rt-thread-official/bsp/hpmicro/libraries/drivers/drv_adc.c

294 lines
6.9 KiB
C

/*
* Copyright (c) 2021-2023 HPMicro
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <rtthread.h>
#ifdef BSP_USING_ADC
#include <rtdevice.h>
#include "board.h"
#include "drv_adc.h"
#ifdef BSP_USING_ADC12
#include "hpm_adc12_drv.h"
#endif
#ifdef BSP_USING_ADC16
#include "hpm_adc16_drv.h"
#endif
#include "hpm_sysctl_drv.h"
typedef struct
{
bool enabled;
} adc_channel_state_t;
typedef struct
{
char *adc_name;
struct rt_adc_device hpm_adc_device;
bool is_adc12;
bool adc_enabled;
uint32_t adc_base;
adc_channel_state_t chn_state[16];
}hpm_rtt_adc;
static uint32_t hpm_adc_init_clock(struct rt_adc_device *device);
static rt_err_t hpm_adc_enabled(struct rt_adc_device *device, rt_int8_t channel, rt_bool_t enabled);
static rt_err_t hpm_get_adc_value(struct rt_adc_device *device, rt_int8_t channel, rt_uint32_t *value);
static rt_uint8_t hpm_get_resolution(struct rt_adc_device *device);
static rt_int16_t hpm_get_vref(struct rt_adc_device *device);
static const struct rt_adc_ops hpm_adc_ops =
{
.enabled = hpm_adc_enabled,
.convert = hpm_get_adc_value,
.get_resolution = hpm_get_resolution,
.get_vref = hpm_get_vref,
};
static hpm_rtt_adc hpm_adc_config_tbl[] =
{
#ifdef BSP_USING_ADC0
{
.adc_name = "adc0",
#ifdef BSP_USING_ADC12
.is_adc12 = true,
#else
.is_adc12 = false,
#endif
.adc_base = (uint32_t)HPM_ADC0,
},
#endif
#ifdef BSP_USING_ADC1
{
.adc_name = "adc1",
#ifdef BSP_USING_ADC12
.is_adc12 = true,
#else
.is_adc12 = false,
#endif
.adc_base = (uint32_t)HPM_ADC1,
},
#endif
#ifdef BSP_USING_ADC2
{
.adc_name = "adc2",
#ifdef BSP_USING_ADC12
.is_adc12 = true,
#else
.is_adc12 = false,
#endif
.adc_base = (uint32_t)HPM_ADC2,
},
#endif
#ifdef BSP_USING_ADC3
{
.adc_name = "adc3",
.is_adc12 = false,
.adc_base = (uint32_t)HPM_ADC3,
},
#endif
};
static uint8_t adc_nums = sizeof(hpm_adc_config_tbl) / sizeof(hpm_rtt_adc);
static uint32_t hpm_adc_init_clock(struct rt_adc_device *device)
{
hpm_rtt_adc *hpm_adc;
uint32_t clock_freq = 0;
RT_ASSERT(device != RT_NULL);
hpm_adc = (hpm_rtt_adc *)device->parent.user_data;
#if defined(ADC12_SOC_MAX_CH_NUM)
if (hpm_adc->is_adc12)
{
clock_freq = board_init_adc12_clock((ADC12_Type*)hpm_adc->adc_base);
} else
#endif
{
clock_freq = board_init_adc16_clock((ADC16_Type*)hpm_adc->adc_base);
}
return clock_freq;
}
static rt_err_t init_adc_config(hpm_rtt_adc *adc)
{
hpm_stat_t ret;
if (adc->is_adc12) {
#ifdef BSP_USING_ADC12
adc12_config_t cfg;
adc12_get_default_config(&cfg);
cfg.res = adc12_res_12_bits;
cfg.conv_mode = adc12_conv_mode_oneshot;
cfg.adc_ahb_en = true;
cfg.adc_clk_div = 3;
ret = adc12_init((ADC12_Type *)adc->adc_base, &cfg);
if (ret != status_success) {
return RT_ERROR;
}
#endif
} else {
#ifdef BSP_USING_ADC16
adc16_config_t cfg;
adc16_get_default_config(&cfg);
cfg.conv_mode = adc16_conv_mode_oneshot;
cfg.res = adc16_res_16_bits;
cfg.adc_clk_div = 4;
cfg.sel_sync_ahb = true;
