4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-26 05:57:23 +08:00

1702 lines
53 KiB
C

/*
** 2005 December 14
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** $Id: sqlite3async.c,v 1.7 2009/07/18 11:52:04 danielk1977 Exp $
**
** This file contains the implementation of an asynchronous IO backend
** for SQLite.
*/
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO)
#include "sqlite3async.h"
#include "sqlite3.h"
#include <stdarg.h>
#include <string.h>
#include <assert.h>
/* Useful macros used in several places */
#define MIN(x,y) ((x)<(y)?(x):(y))
#define MAX(x,y) ((x)>(y)?(x):(y))
#ifndef SQLITE_AMALGAMATION
/* Macro to mark parameters as unused and silence compiler warnings. */
#define UNUSED_PARAMETER(x) (void)(x)
#endif
/* Forward references */
typedef struct AsyncWrite AsyncWrite;
typedef struct AsyncFile AsyncFile;
typedef struct AsyncFileData AsyncFileData;
typedef struct AsyncFileLock AsyncFileLock;
typedef struct AsyncLock AsyncLock;
/* Enable for debugging */
#ifndef NDEBUG
#include <stdio.h>
static int sqlite3async_trace = 0;
# define ASYNC_TRACE(X) if( sqlite3async_trace ) asyncTrace X
static void asyncTrace(const char *zFormat, ...){
char *z;
va_list ap;
va_start(ap, zFormat);
z = sqlite3_vmprintf(zFormat, ap);
va_end(ap);
fprintf(stderr, "[%d] %s", 0 /* (int)pthread_self() */, z);
sqlite3_free(z);
}
#else
# define ASYNC_TRACE(X)
#endif
/*
** THREAD SAFETY NOTES
**
** Basic rules:
**
** * Both read and write access to the global write-op queue must be
** protected by the async.queueMutex. As are the async.ioError and
** async.nFile variables.
**
** * The async.pLock list and all AsyncLock and AsyncFileLock
** structures must be protected by the async.lockMutex mutex.
**
** * The file handles from the underlying system are not assumed to
** be thread safe.
**
** * See the last two paragraphs under "The Writer Thread" for
** an assumption to do with file-handle synchronization by the Os.
**
** Deadlock prevention:
**
** There are three mutex used by the system: the "writer" mutex,
** the "queue" mutex and the "lock" mutex. Rules are:
**
** * It is illegal to block on the writer mutex when any other mutex
** are held, and
**
** * It is illegal to block on the queue mutex when the lock mutex
** is held.
**
** i.e. mutex's must be grabbed in the order "writer", "queue", "lock".
**
** File system operations (invoked by SQLite thread):
**
** xOpen
** xDelete
** xFileExists
**
** File handle operations (invoked by SQLite thread):
**
** asyncWrite, asyncClose, asyncTruncate, asyncSync
**
** The operations above add an entry to the global write-op list. They
** prepare the entry, acquire the async.queueMutex momentarily while
** list pointers are manipulated to insert the new entry, then release
** the mutex and signal the writer thread to wake up in case it happens
** to be asleep.
**
**
** asyncRead, asyncFileSize.
**
** Read operations. Both of these read from both the underlying file
** first then adjust their result based on pending writes in the
** write-op queue. So async.queueMutex is held for the duration
** of these operations to prevent other threads from changing the
** queue in mid operation.
**
**
** asyncLock, asyncUnlock, asyncCheckReservedLock
**
** These primitives implement in-process locking using a hash table
** on the file name. Files are locked correctly for connections coming
** from the same process. But other processes cannot see these locks
** and will therefore not honor them.
**
**
** The writer thread:
**
** The async.writerMutex is used to make sure only there is only
** a single writer thread running at a time.
**
** Inside the writer thread is a loop that works like this:
**
** WHILE (write-op list is not empty)
** Do IO operation at head of write-op list
** Remove entry from head of write-op list
** END WHILE
**
** The async.queueMutex is always held during the <write-op list is
** not empty> test, and when the entry is removed from the head
** of the write-op list. Sometimes it is held for the interim
** period (while the IO is performed), and sometimes it is
** relinquished. It is relinquished if (a) the IO op is an
** ASYNC_CLOSE or (b) when the file handle was opened, two of
** the underlying systems handles were opened on the same
** file-system entry.
**
** If condition (b) above is true, then one file-handle
** (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the
** file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush()
** threads to perform write() operations. This means that read
** operations are not blocked by asynchronous writes (although
** asynchronous writes may still be blocked by reads).
**
** This assumes that the OS keeps two handles open on the same file
** properly in sync. That is, any read operation that starts after a
** write operation on the same file system entry has completed returns
** data consistent with the write. We also assume that if one thread
** reads a file while another is writing it all bytes other than the
** ones actually being written contain valid data.
**
** If the above assumptions are not true, set the preprocessor symbol
** SQLITE_ASYNC_TWO_FILEHANDLES to 0.
*/
#ifndef NDEBUG
# define TESTONLY( X ) X
#else
# define TESTONLY( X )
#endif
/*
** PORTING FUNCTIONS
**
** There are two definitions of the following functions. One for pthreads
** compatible systems and one for Win32. These functions isolate the OS
** specific code required by each platform.
**
** The system uses three mutexes and a single condition variable. To
** block on a mutex, async_mutex_enter() is called. The parameter passed
** to async_mutex_enter(), which must be one of ASYNC_MUTEX_LOCK,
** ASYNC_MUTEX_QUEUE or ASYNC_MUTEX_WRITER, identifies which of the three
** mutexes to lock. Similarly, to unlock a mutex, async_mutex_leave() is
** called with a parameter identifying the mutex being unlocked. Mutexes
** are not recursive - it is an error to call async_mutex_enter() to
** lock a mutex that is already locked, or to call async_mutex_leave()
** to unlock a mutex that is not currently locked.
**
** The async_cond_wait() and async_cond_signal() functions are modelled
** on the pthreads functions with similar names. The first parameter to
** both functions is always ASYNC_COND_QUEUE. When async_cond_wait()
** is called the mutex identified by the second parameter must be held.
** The mutex is unlocked, and the calling thread simultaneously begins
** waiting for the condition variable to be signalled by another thread.
** After another thread signals the condition variable, the calling
** thread stops waiting, locks mutex eMutex and returns. The
** async_cond_signal() function is used to signal the condition variable.
** It is assumed that the mutex used by the thread calling async_cond_wait()
** is held by the caller of async_cond_signal() (otherwise there would be
** a race condition).
**
** It is guaranteed that no other thread will call async_cond_wait() when
** there is already a thread waiting on the condition variable.
**
** The async_sched_yield() function is called to suggest to the operating
** system that it would be a good time to shift the current thread off the
** CPU. The system will still work if this function is not implemented
** (it is not currently implemented for win32), but it might be marginally
** more efficient if it is.
*/
static void async_mutex_enter(int eMutex);
static void async_mutex_leave(int eMutex);
static void async_cond_wait(int eCond, int eMutex);
static void async_cond_signal(int eCond);
static void async_sched_yield(void);
