4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-18 09:43:30 +08:00
2020-11-24 14:59:28 +08:00

391 lines
10 KiB
C

/*
* Copyright (c) 2006-2020, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-07-31 Zero-Free first implementation
* 2020-07-02 thread-liu Porting for STM32MP1
*/
#include <board.h>
#if defined(BSP_USING_AUDIO_RECORD)
#include "drv_cs42l51.h"
//#define DRV_DEBUG
#define DBG_TAG "drv.audio"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#define MIC_BUS_NAME "i2c4"
/* SYSRAM */
#define RX_FIFO_SIZE (4096)
#if defined(__CC_ARM) || defined(__CLANG_ARM)
rt_uint8_t MIC_RX_FIFO[RX_FIFO_SIZE] __attribute__((at(0x2FFC2000)));
#elif defined(__ICCARM__)
#pragma location = 0x2FFC2000
rt_uint8_t MIC_RX_FIFO[RX_FIFO_SIZE];
#elif defined ( __GNUC__ )
rt_uint8_t MIC_RX_FIFO[RX_FIFO_SIZE] __attribute__((at(0x2FFC2000)));
#endif
struct mic_device
{
struct rt_audio_device audio;
struct rt_audio_configure record_config;
rt_uint8_t *rx_fifo;
rt_uint8_t volume;
};
static struct mic_device mic_dev = {0};
static rt_uint16_t zero_frame[2] = {0};
extern SAI_HandleTypeDef hsai_BlockA2;
extern DMA_HandleTypeDef hdma_sai2_a;
extern SAI_HandleTypeDef hsai_BlockB2;
extern DMA_HandleTypeDef hdma_sai2_b;
extern void SAIA_Frequency_Set(uint32_t frequency);
void SAIB_Init(void)
{
HAL_SAI_DeInit(&hsai_BlockB2);
hsai_BlockB2.Instance = SAI2_Block_B;
hsai_BlockB2.Init.AudioFrequency = SAI_AUDIO_FREQUENCY_44K;
hsai_BlockB2.Init.AudioMode = SAI_MODESLAVE_RX;
hsai_BlockB2.Init.Synchro = SAI_SYNCHRONOUS;
hsai_BlockB2.Init.OutputDrive = SAI_OUTPUTDRIVE_ENABLE;
hsai_BlockB2.Init.NoDivider = SAI_MASTERDIVIDER_ENABLE;
hsai_BlockB2.Init.FIFOThreshold = SAI_FIFOTHRESHOLD_1QF;
hsai_BlockB2.Init.Mckdiv = 0;
hsai_BlockB2.Init.MckOverSampling = SAI_MCK_OVERSAMPLING_DISABLE;
hsai_BlockB2.Init.MonoStereoMode = SAI_STEREOMODE;
hsai_BlockB2.Init.CompandingMode = SAI_NOCOMPANDING;
hsai_BlockB2.Init.TriState = SAI_OUTPUT_NOTRELEASED;
hsai_BlockB2.Init.PdmInit.Activation = DISABLE;
hsai_BlockB2.Init.PdmInit.MicPairsNbr = 1;
hsai_BlockB2.Init.PdmInit.ClockEnable = SAI_PDM_CLOCK1_ENABLE;
hsai_BlockB2.Init.Protocol = SAI_FREE_PROTOCOL;
hsai_BlockB2.Init.DataSize = SAI_DATASIZE_16;
hsai_BlockB2.Init.FirstBit = SAI_FIRSTBIT_MSB;
hsai_BlockB2.Init.ClockStrobing = SAI_CLOCKSTROBING_RISINGEDGE;
hsai_BlockB2.FrameInit.FrameLength = 64;
hsai_BlockB2.FrameInit.ActiveFrameLength = 32;
hsai_BlockB2.FrameInit.FSDefinition = SAI_FS_CHANNEL_IDENTIFICATION;
hsai_BlockB2.FrameInit.FSPolarity = SAI_FS_ACTIVE_LOW;
hsai_BlockB2.FrameInit.FSOffset = SAI_FS_BEFOREFIRSTBIT;
hsai_BlockB2.SlotInit.FirstBitOffset = 0;
hsai_BlockB2.SlotInit.SlotSize = SAI_SLOTSIZE_32B;
hsai_BlockB2.SlotInit.SlotNumber = 2;
hsai_BlockB2.SlotInit.SlotActive = SAI_SLOTACTIVE_0|SAI_SLOTACTIVE_1;
/* DeInit SAI PDM input */
HAL_SAI_DeInit(&hsai_BlockB2);
/* Init SAI PDM input */
if(HAL_OK != HAL_SAI_Init(&hsai_BlockB2))
{
Error_Handler();
}
