mirror of
https://github.com/RT-Thread/rt-thread.git
synced 2025-01-17 04:43:31 +08:00
382 lines
12 KiB
C
382 lines
12 KiB
C
/*
|
|
* Copyright (c) 2015, Freescale Semiconductor, Inc.
|
|
* Copyright 2016-2017 NXP
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
*
|
|
* o Redistributions of source code must retain the above copyright notice, this list
|
|
* of conditions and the following disclaimer.
|
|
*
|
|
* o Redistributions in binary form must reproduce the above copyright notice, this
|
|
* list of conditions and the following disclaimer in the documentation and/or
|
|
* other materials provided with the distribution.
|
|
*
|
|
* o Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from this
|
|
* software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "fsl_rtc.h"
|
|
|
|
/*******************************************************************************
|
|
* Definitions
|
|
******************************************************************************/
|
|
#define SECONDS_IN_A_DAY (86400U)
|
|
#define SECONDS_IN_A_HOUR (3600U)
|
|
#define SECONDS_IN_A_MINUTE (60U)
|
|
#define DAYS_IN_A_YEAR (365U)
|
|
#define YEAR_RANGE_START (1970U)
|
|
#define YEAR_RANGE_END (2099U)
|
|
|
|
/*******************************************************************************
|
|
* Prototypes
|
|
******************************************************************************/
|
|
/*!
|
|
* @brief Checks whether the date and time passed in is valid
|
|
*
|
|
* @param datetime Pointer to structure where the date and time details are stored
|
|
*
|
|
* @return Returns false if the date & time details are out of range; true if in range
|
|
*/
|
|
static bool RTC_CheckDatetimeFormat(const rtc_datetime_t *datetime);
|
|
|
|
/*!
|
|
* @brief Converts time data from datetime to seconds
|
|
*
|
|
* @param datetime Pointer to datetime structure where the date and time details are stored
|
|
*
|
|
* @return The result of the conversion in seconds
|
|
*/
|
|
static uint32_t RTC_ConvertDatetimeToSeconds(const rtc_datetime_t *datetime);
|
|
|
|
/*!
|
|
* @brief Converts time data from seconds to a datetime structure
|
|
*
|
|
* @param seconds Seconds value that needs to be converted to datetime format
|
|
* @param datetime Pointer to the datetime structure where the result of the conversion is stored
|
|
*/
|
|
static void RTC_ConvertSecondsToDatetime(uint32_t seconds, rtc_datetime_t *datetime);
|
|
|
|
/*******************************************************************************
|
|
* Code
|
|
******************************************************************************/
|
|
static bool RTC_CheckDatetimeFormat(const rtc_datetime_t *datetime)
|
|
{
|
|
assert(datetime);
|
|
|
|
/* Table of days in a month for a non leap year. First entry in the table is not used,
|
|
* valid months start from 1
|
|
*/
|
|
uint8_t daysPerMonth[] = {0U, 31U, 28U, 31U, 30U, 31U, 30U, 31U, 31U, 30U, 31U, 30U, 31U};
|
|
|
|
/* Check year, month, hour, minute, seconds */
|
|
if ((datetime->year < YEAR_RANGE_START) || (datetime->year > YEAR_RANGE_END) || (datetime->month > 12U) ||
|
|
(datetime->month < 1U) || (datetime->hour >= 24U) || (datetime->minute >= 60U) || (datetime->second >= 60U))
|
|
{
|
|
/* If not correct then error*/
|
|
return false;
|
|
}
|
|
|
|
/* Adjust the days in February for a leap year */
|
|
if ((((datetime->year & 3U) == 0) && (datetime->year % 100 != 0)) || (datetime->year % 400 == 0))
|
|
{
|
|
daysPerMonth[2] = 29U;
|
|
}
|
|
|
|
/* Check the validity of the day */
|
|
if ((datetime->day > daysPerMonth[datetime->month]) || (datetime->day < 1U))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static uint32_t RTC_ConvertDatetimeToSeconds(const rtc_datetime_t *datetime)
|
|
{
|
|
assert(datetime);
|
|
|
|
/* Number of days from begin of the non Leap-year*/
|
|
/* Number of days from begin of the non Leap-year*/
|
|