cfg.adc_ahb_en = true;
cfg.wait_dis = 0;
ret = adc16_init((ADC16_Type *)adc->adc_base, &cfg);
if (ret != status_success) {
return RT_ERROR;
}
#endif
}
return RT_EOK;
}
static rt_err_t init_channel_config(hpm_rtt_adc *adc, uint16_t channel)
{
hpm_stat_t ret;
if (adc->is_adc12) {
#ifdef BSP_USING_ADC12
adc12_channel_config_t ch_cfg;
adc12_get_channel_default_config(&ch_cfg);
ch_cfg.ch = adc->channel;
ch_cfg.diff_sel = adc12_sample_signal_single_ended;
ch_cfg.sample_cycle = 20;
ret = adc12_init_channel((ADC12_Type *)adc->adc_base, &ch_cfg);
if (ret != status_success) {
return RT_ERROR;
}
#endif
} else {
#ifdef BSP_USING_ADC16
adc16_channel_config_t ch_cfg;
adc16_get_channel_default_config(&ch_cfg);
ch_cfg.ch = channel;
ch_cfg.sample_cycle = 20;
ret = adc16_init_channel((ADC16_Type *)adc->adc_base, &ch_cfg);
if (ret != status_success) {
return RT_ERROR;
}
#endif
}
return RT_EOK;
}
static rt_err_t hpm_adc_enabled(struct rt_adc_device *device, rt_int8_t channel, rt_bool_t enabled)
{
hpm_rtt_adc *hpm_adc;
rt_err_t ret;
RT_ASSERT(device != RT_NULL);
hpm_adc = (hpm_rtt_adc *)device->parent.user_data;
if (enabled == RT_TRUE) {
if (!hpm_adc->chn_state[channel].enabled)
{
if (!hpm_adc->adc_enabled)
{
(void)hpm_adc_init_clock(device);
ret = init_adc_config(hpm_adc);
if (ret != RT_EOK) {
return RT_ERROR;
}
hpm_adc->adc_enabled = true;
}
hpm_adc->chn_state[channel].enabled = true;
ret = init_channel_config(hpm_adc, channel);
if (ret != RT_EOK) {
return RT_ERROR;
}
}
}
else
{
/* Since the ADC channel cannot be truly disabled, do nothing here */
}
return RT_EOK;
}
static rt_err_t hpm_get_adc_value(struct rt_adc_device *device, rt_int8_t channel, rt_uint32_t *value)
{
hpm_rtt_adc *hpm_adc;
rt_err_t ret;
rt_uint16_t val;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(value != RT_NULL);
hpm_adc = (hpm_rtt_adc *)device->parent.user_data;
uint32_t adc_chn = (uint16_t)channel;
if (hpm_adc->is_adc12) {
#ifdef BSP_USING_ADC12
adc12_get_oneshot_result((ADC12_Type *)hpm_adc->adc_base, adc_chn, &val);
*value = val;
#endif
} else {
#ifdef BSP_USING_ADC16
hpm_stat_t status = adc16_get_oneshot_result((ADC16_Type *)hpm_adc->adc_base, adc_chn, &val);
*value = val;
// rt_kprintf("%s, status=%d\n", __func__, status);
#endif
}
return RT_EOK;
}
static rt_uint8_t hpm_get_resolution(struct rt_adc_device *device)
{
hpm_rtt_adc *hpm_adc;
RT_ASSERT(device != RT_NULL);
hpm_adc = (hpm_rtt_adc *)device->parent.user_data;
if (hpm_adc->is_adc12) {
return 12;
} else {
return 16;
}
}
static rt_int16_t hpm_get_vref(struct rt_adc_device *device)
{
return -RT_EIO;
}
int rt_hw_adc_init(void)
{
rt_err_t ret = RT_EOK;
for (uint32_t i = 0; i < adc_nums; i++) {
ret = rt_hw_adc_register(&hpm_adc_config_tbl[i].hpm_adc_device,
hpm_adc_config_tbl[i].adc_name,
&hpm_adc_ops,
&hpm_adc_config_tbl[i]);
if (ret != RT_EOK) {
ret = RT_ERROR;
break;
}
}
return ret;
}
INIT_BOARD_EXPORT(rt_hw_adc_init);
#endif /* BSP_USING_ADC */