/*
** There are also two definitions of the following. async_os_initialize()
** is called when the asynchronous VFS is first installed, and os_shutdown()
** is called when it is uninstalled (from within sqlite3async_shutdown()).
**
** For pthreads builds, both of these functions are no-ops. For win32,
** they provide an opportunity to initialize and finalize the required
** mutex and condition variables.
**
** If async_os_initialize() returns other than zero, then the initialization
** fails and SQLITE_ERROR is returned to the user.
*/
static int async_os_initialize(void);
static void async_os_shutdown(void);
/* Values for use as the 'eMutex' argument of the above functions. The
** integer values assigned to these constants are important for assert()
** statements that verify that mutexes are locked in the correct order.
** Specifically, it is unsafe to try to lock mutex N while holding a lock
** on mutex M if (M<=N).
*/
#define ASYNC_MUTEX_LOCK 0
#define ASYNC_MUTEX_QUEUE 1
#define ASYNC_MUTEX_WRITER 2
/* Values for use as the 'eCond' argument of the above functions. */
#define ASYNC_COND_QUEUE 0
/*************************************************************************
** Start of OS specific code.
*/
#if SQLITE_OS_WIN || defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
#include <windows.h>
/* The following block contains the win32 specific code. */
#define mutex_held(X) (GetCurrentThreadId()==primitives.aHolder[X])
static struct AsyncPrimitives {
int isInit;
DWORD aHolder[3];
CRITICAL_SECTION aMutex[3];
HANDLE aCond[1];
} primitives = { 0 };
static int async_os_initialize(void){
if( !primitives.isInit ){
primitives.aCond[0] = CreateEvent(NULL, TRUE, FALSE, 0);
if( primitives.aCond[0]==NULL ){
return 1;
}
InitializeCriticalSection(&primitives.aMutex[0]);
InitializeCriticalSection(&primitives.aMutex[1]);
InitializeCriticalSection(&primitives.aMutex[2]);
primitives.isInit = 1;
}
return 0;
}
static void async_os_shutdown(void){
if( primitives.isInit ){
DeleteCriticalSection(&primitives.aMutex[0]);
DeleteCriticalSection(&primitives.aMutex[1]);
DeleteCriticalSection(&primitives.aMutex[2]);
CloseHandle(primitives.aCond[0]);
primitives.isInit = 0;
}
}
/* The following block contains the Win32 specific code. */
static void async_mutex_enter(int eMutex){
assert( eMutex==0 || eMutex==1 || eMutex==2 );
assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) );
assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) );
assert( eMutex!=0 || (!mutex_held(0)) );
EnterCriticalSection(&primitives.aMutex[eMutex]);
TESTONLY( primitives.aHolder[eMutex] = GetCurrentThreadId(); )
}
static void async_mutex_leave(int eMutex){
assert( eMutex==0 || eMutex==1 || eMutex==2 );
assert( mutex_held(eMutex) );
TESTONLY( primitives.aHolder[eMutex] = 0; )
LeaveCriticalSection(&primitives.aMutex[eMutex]);
}
static void async_cond_wait(int eCond, int eMutex){
ResetEvent(primitives.aCond[eCond]);
async_mutex_leave(eMutex);
WaitForSingleObject(primitives.aCond[eCond], INFINITE);
async_mutex_enter(eMutex);
}
static void async_cond_signal(int eCond){
assert( mutex_held(ASYNC_MUTEX_QUEUE) );
SetEvent(primitives.aCond[eCond]);
}
static void async_sched_yield(void){
Sleep(0);
}
#else
/* The following block contains the pthreads specific code. */
#include <pthread.h>
#include <sched.h>
#define mutex_held(X) pthread_equal(primitives.aHolder[X], pthread_self())
static int async_os_initialize(void) {return 0;}
static void async_os_shutdown(void) {}
static struct AsyncPrimitives {
pthread_mutex_t aMutex[3];
pthread_cond_t aCond[1];
pthread_t aHolder[3];
} primitives = {
{ PTHREAD_MUTEX_INITIALIZER,
PTHREAD_MUTEX_INITIALIZER,
PTHREAD_MUTEX_INITIALIZER
} , {
PTHREAD_COND_INITIALIZER
} , { 0, 0, 0 }
};
static void async_mutex_enter(int eMutex){
assert( eMutex==0 || eMutex==1 || eMutex==2 );
assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) );
assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) );
assert( eMutex!=0 || (!mutex_held(0)) );
pthread_mutex_lock(&primitives.aMutex[eMutex]);
TESTONLY( primitives.aHolder[eMutex] = pthread_self(); )
}
static void async_mutex_leave(int eMutex){
assert( eMutex==0 || eMutex==1 || eMutex==2 );
assert( mutex_held(eMutex) );
TESTONLY( primitives.aHolder[eMutex] = 0; )
pthread_mutex_unlock(&primitives.aMutex[eMutex]);
}
static void async_cond_wait(int eCond, int eMutex){
assert( eMutex==0 || eMutex==1 || eMutex==2 );
assert( mutex_held(eMutex) );
TESTONLY( primitives.aHolder[eMutex] = 0; )
pthread_cond_wait(&primitives.aCond[eCond], &primitives.aMutex[eMutex]);
TESTONLY( primitives.aHolder[eMutex] = pthread_self(); )
}
static void async_cond_signal(int eCond){
assert( mutex_held(ASYNC_MUTEX_QUEUE) );
pthread_cond_signal(&primitives.aCond[eCond]);
}
static void async_sched_yield(void){
sched_yield();
}
#endif
/*
** End of OS specific code.
*************************************************************************/
#define assert_mutex_is_held(X) assert( mutex_held(X) )
#ifndef SQLITE_ASYNC_TWO_FILEHANDLES
/* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */
#define SQLITE_ASYNC_TWO_FILEHANDLES 1
#endif
/*
** State information is held in the static variable "async" defined
** as the following structure.
**
** Both async.ioError and async.nFile are protected by async.queueMutex.
*/
static struct TestAsyncStaticData {
AsyncWrite *pQueueFirst; /* Next write operation to be processed */
AsyncWrite *pQueueLast; /* Last write operation on the list */
AsyncLock *pLock; /* Linked list of all AsyncLock structures */
volatile int ioDelay; /* Extra delay between write operations */
volatile int eHalt; /* One of the SQLITEASYNC_HALT_XXX values */
volatile int bLockFiles; /* Current value of "lockfiles" parameter */
int ioError; /* True if an IO error has occurred */
int nFile; /* Number of open files (from sqlite pov) */
} async = { 0,0,0,0,0,1,0,0 };
/* Possible values of AsyncWrite.op */
#define ASYNC_NOOP 0
#define ASYNC_WRITE 1
#define ASYNC_SYNC 2
#define ASYNC_TRUNCATE 3
#define ASYNC_CLOSE 4
#define ASYNC_DELETE 5
#define ASYNC_OPENEXCLUSIVE 6
#define ASYNC_UNLOCK 7
/* Names of opcodes. Used for debugging only.
