4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-18 13:03:31 +08:00
sheltonyu cff34466b0
upload bsp package based firmware library v2.0 (#5711)
* [bsp/at32] remove old version bsp
* [bsp/at32] upload bsp package based firmware library v2.0
2022-03-25 22:54:51 +08:00

432 lines
9.0 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-03-11 shelton first version
*/
#include "board.h"
#include "drv_hwtimer.h"
//#define DRV_DEBUG
#define LOG_TAG "drv.hwtimer"
#include <drv_log.h>
#ifdef BSP_USING_HWTIMER
enum
{
#ifdef BSP_USING_HWTMR1
TMR1_INDEX,
#endif
#ifdef BSP_USING_HWTMR2
TMR2_INDEX,
#endif
#ifdef BSP_USING_HWTMR3
TMR3_INDEX,
#endif
#ifdef BSP_USING_HWTMR4
TMR4_INDEX,
#endif
#ifdef BSP_USING_HWTMR5
TMR5_INDEX,
#endif
#ifdef BSP_USING_HWTMR6
TMR6_INDEX,
#endif
#ifdef BSP_USING_HWTMR7
TMR7_INDEX,
#endif
#ifdef BSP_USING_HW_TMR8
TMR8_INDEX,
#endif
#ifdef BSP_USING_HWTMR9
TMR9_INDEX,
#endif
#ifdef BSP_USING_HWTMR10
TMR10_INDEX,
#endif
#ifdef BSP_USING_HWTMR11
TMR11_INDEX,
#endif
#ifdef BSP_USING_HWTMR12
TMR12_INDEX,
#endif
#ifdef BSP_USING_HWTMR13
TMR13_INDEX,
#endif
#ifdef BSP_USING_HWTMR14
TMR14_INDEX,
#endif
#ifdef BSP_USING_HWTMR15
TMR15_INDEX,
#endif
};
struct at32_hwtimer
{
rt_hwtimer_t tmr_device;
tmr_type* tmr_x;
IRQn_Type tmr_irqn;
char *name;
};
static struct at32_hwtimer at32_hwtimer_obj[] =
{
#ifdef BSP_USING_HWTMR1
TMR1_CONFIG,
#endif
#ifdef BSP_USING_HWTMR2
TMR2_CONFIG,
#endif
#ifdef BSP_USING_HWTMR3
TMR3_CONFIG,
#endif
#ifdef BSP_USING_HWTMR4
TMR4_CONFIG,
#endif
#ifdef BSP_USING_HWTMR5
TMR5_CONFIG,
#endif
#ifdef BSP_USING_HWTMR6
TMR6_CONFIG,
#endif
#ifdef BSP_USING_HWTMR7
TMR7_CONFIG,
#endif
#ifdef BSP_USING_HWTMR8
TMR8_CONFIG,
#endif
#ifdef BSP_USING_HWTMR9
TMR9_CONFIG,
#endif
#ifdef BSP_USING_HWTMR10
TMR10_CONFIG,
#endif
#ifdef BSP_USING_HWTMR11
TMR11_CONFIG,
#endif
#ifdef BSP_USING_HWTMR12
TMR12_CONFIG,
#endif
#ifdef BSP_USING_HWTMR13
TMR13_CONFIG,
#endif
#ifdef BSP_USING_HWTMR14
TMR14_CONFIG,
#endif
#ifdef BSP_USING_HWTMR15
TMR15_CONFIG,
#endif
};
static void tmr_pclk_get(rt_uint32_t *pclk1_doubler, rt_uint32_t *pclk2_doubler)
{
crm_clocks_freq_type clocks_struct;
*pclk1_doubler = 1;
*pclk2_doubler = 1;
crm_clocks_freq_get(&clocks_struct);
if(clocks_struct.ahb_freq != clocks_struct.apb1_freq)
{
*pclk1_doubler = 2;
}
if(clocks_struct.ahb_freq != clocks_struct.apb2_freq)
{
*pclk2_doubler = 2;
}
}
static void at32_timer_init(struct rt_hwtimer_device *timer, rt_uint32_t state)
{
crm_clocks_freq_type clocks_struct;
rt_uint32_t pclk1_doubler = 0, pclk2_doubler = 0;
rt_uint32_t prescaler_value = 0, tmr_clock = 0;
tmr_type *tmr_x = RT_NULL;
