMCINTSTS_BLKDIF_Msk) && (!(inpw(REG_FMI_EMMCCTL) & FMI_EMMCCTL_DOEN_Msk))) {
// outpw(REG_FMI_EMMCINTSTS, FMI_EMMCINTSTS_BLKDIF_Msk);
// break;
// }
if (pSD->IsCardInsert == FALSE)
return EMMC_NO_CARD;
}
if ((inpw(REG_FMI_EMMCINTSTS) & FMI_EMMCINTSTS_CRCIF_Msk) != 0) // check CRC
{
outpw(REG_FMI_EMMCINTSTS, FMI_EMMCINTSTS_CRCIF_Msk);
return EMMC_CRC_ERROR;
}
}
loop = u32SecCount % 255;
if (loop != 0)
{
_fmi_eMMCDataReady = FALSE;
reg = (inpw(REG_FMI_EMMCCTL) & 0xff00c080) | (loop << 16);
if (!bIsSendCmd)
{
outpw(REG_FMI_EMMCCTL, reg | (25 << 8) | (FMI_EMMCCTL_COEN_Msk | FMI_EMMCCTL_RIEN_Msk | FMI_EMMCCTL_DOEN_Msk));
bIsSendCmd = TRUE;
}
else
outpw(REG_FMI_EMMCCTL, reg | FMI_EMMCCTL_DOEN_Msk);
while (!_fmi_eMMCDataReady)
{
// if ((inpw(REG_FMI_EMMCINTSTS) & FMI_EMMCINTSTS_BLKDIF_Msk) && (!(inpw(REG_FMI_EMMCCTL) & FMI_EMMCCTL_DOEN_Msk))) {
// outpw(REG_FMI_EMMCINTSTS, FMI_EMMCINTSTS_BLKDIF_Msk);
// break;
// }
if (pSD->IsCardInsert == FALSE)
return EMMC_NO_CARD;
}
if ((inpw(REG_FMI_EMMCINTSTS) & FMI_EMMCINTSTS_CRCIF_Msk) != 0) // check CRC
{
outpw(REG_FMI_EMMCINTSTS, FMI_EMMCINTSTS_CRCIF_Msk);
return EMMC_CRC_ERROR;
}
}
outpw(REG_FMI_EMMCINTSTS, FMI_EMMCINTSTS_CRCIF_Msk);
if (eMMC_CmdAndRsp(pSD, 12, 0, 0)) // stop command
{
return EMMC_CRC7_ERROR;
}
eMMC_CheckRB();
eMMC_Command(pSD, 7, 0);
outpw(REG_FMI_EMMCCTL, inpw(REG_FMI_EMMCCTL) | FMI_EMMCCTL_CLK8OEN_Msk);
while (inpw(REG_FMI_EMMCCTL) & FMI_EMMCCTL_CLK8OEN_Msk);
return 0;
}
/*@}*/ /* end of group N9H30_FMI_EXPORTED_FUNCTIONS */
/*@}*/ /* end of group N9H30_FMI_Driver */
/*@}*/ /* end of group N9H30_Device_Driver */
/*** (C) COPYRIGHT 2018 Nuvoton Technology Corp. ***/