** Make sure these stay in sync with the macros above!
*/
static const char *azOpcodeName[] = {
"NOOP", "WRITE", "SYNC", "TRUNCATE", "CLOSE", "DELETE", "OPENEX", "UNLOCK"
};
/*
** Entries on the write-op queue are instances of the AsyncWrite
** structure, defined here.
**
** The interpretation of the iOffset and nByte variables varies depending
** on the value of AsyncWrite.op:
**
** ASYNC_NOOP:
** No values used.
**
** ASYNC_WRITE:
** iOffset -> Offset in file to write to.
** nByte -> Number of bytes of data to write (pointed to by zBuf).
**
** ASYNC_SYNC:
** nByte -> flags to pass to sqlite3OsSync().
**
** ASYNC_TRUNCATE:
** iOffset -> Size to truncate file to.
** nByte -> Unused.
**
** ASYNC_CLOSE:
** iOffset -> Unused.
** nByte -> Unused.
**
** ASYNC_DELETE:
** iOffset -> Contains the "syncDir" flag.
** nByte -> Number of bytes of zBuf points to (file name).
**
** ASYNC_OPENEXCLUSIVE:
** iOffset -> Value of "delflag".
** nByte -> Number of bytes of zBuf points to (file name).
**
** ASYNC_UNLOCK:
** nByte -> Argument to sqlite3OsUnlock().
**
**
** For an ASYNC_WRITE operation, zBuf points to the data to write to the file.
** This space is sqlite3_malloc()d along with the AsyncWrite structure in a
** single blob, so is deleted when sqlite3_free() is called on the parent
** structure.
*/
struct AsyncWrite {
AsyncFileData *pFileData; /* File to write data to or sync */
int op; /* One of ASYNC_xxx etc. */
sqlite_int64 iOffset; /* See above */
int nByte; /* See above */
char *zBuf; /* Data to write to file (or NULL if op!=ASYNC_WRITE) */
AsyncWrite *pNext; /* Next write operation (to any file) */
};
/*
** An instance of this structure is created for each distinct open file
** (i.e. if two handles are opened on the one file, only one of these
** structures is allocated) and stored in the async.aLock hash table. The
** keys for async.aLock are the full pathnames of the opened files.
**
** AsyncLock.pList points to the head of a linked list of AsyncFileLock
** structures, one for each handle currently open on the file.
**
** If the opened file is not a main-database (the SQLITE_OPEN_MAIN_DB is
** not passed to the sqlite3OsOpen() call), or if async.bLockFiles is
** false, variables AsyncLock.pFile and AsyncLock.eLock are never used.
** Otherwise, pFile is a file handle opened on the file in question and
** used to obtain the file-system locks required by database connections
** within this process.
**
** See comments above the asyncLock() function for more details on
** the implementation of database locking used by this backend.
*/
struct AsyncLock {
char *zFile;
int nFile;
sqlite3_file *pFile;
int eLock;
AsyncFileLock *pList;
AsyncLock *pNext; /* Next in linked list headed by async.pLock */
};
/*
** An instance of the following structure is allocated along with each
** AsyncFileData structure (see AsyncFileData.lock), but is only used if the
** file was opened with the SQLITE_OPEN_MAIN_DB.
*/
struct AsyncFileLock {
int eLock; /* Internally visible lock state (sqlite pov) */
int eAsyncLock; /* Lock-state with write-queue unlock */
AsyncFileLock *pNext;
};
/*
** The AsyncFile structure is a subclass of sqlite3_file used for
** asynchronous IO.
**
** All of the actual data for the structure is stored in the structure
** pointed to by AsyncFile.pData, which is allocated as part of the
** sqlite3OsOpen() using sqlite3_malloc(). The reason for this is that the
** lifetime of the AsyncFile structure is ended by the caller after OsClose()
** is called, but the data in AsyncFileData may be required by the
** writer thread after that point.
*/
struct AsyncFile {
sqlite3_io_methods *pMethod;
AsyncFileData *pData;
};
struct AsyncFileData {
char *zName; /* Underlying OS filename - used for debugging */
int nName; /* Number of characters in zName */
sqlite3_file *pBaseRead; /* Read handle to the underlying Os file */
sqlite3_file *pBaseWrite; /* Write handle to the underlying Os file */
AsyncFileLock lock; /* Lock state for this handle */
AsyncLock *pLock; /* AsyncLock object for this file system entry */
AsyncWrite closeOp; /* Preallocated close operation */
};
/*
** Add an entry to the end of the global write-op list. pWrite should point
** to an AsyncWrite structure allocated using sqlite3_malloc(). The writer
** thread will call sqlite3_free() to free the structure after the specified
** operation has been completed.
**
** Once an AsyncWrite structure has been added to the list, it becomes the
** property of the writer thread and must not be read or modified by the
** caller.
*/
static void addAsyncWrite(AsyncWrite *pWrite){
/* We must hold the queue mutex in order to modify the queue pointers */
if( pWrite->op!=ASYNC_UNLOCK ){
async_mutex_enter(ASYNC_MUTEX_QUEUE);
}
/* Add the record to the end of the write-op queue */
assert( !pWrite->pNext );
if( async.pQueueLast ){
assert( async.pQueueFirst );
async.pQueueLast->pNext = pWrite;
}else{
async.pQueueFirst = pWrite;
}
async.pQueueLast = pWrite;
ASYNC_TRACE(("PUSH %p (%s %s %d)\n", pWrite, azOpcodeName[pWrite->op],
pWrite->pFileData ? pWrite->pFileData->zName : "-", pWrite->iOffset));
if( pWrite->op==ASYNC_CLOSE ){
async.nFile--;
}
/* The writer thread might have been idle because there was nothing
** on the write-op queue for it to do. So wake it up. */
async_cond_signal(ASYNC_COND_QUEUE);
/* Drop the queue mutex */
if( pWrite->op!=ASYNC_UNLOCK ){
async_mutex_leave(ASYNC_MUTEX_QUEUE);
}
}
/*
** Increment async.nFile in a thread-safe manner.
*/
static void incrOpenFileCount(void){
/* We must hold the queue mutex in order to modify async.nFile */
async_mutex_enter(ASYNC_MUTEX_QUEUE);
if( async.nFile==0 ){
async.ioError = SQLITE_OK;
}
async.nFile++;
async_mutex_leave(ASYNC_MUTEX_QUEUE);
}
/*
** This is a utility function to allocate and populate a new AsyncWrite
** structure and insert it (via addAsyncWrite() ) into the global list.
*/
static int addNewAsyncWrite(
AsyncFileData *pFileData,
int op,
sqlite3_int64 iOffset,
int nByte,
const char *zByte
){
AsyncWrite *p;
if( op!=ASYNC_CLOSE && async.ioError ){
return async.ioError;
}
p = sqlite3_malloc(sizeof(AsyncWrite) + (zByte?nByte:0));