uint16_t monthDays[] = {0U, 0U, 31U, 59U, 90U, 120U, 151U, 181U, 212U, 243U, 273U, 304U, 334U};
|
|
uint32_t seconds;
|
|
|
|
/* Compute number of days from 1970 till given year*/
|
|
seconds = (datetime->year - 1970U) * DAYS_IN_A_YEAR;
|
|
/* Add leap year days */
|
|
seconds += ((datetime->year / 4) - (1970U / 4));
|
|
/* Add number of days till given month*/
|
|
seconds += monthDays[datetime->month];
|
|
/* Add days in given month. We subtract the current day as it is
|
|
* represented in the hours, minutes and seconds field*/
|
|
seconds += (datetime->day - 1);
|
|
/* For leap year if month less than or equal to Febraury, decrement day counter*/
|
|
if ((!(datetime->year & 3U)) && (datetime->month <= 2U))
|
|
{
|
|
seconds--;
|
|
}
|
|
|
|
seconds = (seconds * SECONDS_IN_A_DAY) + (datetime->hour * SECONDS_IN_A_HOUR) +
|
|
(datetime->minute * SECONDS_IN_A_MINUTE) + datetime->second;
|
|
|
|
return seconds;
|
|
}
|
|
|
|
static void RTC_ConvertSecondsToDatetime(uint32_t seconds, rtc_datetime_t *datetime)
|
|
{
|
|
assert(datetime);
|
|
|
|
uint32_t x;
|
|
uint32_t secondsRemaining, days;
|
|
uint16_t daysInYear;
|
|
/* Table of days in a month for a non leap year. First entry in the table is not used,
|
|
* valid months start from 1
|
|
*/
|
|
uint8_t daysPerMonth[] = {0U, 31U, 28U, 31U, 30U, 31U, 30U, 31U, 31U, 30U, 31U, 30U, 31U};
|
|
|
|
/* Start with the seconds value that is passed in to be converted to date time format */
|
|
secondsRemaining = seconds;
|
|
|
|
/* Calcuate the number of days, we add 1 for the current day which is represented in the
|
|
* hours and seconds field
|
|
*/
|
|
days = secondsRemaining / SECONDS_IN_A_DAY + 1;
|
|
|
|
/* Update seconds left*/
|
|
secondsRemaining = secondsRemaining % SECONDS_IN_A_DAY;
|
|
|
|
/* Calculate the datetime hour, minute and second fields */
|
|
datetime->hour = secondsRemaining / SECONDS_IN_A_HOUR;
|
|
secondsRemaining = secondsRemaining % SECONDS_IN_A_HOUR;
|
|
datetime->minute = secondsRemaining / 60U;
|
|
datetime->second = secondsRemaining % SECONDS_IN_A_MINUTE;
|
|
|
|
/* Calculate year */
|
|
daysInYear = DAYS_IN_A_YEAR;
|
|
datetime->year = YEAR_RANGE_START;
|
|
while (days > daysInYear)
|
|
{
|
|
/* Decrease day count by a year and increment year by 1 */
|
|
days -= daysInYear;
|
|
datetime->year++;
|
|
|
|
/* Adjust the number of days for a leap year */
|
|
if (datetime->year & 3U)
|
|
{
|
|
daysInYear = DAYS_IN_A_YEAR;
|
|
}
|
|
else
|
|
{
|
|
daysInYear = DAYS_IN_A_YEAR + 1;
|
|
}
|
|
}
|
|
|
|
/* Adjust the days in February for a leap year */
|
|
if (!(datetime->year & 3U))
|
|
{
|
|
daysPerMonth[2] = 29U;
|
|
}
|
|
|
|
for (x = 1U; x <= 12U; x++)
|
|
{
|
|
if (days <= daysPerMonth[x])
|
|
{
|
|
datetime->month = x;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
days -= daysPerMonth[x];
|
|
}
|
|
}
|
|
|
|
datetime->day = days;
|
|
}
|
|
|
|
void RTC_Init(RTC_Type *base, const rtc_config_t *config)
|
|
{
|
|
assert(config);
|
|
|
|
uint32_t reg;
|
|
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
CLOCK_EnableClock(kCLOCK_Rtc0);
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
|
|
/* Issue a software reset if timer is invalid */
|
|
if (RTC_GetStatusFlags(RTC) & kRTC_TimeInvalidFlag)
|
|
{
|
|
RTC_Reset(RTC);
|
|
}
|
|
|
|
reg = base->CR;
|
|
/* Setup the update mode and supervisor access mode */
|
|
reg &= ~(RTC_CR_UM_MASK | RTC_CR_SUP_MASK);
|
|
reg |= RTC_CR_UM(config->updateMode) | RTC_CR_SUP(config->supervisorAccess);
|
|
#if defined(FSL_FEATURE_RTC_HAS_WAKEUP_PIN_SELECTION) && FSL_FEATURE_RTC_HAS_WAKEUP_PIN_SELECTION
|
|
/* Setup the wakeup pin select */
|
|
reg &= ~(RTC_CR_WPS_MASK);
|
|
reg |= RTC_CR_WPS(config->wakeupSelect);
|
|
#endif /* FSL_FEATURE_RTC_HAS_WAKEUP_PIN */
|
|
base->CR = reg;
|
|
|
|
/* Configure the RTC time compensation register */
|
|
base->TCR = (RTC_TCR_CIR(config->compensationInterval) | RTC_TCR_TCR(config->compensationTime));