struct at32_hwtimer *tmr_device = RT_NULL;
RT_ASSERT(timer != RT_NULL);
if (state)
{
tmr_x = (tmr_type *)timer->parent.user_data;
tmr_device = (struct at32_hwtimer *)timer;
/* timer clock enable */
at32_msp_hwtmr_init(tmr_x);
/* get timer clock */
tmr_pclk_get(&pclk1_doubler, &pclk2_doubler);
crm_clocks_freq_get(&clocks_struct);
if((tmr_x == TMR1) || (tmr_x == TMR8) || (tmr_x == TMR9) || (tmr_x == TMR10) || (tmr_x == TMR11))
{
tmr_clock = clocks_struct.apb2_freq * pclk2_doubler;
}
else
{
tmr_clock = clocks_struct.apb1_freq * pclk1_doubler;
}
/* set timer clock is 1mhz */
prescaler_value = (uint32_t)(tmr_clock / 10000) - 1;
tmr_base_init(tmr_x, 10000 - 1, prescaler_value);
tmr_clock_source_div_set(tmr_x, TMR_CLOCK_DIV1);
tmr_repetition_counter_set(tmr_x, 0);
if (timer->info->cntmode == HWTIMER_CNTMODE_UP)
{
tmr_cnt_dir_set(tmr_x, TMR_COUNT_UP);
}
else
{
tmr_cnt_dir_set(tmr_x, TMR_COUNT_DOWN);
}
/* enable the timer global interrupt and clear flag */
nvic_irq_enable(tmr_device->tmr_irqn, 2, 0);
tmr_interrupt_enable(tmr_x, TMR_OVF_INT, TRUE);
tmr_flag_clear(tmr_x, TMR_OVF_INT);
LOG_D("%s init success", tmr_device->name);
}
}
static rt_err_t at32_timer_start(rt_hwtimer_t *timer, rt_uint32_t pr, rt_hwtimer_mode_t opmode)
{
rt_err_t result = RT_EOK;
tmr_type *tmr_x = RT_NULL;
RT_ASSERT(timer != RT_NULL);
tmr_x = (tmr_type *)timer->parent.user_data;
/* set tmr_x count */
tmr_counter_value_set(tmr_x, 0);
/* set tmr_x period register */
tmr_period_value_set(tmr_x, pr - 1);
if (opmode == HWTIMER_MODE_ONESHOT)
{
/* set timer to one cycle mode */
tmr_one_cycle_mode_enable(tmr_x, TRUE);
}
else
{
/* set timer to period mode */
tmr_one_cycle_mode_enable(tmr_x, FALSE);
}
/* start timer */
tmr_counter_enable(tmr_x, TRUE);
return result;
}
static void at32_timer_stop(rt_hwtimer_t *timer)
{
tmr_type *tmr_x = RT_NULL;
RT_ASSERT(timer != RT_NULL);
tmr_x = (tmr_type *)timer->parent.user_data;
/* stop timer */
tmr_counter_enable(tmr_x, FALSE);
/* set tmr_x count */
tmr_counter_value_set(tmr_x, 0);
}
static rt_uint32_t at32_timer_counter_get(rt_hwtimer_t *timer)
{
tmr_type *tmr_x = RT_NULL;
RT_ASSERT(timer != RT_NULL);
tmr_x = (tmr_type *)timer->parent.user_data;
return tmr_counter_value_get(tmr_x);
}
static rt_err_t at32_timer_ctrl(rt_hwtimer_t *timer, rt_uint32_t cmd, void *arg)
{
crm_clocks_freq_type clocks_struct;
tmr_type *tmr_x = RT_NULL;
rt_err_t result = RT_EOK;
rt_uint32_t pclk1_doubler = 0, pclk2_doubler = 0, tmr_clock = 0;
RT_ASSERT(timer != RT_NULL);
RT_ASSERT(arg != RT_NULL);
tmr_x = (tmr_type *)timer->parent.user_data;
switch(cmd)
{
case HWTIMER_CTRL_FREQ_SET:
{