if( !p ){
/* The upper layer does not expect operations like OsWrite() to
** return SQLITE_NOMEM. This is partly because under normal conditions
** SQLite is required to do rollback without calling malloc(). So
** if malloc() fails here, treat it as an I/O error. The above
** layer knows how to handle that.
*/
return SQLITE_IOERR;
}
p->op = op;
p->iOffset = iOffset;
p->nByte = nByte;
p->pFileData = pFileData;
p->pNext = 0;
if( zByte ){
p->zBuf = (char *)&p[1];
memcpy(p->zBuf, zByte, nByte);
}else{
p->zBuf = 0;
}
addAsyncWrite(p);
return SQLITE_OK;
}
/*
** Close the file. This just adds an entry to the write-op list, the file is
** not actually closed.
*/
static int asyncClose(sqlite3_file *pFile){
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
/* Unlock the file, if it is locked */
async_mutex_enter(ASYNC_MUTEX_LOCK);
p->lock.eLock = 0;
async_mutex_leave(ASYNC_MUTEX_LOCK);
addAsyncWrite(&p->closeOp);
return SQLITE_OK;
}
/*
** Implementation of sqlite3OsWrite() for asynchronous files. Instead of
** writing to the underlying file, this function adds an entry to the end of
** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be
** returned.
*/
static int asyncWrite(
sqlite3_file *pFile,
const void *pBuf,
int amt,
sqlite3_int64 iOff
){
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
return addNewAsyncWrite(p, ASYNC_WRITE, iOff, amt, pBuf);
}
/*
** Read data from the file. First we read from the filesystem, then adjust
** the contents of the buffer based on ASYNC_WRITE operations in the
** write-op queue.
**
** This method holds the mutex from start to finish.
*/
static int asyncRead(
sqlite3_file *pFile,
void *zOut,
int iAmt,
sqlite3_int64 iOffset
){
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
int rc = SQLITE_OK;
sqlite3_int64 filesize = 0;
sqlite3_file *pBase = p->pBaseRead;
sqlite3_int64 iAmt64 = (sqlite3_int64)iAmt;
/* Grab the write queue mutex for the duration of the call */
async_mutex_enter(ASYNC_MUTEX_QUEUE);
/* If an I/O error has previously occurred in this virtual file
** system, then all subsequent operations fail.
*/
if( async.ioError!=SQLITE_OK ){
rc = async.ioError;
goto asyncread_out;
}
if( pBase->pMethods ){
sqlite3_int64 nRead;
rc = pBase->pMethods->xFileSize(pBase, &filesize);
if( rc!=SQLITE_OK ){
goto asyncread_out;
}
nRead = MIN(filesize - iOffset, iAmt64);
if( nRead>0 ){
rc = pBase->pMethods->xRead(pBase, zOut, (int)nRead, iOffset);
ASYNC_TRACE(("READ %s %d bytes at %d\n", p->zName, nRead, iOffset));
}
}
if( rc==SQLITE_OK ){
AsyncWrite *pWrite;
char *zName = p->zName;
for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){
if( pWrite->op==ASYNC_WRITE && (
(pWrite->pFileData==p) ||
(zName && pWrite->pFileData->zName==zName)
)){
sqlite3_int64 nCopy;
sqlite3_int64 nByte64 = (sqlite3_int64)pWrite->nByte;
/* Set variable iBeginIn to the offset in buffer pWrite->zBuf[] from
** which data should be copied. Set iBeginOut to the offset within
** the output buffer to which data should be copied. If either of
** these offsets is a negative number, set them to 0.
*/
sqlite3_int64 iBeginOut = (pWrite->iOffset-iOffset);
sqlite3_int64 iBeginIn = -iBeginOut;
if( iBeginIn<0 ) iBeginIn = 0;
if( iBeginOut<0 ) iBeginOut = 0;
filesize = MAX(filesize, pWrite->iOffset+nByte64);
nCopy = MIN(nByte64-iBeginIn, iAmt64-iBeginOut);
if( nCopy>0 ){
memcpy(&((char *)zOut)[iBeginOut], &pWrite->zBuf[iBeginIn], (size_t)nCopy);
ASYNC_TRACE(("OVERREAD %d bytes at %d\n", nCopy, iBeginOut+iOffset));
}
}
}
}
asyncread_out:
async_mutex_leave(ASYNC_MUTEX_QUEUE);
if( rc==SQLITE_OK && filesize<(iOffset+iAmt) ){
rc = SQLITE_IOERR_SHORT_READ;
}
return rc;
}
/*
** Truncate the file to nByte bytes in length. This just adds an entry to
** the write-op list, no IO actually takes place.
*/
static int asyncTruncate(sqlite3_file *pFile, sqlite3_int64 nByte){
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
return addNewAsyncWrite(p, ASYNC_TRUNCATE, nByte, 0, 0);
}
/*
** Sync the file. This just adds an entry to the write-op list, the
** sync() is done later by sqlite3_async_flush().
*/
static int asyncSync(sqlite3_file *pFile, int flags){
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
return addNewAsyncWrite(p, ASYNC_SYNC, 0, flags, 0);
}
/*
** Read the size of the file. First we read the size of the file system
** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations
** currently in the write-op list.
**
** This method holds the mutex from start to finish.
*/
int asyncFileSize(sqlite3_file *pFile, sqlite3_int64 *piSize){
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
int rc = SQLITE_OK;
sqlite3_int64 s = 0;
sqlite3_file *pBase;
async_mutex_enter(ASYNC_MUTEX_QUEUE);
/* Read the filesystem size from the base file. If pMethods is NULL, this
** means the file hasn't been opened yet. In this case all relevant data
** must be in the write-op queue anyway, so we can omit reading from the
** file-system.
*/
pBase = p->pBaseRead;
if( pBase->pMethods ){
rc = pBase->pMethods->xFileSize(pBase, &s);
}
if( rc==SQLITE_OK ){
AsyncWrite *pWrite;
for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){
if( pWrite->op==ASYNC_DELETE
&& p->zName
&& strcmp(p->zName, pWrite->zBuf)==0
){
s = 0;
}else if( pWrite->pFileData && (
(pWrite->pFileData==p)
|| (p->zName && pWrite->pFileData->zName==p->zName)
)){
switch( pWrite->op ){
case ASYNC_WRITE:
s = MAX(pWrite->iOffset + (sqlite3_int64)(pWrite->nByte), s);
break;
case ASYNC_TRUNCATE:
s = MIN(s, pWrite->iOffset);
break;
}
}
}
*piSize = s;
}
async_mutex_leave(ASYNC_MUTEX_QUEUE);
return rc;
}
/*
** Lock or unlock the actual file-system entry.
*/
static int getFileLock(AsyncLock *pLock){
int rc = SQLITE_OK;
AsyncFileLock *pIter;
int eRequired = 0;
if( pLock->pFile ){
for(pIter=pLock->pList; pIter; pIter=pIter->pNext){
assert(pIter->eAsyncLock>=pIter->eLock);
if( pIter->eAsyncLock>eRequired ){
eRequired = pIter->eAsyncLock;
assert(eRequired>=0 && eRequired<=SQLITE_LOCK_EXCLUSIVE);
}
}
if( eRequired>pLock->eLock ){
rc = pLock->pFile->pMethods->xLock(pLock->pFile, eRequired);
if( rc==SQLITE_OK ){
pLock->eLock = eRequired;
}
}
else if( eRequired<pLock->eLock && eRequired<=SQLITE_LOCK_SHARED ){
rc = pLock->pFile->pMethods->xUnlock(pLock->pFile, eRequired);
if( rc==SQLITE_OK ){
pLock->eLock = eRequired;
}
}
}
return rc;