|
|
}
|
|
|
|
void RTC_GetDefaultConfig(rtc_config_t *config)
|
|
{
|
|
assert(config);
|
|
|
|
/* Wakeup pin will assert if the RTC interrupt asserts or if the wakeup pin is turned on */
|
|
config->wakeupSelect = false;
|
|
/* Registers cannot be written when locked */
|
|
config->updateMode = false;
|
|
/* Non-supervisor mode write accesses are not supported and will generate a bus error */
|
|
config->supervisorAccess = false;
|
|
/* Compensation interval used by the crystal compensation logic */
|
|
config->compensationInterval = 0;
|
|
/* Compensation time used by the crystal compensation logic */
|
|
config->compensationTime = 0;
|
|
}
|
|
|
|
status_t RTC_SetDatetime(RTC_Type *base, const rtc_datetime_t *datetime)
|
|
{
|
|
assert(datetime);
|
|
|
|
/* Return error if the time provided is not valid */
|
|
if (!(RTC_CheckDatetimeFormat(datetime)))
|
|
{
|
|
return kStatus_InvalidArgument;
|
|
}
|
|
|
|
/* Set time in seconds */
|
|
base->TSR = RTC_ConvertDatetimeToSeconds(datetime);
|
|
|
|
return kStatus_Success;
|
|
}
|
|
|
|
void RTC_GetDatetime(RTC_Type *base, rtc_datetime_t *datetime)
|
|
{
|
|
assert(datetime);
|
|
|
|
uint32_t seconds = 0;
|
|
|
|
seconds = base->TSR;
|
|
RTC_ConvertSecondsToDatetime(seconds, datetime);
|
|
}
|
|
|
|
status_t RTC_SetAlarm(RTC_Type *base, const rtc_datetime_t *alarmTime)
|
|
{
|
|
assert(alarmTime);
|
|
|
|
uint32_t alarmSeconds = 0;
|
|
uint32_t currSeconds = 0;
|
|
|
|
/* Return error if the alarm time provided is not valid */
|
|
if (!(RTC_CheckDatetimeFormat(alarmTime)))
|
|
{
|
|
return kStatus_InvalidArgument;
|
|
}
|
|
|
|
alarmSeconds = RTC_ConvertDatetimeToSeconds(alarmTime);
|
|
|
|
/* Get the current time */
|
|
currSeconds = base->TSR;
|
|
|
|
/* Return error if the alarm time has passed */
|
|
if (alarmSeconds < currSeconds)
|
|
{
|
|
return kStatus_Fail;
|
|
}
|
|
|
|
/* Set alarm in seconds*/
|
|
base->TAR = alarmSeconds;
|
|
|
|
return kStatus_Success;
|
|
}
|
|
|
|
void RTC_GetAlarm(RTC_Type *base, rtc_datetime_t *datetime)
|
|
{
|
|
assert(datetime);
|
|
|
|
uint32_t alarmSeconds = 0;
|
|
|
|
/* Get alarm in seconds */
|
|
alarmSeconds = base->TAR;
|
|
|
|
RTC_ConvertSecondsToDatetime(alarmSeconds, datetime);
|
|
}
|
|
|
|
void RTC_ClearStatusFlags(RTC_Type *base, uint32_t mask)
|
|
{
|
|
/* The alarm flag is cleared by writing to the TAR register */
|
|
if (mask & kRTC_AlarmFlag)
|
|
{
|
|
base->TAR = 0U;
|
|
}
|
|
|
|
/* The timer overflow flag is cleared by initializing the TSR register.
|
|
* The time counter should be disabled for this write to be successful
|
|
*/
|
|
if (mask & kRTC_TimeOverflowFlag)
|
|
{
|
|
base->TSR = 1U;
|
|
}
|
|
|
|
/* The timer overflow flag is cleared by initializing the TSR register.
|
|
* The time counter should be disabled for this write to be successful
|
|
*/
|
|
if (mask & kRTC_TimeInvalidFlag)
|
|
{
|
|
base->TSR = 1U;
|
|
}
|
|
}
|
|
|
|
#if defined(FSL_FEATURE_RTC_HAS_MONOTONIC) && (FSL_FEATURE_RTC_HAS_MONOTONIC)
|
|
|
|
void RTC_GetMonotonicCounter(RTC_Type *base, uint64_t *counter)
|
|
{
|
|
assert(counter);
|
|
|
|
*counter = (((uint64_t)base->MCHR << 32) | ((uint64_t)base->MCLR));
|
|
}
|
|
|
|
void RTC_SetMonotonicCounter(RTC_Type *base, uint64_t counter)
|
|
{
|
|
/* Prepare to initialize the register with the new value written */
|
|
base->MER &= ~RTC_MER_MCE_MASK;
|
|
|
|
base->MCHR = (uint32_t)((counter) >> 32);
|
|
base->MCLR = (uint32_t)(counter);
|
|
}
|
|
|
|
status_t RTC_IncrementMonotonicCounter(RTC_Type *base)
|
|
{
|
|
if (base->SR & (RTC_SR_MOF_MASK | RTC_SR_TIF_MASK))
|
|
{
|
|
return kStatus_Fail;
|
|
}
|
|
|
|
/* Prepare to switch to increment mode */
|
|
base->MER |= RTC_MER_MCE_MASK;
|
|
/* Write anything so the counter increments*/
|
|
base->MCLR = 1U;
|
|
|
|
return kStatus_Success;
|
|
}
|
|
|
|
#endif /* FSL_FEATURE_RTC_HAS_MONOTONIC */
|