rt_uint32_t freq;
rt_uint16_t val;
/* get timer frequence */
freq = *((rt_uint32_t *)arg);
/* get timer clock */
tmr_pclk_get(&pclk1_doubler, &pclk2_doubler);
crm_clocks_freq_get(&clocks_struct);
if((tmr_x == TMR1) || (tmr_x == TMR8) || (tmr_x == TMR9) || (tmr_x == TMR10) || (tmr_x == TMR11))
{
tmr_clock = clocks_struct.apb2_freq * pclk2_doubler;
}
else
{
tmr_clock = clocks_struct.apb1_freq * pclk1_doubler;
}
/* set div value */
val = tmr_clock / freq;
tmr_div_value_set(tmr_x, val - 1);
tmr_event_sw_trigger(tmr_x, TMR_OVERFLOW_SWTRIG);
}
break;
default:
{
result = -RT_ENOSYS;
}
break;
}
return result;
}
static const struct rt_hwtimer_info _info = TMR_DEV_INFO_CONFIG;
static const struct rt_hwtimer_ops _ops =
{
.init = at32_timer_init,
.start = at32_timer_start,
.stop = at32_timer_stop,
.count_get = at32_timer_counter_get,
.control = at32_timer_ctrl,
};
#ifdef BSP_USING_HWTMR2
void TMR2_GLOBAL_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
if(tmr_flag_get(TMR2, TMR_OVF_FLAG) == SET)
{
rt_device_hwtimer_isr(&at32_hwtimer_obj[TMR2_INDEX].tmr_device);
tmr_flag_clear(TMR2, TMR_OVF_FLAG);
}
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_HWTMR3
void TMR3_GLOBAL_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
if(tmr_flag_get(TMR3, TMR_OVF_FLAG) == SET)
{
rt_device_hwtimer_isr(&at32_hwtimer_obj[TMR3_INDEX].tmr_device);
tmr_flag_clear(TMR3, TMR_OVF_FLAG);
}
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_HWTMR4
void TMR4_GLOBAL_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
if(tmr_flag_get(TMR4, TMR_OVF_FLAG) == SET)
{
rt_device_hwtimer_isr(&at32_hwtimer_obj[TMR4_INDEX].tmr_device);
tmr_flag_clear(TMR4, TMR_OVF_FLAG);
}
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_HWTMR5
void TMR5_GLOBAL_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
if(tmr_flag_get(TMR5, TMR_OVF_FLAG) == SET)
{
rt_device_hwtimer_isr(&at32_hwtimer_obj[TMR5_INDEX].tmr_device);
tmr_flag_clear(TMR5, TMR_OVF_FLAG);
}
/* leave interrupt */
rt_interrupt_leave();
}
#endif
static int rt_hw_hwtimer_init(void)
{
int i = 0;
int result = RT_EOK;
for (i = 0; i < sizeof(at32_hwtimer_obj) / sizeof(at32_hwtimer_obj[0]); i++)
{
at32_hwtimer_obj[i].tmr_device.info = &_info;
at32_hwtimer_obj[i].tmr_device.ops = &_ops;
if (rt_device_hwtimer_register(&at32_hwtimer_obj[i].tmr_device, at32_hwtimer_obj[i].name, at32_hwtimer_obj[i].tmr_x) == RT_EOK)
{
LOG_D("%s register success", at32_hwtimer_obj[i].name);
}
else
{
LOG_E("%s register failed", at32_hwtimer_obj[i].name);
result = -RT_ERROR;
}
}
return result;
}
INIT_BOARD_EXPORT(rt_hw_hwtimer_init);
#endif /* BSP_USING_HWTIMER */