}
/*
** Return the AsyncLock structure from the global async.pLock list
** associated with the file-system entry identified by path zName
** (a string of nName bytes). If no such structure exists, return 0.
*/
static AsyncLock *findLock(const char *zName, int nName){
AsyncLock *p = async.pLock;
while( p && (p->nFile!=nName || memcmp(p->zFile, zName, nName)) ){
p = p->pNext;
}
return p;
}
/*
** The following two methods - asyncLock() and asyncUnlock() - are used
** to obtain and release locks on database files opened with the
** asynchronous backend.
*/
static int asyncLock(sqlite3_file *pFile, int eLock){
int rc = SQLITE_OK;
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
if( p->zName ){
async_mutex_enter(ASYNC_MUTEX_LOCK);
if( p->lock.eLock<eLock ){
AsyncLock *pLock = p->pLock;
AsyncFileLock *pIter;
assert(pLock && pLock->pList);
for(pIter=pLock->pList; pIter; pIter=pIter->pNext){
if( pIter!=&p->lock && (
(eLock==SQLITE_LOCK_EXCLUSIVE && pIter->eLock>=SQLITE_LOCK_SHARED) ||
(eLock==SQLITE_LOCK_PENDING && pIter->eLock>=SQLITE_LOCK_RESERVED) ||
(eLock==SQLITE_LOCK_RESERVED && pIter->eLock>=SQLITE_LOCK_RESERVED) ||
(eLock==SQLITE_LOCK_SHARED && pIter->eLock>=SQLITE_LOCK_PENDING)
)){
rc = SQLITE_BUSY;
}
}
if( rc==SQLITE_OK ){
p->lock.eLock = eLock;
p->lock.eAsyncLock = MAX(p->lock.eAsyncLock, eLock);
}
assert(p->lock.eAsyncLock>=p->lock.eLock);
if( rc==SQLITE_OK ){
rc = getFileLock(pLock);
}
}
async_mutex_leave(ASYNC_MUTEX_LOCK);
}
ASYNC_TRACE(("LOCK %d (%s) rc=%d\n", eLock, p->zName, rc));
return rc;
}
static int asyncUnlock(sqlite3_file *pFile, int eLock){
int rc = SQLITE_OK;
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
if( p->zName ){
AsyncFileLock *pLock = &p->lock;
async_mutex_enter(ASYNC_MUTEX_QUEUE);
async_mutex_enter(ASYNC_MUTEX_LOCK);
pLock->eLock = MIN(pLock->eLock, eLock);
rc = addNewAsyncWrite(p, ASYNC_UNLOCK, 0, eLock, 0);
async_mutex_leave(ASYNC_MUTEX_LOCK);
async_mutex_leave(ASYNC_MUTEX_QUEUE);
}
return rc;
}
/*
** This function is called when the pager layer first opens a database file
** and is checking for a hot-journal.
*/
static int asyncCheckReservedLock(sqlite3_file *pFile, int *pResOut){
int ret = 0;
AsyncFileLock *pIter;
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
async_mutex_enter(ASYNC_MUTEX_LOCK);
for(pIter=p->pLock->pList; pIter; pIter=pIter->pNext){
if( pIter->eLock>=SQLITE_LOCK_RESERVED ){
ret = 1;
break;
}
}
async_mutex_leave(ASYNC_MUTEX_LOCK);
ASYNC_TRACE(("CHECK-LOCK %d (%s)\n", ret, p->zName));
*pResOut = ret;
return SQLITE_OK;
}
/*
** sqlite3_file_control() implementation.
*/
static int asyncFileControl(sqlite3_file *id, int op, void *pArg){
switch( op ){
case SQLITE_FCNTL_LOCKSTATE: {
async_mutex_enter(ASYNC_MUTEX_LOCK);
*(int*)pArg = ((AsyncFile*)id)->pData->lock.eLock;
async_mutex_leave(ASYNC_MUTEX_LOCK);
return SQLITE_OK;
}
}
return SQLITE_NOTFOUND;
}
/*
** Return the device characteristics and sector-size of the device. It
** is tricky to implement these correctly, as this backend might
** not have an open file handle at this point.
*/
static int asyncSectorSize(sqlite3_file *pFile){
UNUSED_PARAMETER(pFile);
return 512;
}
static int asyncDeviceCharacteristics(sqlite3_file *pFile){
UNUSED_PARAMETER(pFile);
return 0;
}
static int unlinkAsyncFile(AsyncFileData *pData){
AsyncFileLock **ppIter;
int rc = SQLITE_OK;
if( pData->zName ){
AsyncLock *pLock = pData->pLock;
for(ppIter=&pLock->pList; *ppIter; ppIter=&((*ppIter)->pNext)){
if( (*ppIter)==&pData->lock ){
*ppIter = pData->lock.pNext;
break;
}
}
if( !pLock->pList ){
AsyncLock **pp;
if( pLock->pFile ){
pLock->pFile->pMethods->xClose(pLock->pFile);
}
for(pp=&async.pLock; *pp!=pLock; pp=&((*pp)->pNext));
*pp = pLock->pNext;
sqlite3_free(pLock);
}else{
rc = getFileLock(pLock);
}
}
return rc;
}
/*
** The parameter passed to this function is a copy of a 'flags' parameter
** passed to this modules xOpen() method. This function returns true
** if the file should be opened asynchronously, or false if it should
** be opened immediately.
**
** If the file is to be opened asynchronously, then asyncOpen() will add
** an entry to the event queue and the file will not actually be opened
** until the event is processed. Otherwise, the file is opened directly
** by the caller.
*/
static int doAsynchronousOpen(int flags){
return (flags&SQLITE_OPEN_CREATE) && (
(flags&SQLITE_OPEN_MAIN_JOURNAL) ||
(flags&SQLITE_OPEN_TEMP_JOURNAL) ||
(flags&SQLITE_OPEN_DELETEONCLOSE)
);
}
/*
** Open a file.
*/
static int asyncOpen(
sqlite3_vfs *pAsyncVfs,
const char *zName,
sqlite3_file *pFile,
int flags,
int *pOutFlags
){
static sqlite3_io_methods async_methods = {
1, /* iVersion */
asyncClose, /* xClose */
asyncRead, /* xRead */
asyncWrite, /* xWrite */
asyncTruncate, /* xTruncate */
asyncSync, /* xSync */
asyncFileSize, /* xFileSize */
asyncLock, /* xLock */
asyncUnlock, /* xUnlock */
asyncCheckReservedLock, /* xCheckReservedLock */
asyncFileControl, /* xFileControl */
asyncSectorSize, /* xSectorSize */
asyncDeviceCharacteristics /* xDeviceCharacteristics */
};
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
AsyncFile *p = (AsyncFile *)pFile;
int nName = 0;
int rc = SQLITE_OK;
int nByte;
AsyncFileData *pData;
AsyncLock *pLock = 0;
char *z;
int isAsyncOpen = doAsynchronousOpen(flags);
/* If zName is NULL, then the upper layer is requesting an anonymous file.
** Otherwise, allocate enough space to make a copy of the file name (along
** with the second nul-terminator byte required by xOpen).
*/
if( zName ){
nName = (int)strlen(zName);
}
nByte = (
sizeof(AsyncFileData) + /* AsyncFileData structure */
2 * pVfs->szOsFile + /* AsyncFileData.pBaseRead and pBaseWrite */
nName + 2 /* AsyncFileData.zName */
);
z = sqlite3_malloc(nByte);
if( !z ){
return SQLITE_NOMEM;
}
memset(z, 0, nByte);
pData = (AsyncFileData*)z;
z += sizeof(pData[0]);
pData->pBaseRead = (sqlite3_file*)z;
z += pVfs->szOsFile;
pData->pBaseWrite = (sqlite3_file*)z;
pData->closeOp.pFileData = pData;
pData->closeOp.op = ASYNC_CLOSE;
if( zName ){
z += pVfs->szOsFile;
pData->zName = z;
pData->nName = nName;
memcpy(pData->zName, zName, nName);
}
if( !isAsyncOpen ){
int flagsout;
rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, &flagsout);
if( rc==SQLITE_OK
&& (flagsout&SQLITE_OPEN_READWRITE)
&& (flags&SQLITE_OPEN_EXCLUSIVE)==0
){
rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseWrite, flags, 0);
}
if( pOutFlags ){
*pOutFlags = flagsout;
}
}
async_mutex_enter(ASYNC_MUTEX_LOCK);
if( zName && rc==SQLITE_OK ){
pLock = findLock(pData->zName, pData->nName);
if( !pLock ){
int nByte = pVfs->szOsFile + sizeof(AsyncLock) + pData->nName + 1;
pLock = (AsyncLock *)sqlite3_malloc(nByte);
if( pLock ){
memset(pLock, 0, nByte);
if( async.bLockFiles && (flags&SQLITE_OPEN_MAIN_DB) ){
pLock->pFile = (sqlite3_file *)&pLock[1];
rc = pVfs->xOpen(pVfs, pData->zName, pLock->pFile, flags, 0);
if( rc!=SQLITE_OK ){
sqlite3_free(pLock);
pLock = 0;
}
}
if( pLock ){
pLock->nFile = pData->nName;
pLock->zFile = &((char *)(&pLock[1]))[pVfs->szOsFile];
memcpy(pLock->zFile, pData->zName, pLock->nFile);
pLock->pNext = async.pLock;
async.pLock = pLock;
}
}else{
rc = SQLITE_NOMEM;
}
}
}
if( rc==SQLITE_OK ){
p->pMethod = &async_methods;
p->pData = pData;
/* Link AsyncFileData.lock into the linked list of
** AsyncFileLock structures for this file.
*/
if( zName ){
pData->lock.pNext = pLock->pList;
pLock->pList = &pData->lock;
pData->zName = pLock->zFile;
}
}else{
if( pData->pBaseRead->pMethods ){
pData->pBaseRead->pMethods->xClose(pData->pBaseRead);
}
if( pData->pBaseWrite->pMethods ){
pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite);
}
sqlite3_free(pData);
}
async_mutex_leave(ASYNC_MUTEX_LOCK);
if( rc==SQLITE_OK ){
pData->pLock = pLock;
}
if( rc==SQLITE_OK && isAsyncOpen ){
rc = addNewAsyncWrite(pData, ASYNC_OPENEXCLUSIVE, (sqlite3_int64)flags,0,0);
if( rc==SQLITE_OK ){
if( pOutFlags ) *pOutFlags = flags;
}else{
async_mutex_enter(ASYNC_MUTEX_LOCK);
unlinkAsyncFile(pData);
async_mutex_leave(ASYNC_MUTEX_LOCK);
sqlite3_free(pData);
}
}
if( rc!=SQLITE_OK ){
p->pMethod = 0;
}else{
incrOpenFileCount();
}
return rc;
}
/*
** Implementation of sqlite3OsDelete. Add an entry to the end of the
** write-op queue to perform the delete.
*/
static int asyncDelete(sqlite3_vfs *pAsyncVfs, const char *z, int syncDir){
UNUSED_PARAMETER(pAsyncVfs);
return addNewAsyncWrite(0, ASYNC_DELETE, syncDir, (int)strlen(z)+1, z);
}
/*
** Implementation of sqlite3OsAccess. This method holds the mutex from
** start to finish.
*/
static int asyncAccess(
sqlite3_vfs *pAsyncVfs,
const char *zName,
int flags,
int *pResOut
){
int rc;
int ret;
AsyncWrite *p;
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
assert(flags==SQLITE_ACCESS_READWRITE
|| flags==SQLITE_ACCESS_READ
|| flags==SQLITE_ACCESS_EXISTS
);
async_mutex_enter(ASYNC_MUTEX_QUEUE);
rc = pVfs->xAccess(pVfs, zName, flags, &ret);
if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){
for(p=async.pQueueFirst; p; p = p->pNext){
if( p->op==ASYNC_DELETE && 0==strcmp(p->zBuf, zName) ){
ret = 0;
}else if( p->op==ASYNC_OPENEXCLUSIVE
&& p->pFileData->zName
&& 0==strcmp(p->pFileData->zName, zName)
){
ret = 1;
}
}
}
ASYNC_TRACE(("ACCESS(%s): %s = %d\n",
flags==SQLITE_ACCESS_READWRITE?"read-write":
flags==SQLITE_ACCESS_READ?"read":"exists"
, zName, ret)
);
async_mutex_leave(ASYNC_MUTEX_QUEUE);
*pResOut = ret;
return rc;
}
/*
** Fill in zPathOut with the full path to the file identified by zPath.
*/
static int asyncFullPathname(
sqlite3_vfs *pAsyncVfs,
const char *zPath,
int nPathOut,
char *zPathOut
){
int rc;
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
rc = pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
/* Because of the way intra-process file locking works, this backend
** needs to return a canonical path. The following block assumes the
** file-system uses unix style paths.
*/
if( rc==SQLITE_OK ){
int i, j;
char *z = zPathOut;
int n = (int)strlen(z);
while( n>1 && z[n-1]=='/' ){ n--; }
for(i=j=0; i<n; i++){
if( z[i]=='/' ){
if( z[i+1]=='/' ) continue;
if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
i += 1;
continue;
}
if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
while( j>0 && z[j-1]!='/' ){ j--; }
if( j>0 ){ j--; }
i += 2;
continue;
}
}
z[j++] = z[i];
}
z[j] = 0;
}
return rc;
}
static void *asyncDlOpen(sqlite3_vfs *pAsyncVfs, const char *zPath){
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
return pVfs->xDlOpen(pVfs, zPath);
}
static void asyncDlError(sqlite3_vfs *pAsyncVfs, int nByte, char *zErrMsg){
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
pVfs->xDlError(pVfs, nByte, zErrMsg);
}
static void (*asyncDlSym(
sqlite3_vfs *pAsyncVfs,
void *pHandle,
const char *zSymbol
))(void){
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
return pVfs->xDlSym(pVfs, pHandle, zSymbol);
}
static void asyncDlClose(sqlite3_vfs *pAsyncVfs, void *pHandle){
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
pVfs->xDlClose(pVfs, pHandle);
}
static int asyncRandomness(sqlite3_vfs *pAsyncVfs, int nByte, char *zBufOut){
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
return pVfs->xRandomness(pVfs, nByte, zBufOut);
}
static int asyncSleep(sqlite3_vfs *pAsyncVfs, int nMicro){
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
return pVfs->xSleep(pVfs, nMicro);
}
static int asyncCurrentTime(sqlite3_vfs *pAsyncVfs, double *pTimeOut){
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
return pVfs->xCurrentTime(pVfs, pTimeOut);
}
static sqlite3_vfs async_vfs = {
1, /* iVersion */
sizeof(AsyncFile), /* szOsFile */
0, /* mxPathname */
0, /* pNext */
SQLITEASYNC_VFSNAME, /* zName */
0, /* pAppData */
asyncOpen, /* xOpen */
asyncDelete, /* xDelete */
asyncAccess, /* xAccess */
asyncFullPathname, /* xFullPathname */
asyncDlOpen, /* xDlOpen */
asyncDlError, /* xDlError */
asyncDlSym, /* xDlSym */
asyncDlClose, /* xDlClose */
asyncRandomness, /* xDlError */
asyncSleep, /* xDlSym */
asyncCurrentTime /* xDlClose */
};
/*
** This procedure runs in a separate thread, reading messages off of the
** write queue and processing them one by one.
**
** If async.writerHaltNow is true, then this procedure exits
** after processing a single message.
**
** If async.writerHaltWhenIdle is true, then this procedure exits when
** the write queue is empty.
**
** If both of the above variables are false, this procedure runs
** indefinately, waiting for operations to be added to the write queue
** and processing them in the order in which they arrive.
**
** An artifical delay of async.ioDelay milliseconds is inserted before
** each write operation in order to simulate the effect of a slow disk.
**
** Only one instance of this procedure may be running at a time.
*/
static void asyncWriterThread(void){
sqlite3_vfs *pVfs = (sqlite3_vfs *)(async_vfs.pAppData);
AsyncWrite *p = 0;
int rc = SQLITE_OK;
int holdingMutex = 0;
async_mutex_enter(ASYNC_MUTEX_WRITER);
while( async.eHalt!=SQLITEASYNC_HALT_NOW ){
int doNotFree = 0;
sqlite3_file *pBase = 0;
if( !holdingMutex ){
async_mutex_enter(ASYNC_MUTEX_QUEUE);
}
while( (p = async.pQueueFirst)==0 ){
if( async.eHalt!=SQLITEASYNC_HALT_NEVER ){
async_mutex_leave(ASYNC_MUTEX_QUEUE);
break;
}else{
ASYNC_TRACE(("IDLE\n"));
async_cond_wait(ASYNC_COND_QUEUE, ASYNC_MUTEX_QUEUE);
ASYNC_TRACE(("WAKEUP\n"));
}
}
if( p==0 ) break;
holdingMutex = 1;
/* Right now this thread is holding the mutex on the write-op queue.
** Variable 'p' points to the first entry in the write-op queue. In
** the general case, we hold on to the mutex for the entire body of
** the loop.
**
** However in the cases enumerated below, we relinquish the mutex,
** perform the IO, and then re-request the mutex before removing 'p' from
** the head of the write-op queue. The idea is to increase concurrency with
** sqlite threads.
**
** * An ASYNC_CLOSE operation.
** * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish
** the mutex, call the underlying xOpenExclusive() function, then
** re-aquire the mutex before seting the AsyncFile.pBaseRead
** variable.
** * ASYNC_SYNC and ASYNC_WRITE operations, if
** SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two
** file-handles are open for the particular file being "synced".
*/
if( async.ioError!=SQLITE_OK && p->op!=ASYNC_CLOSE ){
p->op = ASYNC_NOOP;
}
if( p->pFileData ){
pBase = p->pFileData->pBaseWrite;
if(
p->op==ASYNC_CLOSE ||
p->op==ASYNC_OPENEXCLUSIVE ||
(pBase->pMethods && (p->op==ASYNC_SYNC || p->op==ASYNC_WRITE) )
){
async_mutex_leave(ASYNC_MUTEX_QUEUE);
holdingMutex = 0;
}
if( !pBase->pMethods ){
pBase = p->pFileData->pBaseRead;
}
}
switch( p->op ){
case ASYNC_NOOP:
break;
case ASYNC_WRITE:
assert( pBase );
ASYNC_TRACE(("WRITE %s %d bytes at %d\n",
p->pFileData->zName, p->nByte, p->iOffset));
rc = pBase->pMethods->xWrite(pBase, (void *)(p->zBuf), p->nByte, p->iOffset);
break;
case ASYNC_SYNC:
assert( pBase );
ASYNC_TRACE(("SYNC %s\n", p->pFileData->zName));
rc = pBase->pMethods->xSync(pBase, p->nByte);
break;
case ASYNC_TRUNCATE:
assert( pBase );
ASYNC_TRACE(("TRUNCATE %s to %d bytes\n",
p->pFileData->zName, p->iOffset));
rc = pBase->pMethods->xTruncate(pBase, p->iOffset);
break;
case ASYNC_CLOSE: {
AsyncFileData *pData = p->pFileData;
ASYNC_TRACE(("CLOSE %s\n", p->pFileData->zName));
if( pData->pBaseWrite->pMethods ){
pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite);
}
if( pData->pBaseRead->pMethods ){
pData->pBaseRead->pMethods->xClose(pData->pBaseRead);
}
/* Unlink AsyncFileData.lock from the linked list of AsyncFileLock
** structures for this file. Obtain the async.lockMutex mutex
** before doing so.
*/
async_mutex_enter(ASYNC_MUTEX_LOCK);
rc = unlinkAsyncFile(pData);
async_mutex_leave(ASYNC_MUTEX_LOCK);
if( !holdingMutex ){
async_mutex_enter(ASYNC_MUTEX_QUEUE);
holdingMutex = 1;
}
assert_mutex_is_held(ASYNC_MUTEX_QUEUE);
async.pQueueFirst = p->pNext;
sqlite3_free(pData);
doNotFree = 1;
break;
}
case ASYNC_UNLOCK: {
AsyncWrite *pIter;
AsyncFileData *pData = p->pFileData;
int eLock = p->nByte;
/* When a file is locked by SQLite using the async backend, it is
** locked within the 'real' file-system synchronously. When it is
** unlocked, an ASYNC_UNLOCK event is added to the write-queue to
** unlock the file asynchronously. The design of the async backend
** requires that the 'real' file-system file be locked from the
** time that SQLite first locks it (and probably reads from it)
** until all asynchronous write events that were scheduled before
** SQLite unlocked the file have been processed.
**
** This is more complex if SQLite locks and unlocks the file multiple
** times in quick succession. For example, if SQLite does:
**
** lock, write, unlock, lock, write, unlock
**
** Each "lock" operation locks the file immediately. Each "write"
** and "unlock" operation adds an event to the event queue. If the
** second "lock" operation is performed before the first "unlock"
** operation has been processed asynchronously, then the first
** "unlock" cannot be safely processed as is, since this would mean
** the file was unlocked when the second "write" operation is
** processed. To work around this, when processing an ASYNC_UNLOCK
** operation, SQLite:
**
** 1) Unlocks the file to the minimum of the argument passed to
** the xUnlock() call and the current lock from SQLite's point
** of view, and
**
** 2) Only unlocks the file at all if this event is the last
** ASYNC_UNLOCK event on this file in the write-queue.
*/
assert( holdingMutex==1 );
assert( async.pQueueFirst==p );
for(pIter=async.pQueueFirst->pNext; pIter; pIter=pIter->pNext){
if( pIter->pFileData==pData && pIter->op==ASYNC_UNLOCK ) break;
}
if( !pIter ){
async_mutex_enter(ASYNC_MUTEX_LOCK);
pData->lock.eAsyncLock = MIN(
pData->lock.eAsyncLock, MAX(pData->lock.eLock, eLock)
);
assert(pData->lock.eAsyncLock>=pData->lock.eLock);
rc = getFileLock(pData->pLock);
async_mutex_leave(ASYNC_MUTEX_LOCK);
}
break;
}
case ASYNC_DELETE:
ASYNC_TRACE(("DELETE %s\n", p->zBuf));
rc = pVfs->xDelete(pVfs, p->zBuf, (int)p->iOffset);
if( rc==SQLITE_IOERR_DELETE_NOENT ) rc = SQLITE_OK;
break;
case ASYNC_OPENEXCLUSIVE: {
int flags = (int)p->iOffset;
AsyncFileData *pData = p->pFileData;
ASYNC_TRACE(("OPEN %s flags=%d\n", p->zBuf, (int)p->iOffset));
assert(pData->pBaseRead->pMethods==0 && pData->pBaseWrite->pMethods==0);
rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, 0);
assert( holdingMutex==0 );
async_mutex_enter(ASYNC_MUTEX_QUEUE);
holdingMutex = 1;
break;
}
default: assert(!"Illegal value for AsyncWrite.op");
}
/* If we didn't hang on to the mutex during the IO op, obtain it now
** so that the AsyncWrite structure can be safely removed from the
** global write-op queue.
*/
if( !holdingMutex ){
async_mutex_enter(ASYNC_MUTEX_QUEUE);
holdingMutex = 1;
}
/* ASYNC_TRACE(("UNLINK %p\n", p)); */
if( p==async.pQueueLast ){
async.pQueueLast = 0;
}
if( !doNotFree ){
assert_mutex_is_held(ASYNC_MUTEX_QUEUE);
async.pQueueFirst = p->pNext;
sqlite3_free(p);
}
assert( holdingMutex );
/* An IO error has occurred. We cannot report the error back to the
** connection that requested the I/O since the error happened
** asynchronously. The connection has already moved on. There
** really is nobody to report the error to.
**
** The file for which the error occurred may have been a database or
** journal file. Regardless, none of the currently queued operations
** associated with the same database should now be performed. Nor should
** any subsequently requested IO on either a database or journal file
** handle for the same database be accepted until the main database
** file handle has been closed and reopened.
**
** Furthermore, no further IO should be queued or performed on any file
** handle associated with a database that may have been part of a
** multi-file transaction that included the database associated with
** the IO error (i.e. a database ATTACHed to the same handle at some
** point in time).
*/
if( rc!=SQLITE_OK ){
async.ioError = rc;
}
if( async.ioError && !async.pQueueFirst ){
async_mutex_enter(ASYNC_MUTEX_LOCK);
if( 0==async.pLock ){
async.ioError = SQLITE_OK;
}
async_mutex_leave(ASYNC_MUTEX_LOCK);
}
/* Drop the queue mutex before continuing to the next write operation
** in order to give other threads a chance to work with the write queue.
*/
if( !async.pQueueFirst || !async.ioError ){
async_mutex_leave(ASYNC_MUTEX_QUEUE);
holdingMutex = 0;
if( async.ioDelay>0 ){
pVfs->xSleep(pVfs, async.ioDelay*1000);
}else{
async_sched_yield();
}
}
}
async_mutex_leave(ASYNC_MUTEX_WRITER);
return;
}
/*
** Install the asynchronous VFS.
*/
int sqlite3async_initialize(const char *zParent, int isDefault){
int rc = SQLITE_OK;
if( async_vfs.pAppData==0 ){
sqlite3_vfs *pParent = sqlite3_vfs_find(zParent);
if( !pParent || async_os_initialize() ){
rc = SQLITE_ERROR;
}else if( SQLITE_OK!=(rc = sqlite3_vfs_register(&async_vfs, isDefault)) ){
async_os_shutdown();
}else{
async_vfs.pAppData = (void *)pParent;
async_vfs.mxPathname = ((sqlite3_vfs *)async_vfs.pAppData)->mxPathname;
}
}
return rc;
}
/*
** Uninstall the asynchronous VFS.
*/
void sqlite3async_shutdown(void){
if( async_vfs.pAppData ){
async_os_shutdown();
sqlite3_vfs_unregister((sqlite3_vfs *)&async_vfs);
async_vfs.pAppData = 0;
}
}
/*
** Process events on the write-queue.
*/
void sqlite3async_run(void){
asyncWriterThread();
}
/*
** Control/configure the asynchronous IO system.
*/
int sqlite3async_control(int op, ...){
va_list ap;
va_start(ap, op);
switch( op ){
case SQLITEASYNC_HALT: {
int eWhen = va_arg(ap, int);
if( eWhen!=SQLITEASYNC_HALT_NEVER
&& eWhen!=SQLITEASYNC_HALT_NOW
&& eWhen!=SQLITEASYNC_HALT_IDLE
){
return SQLITE_MISUSE;
}
async.eHalt = eWhen;
async_mutex_enter(ASYNC_MUTEX_QUEUE);
async_cond_signal(ASYNC_COND_QUEUE);
async_mutex_leave(ASYNC_MUTEX_QUEUE);
break;
}
case SQLITEASYNC_DELAY: {
int iDelay = va_arg(ap, int);
if( iDelay<0 ){
return SQLITE_MISUSE;
}
async.ioDelay = iDelay;
break;
}
case SQLITEASYNC_LOCKFILES: {
int bLock = va_arg(ap, int);
async_mutex_enter(ASYNC_MUTEX_QUEUE);
if( async.nFile || async.pQueueFirst ){
async_mutex_leave(ASYNC_MUTEX_QUEUE);
return SQLITE_MISUSE;
}
async.bLockFiles = bLock;
async_mutex_leave(ASYNC_MUTEX_QUEUE);
break;
}
case SQLITEASYNC_GET_HALT: {
int *peWhen = va_arg(ap, int *);
*peWhen = async.eHalt;
break;
}
case SQLITEASYNC_GET_DELAY: {
int *piDelay = va_arg(ap, int *);
*piDelay = async.ioDelay;
break;
}
case SQLITEASYNC_GET_LOCKFILES: {
int *piDelay = va_arg(ap, int *);
*piDelay = async.bLockFiles;
break;
}
default:
return SQLITE_ERROR;
}
return SQLITE_OK;
}
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) */