/* Enable SAI to generate clock used by audio driver */
__HAL_SAI_ENABLE(&hsai_BlockB2);
}
void SAIB_Channels_Set(uint8_t channels)
{
if (channels == 1)
{
hsai_BlockB2.Init.MonoStereoMode = SAI_MONOMODE;
}
else
{
hsai_BlockB2.Init.MonoStereoMode = SAI_STEREOMODE;
}
__HAL_SAI_DISABLE(&hsai_BlockB2);
HAL_SAI_Init(&hsai_BlockB2);
__HAL_SAI_ENABLE(&hsai_BlockB2);
}
void DMA2_Stream4_IRQHandler(void)
{
HAL_DMA_IRQHandler(&hdma_sai2_b);
}
void HAL_SAI_RxHalfCpltCallback(SAI_HandleTypeDef *hsai)
{
rt_audio_rx_done(&mic_dev.audio, &mic_dev.rx_fifo[0], RX_FIFO_SIZE / 2);
}
void HAL_SAI_RxCpltCallback(SAI_HandleTypeDef *hsai)
{
rt_audio_rx_done(&mic_dev.audio, &mic_dev.rx_fifo[RX_FIFO_SIZE / 2], RX_FIFO_SIZE / 2);
}
static rt_err_t mic_getcaps(struct rt_audio_device *audio, struct rt_audio_caps *caps)
{
rt_err_t result = RT_EOK;
struct mic_device *mic_dev;
RT_ASSERT(audio != RT_NULL);
mic_dev = (struct mic_device *)audio->parent.user_data;
switch (caps->main_type)
{
case AUDIO_TYPE_QUERY: /* qurey the types of hw_codec device */
{
switch (caps->sub_type)
{
case AUDIO_TYPE_QUERY:
caps->udata.mask = AUDIO_TYPE_INPUT | AUDIO_TYPE_MIXER;
break;
default:
result = -RT_ERROR;
break;
}
break;
}
case AUDIO_TYPE_INPUT: /* Provide capabilities of INPUT unit */
{
switch (caps->sub_type)
{
case AUDIO_DSP_PARAM:
caps->udata.config.samplerate = mic_dev->record_config.samplerate;
caps->udata.config.channels = mic_dev->record_config.channels;
caps->udata.config.samplebits = mic_dev->record_config.samplebits;
break;
case AUDIO_DSP_SAMPLERATE:
caps->udata.config.samplerate = mic_dev->record_config.samplerate;
break;
case AUDIO_DSP_CHANNELS:
caps->udata.config.channels = mic_dev->record_config.channels;
break;
case AUDIO_DSP_SAMPLEBITS:
caps->udata.config.samplebits = mic_dev->record_config.samplebits;
break;
default:
result = -RT_ERROR;
break;
}
break;
}
case AUDIO_TYPE_MIXER: /* report the Mixer Units */
{
switch (caps->sub_type)
{
case AUDIO_MIXER_QUERY:
caps->udata.mask = AUDIO_MIXER_VOLUME | AUDIO_MIXER_LINE;
break;
case AUDIO_MIXER_VOLUME:
caps->udata.value = mic_dev->volume;
break;
case AUDIO_MIXER_LINE:
break;
default:
result = -RT_ERROR;
break;
}
break;
}
default:
result = -RT_ERROR;
break;
}
return result;
}
static rt_err_t mic_configure(struct rt_audio_device *audio, struct rt_audio_caps *caps)
{
rt_err_t result = RT_EOK;
struct mic_device *mic_dev;
RT_ASSERT(audio != RT_NULL);
mic_dev = (struct mic_device *)audio->parent.user_data;
switch (caps->main_type)
{
case AUDIO_TYPE_MIXER:
{
switch (caps->sub_type)
{
case AUDIO_MIXER_VOLUME:
{
rt_uint32_t volume = caps->udata.value;
mic_dev->volume = volume;
LOG_D("set volume %d", volume);
break;
}
default:
result = -RT_ERROR;
break;
}
break;
}
case AUDIO_TYPE_INPUT:
{
switch (caps->sub_type)
{
case AUDIO_DSP_PARAM:
{
SAIA_Frequency_Set(caps->udata.config.samplerate);
HAL_SAI_DMAStop(&hsai_BlockB2);
SAIB_Channels_Set(caps->udata.config.channels);
HAL_SAI_Transmit(&hsai_BlockA2, (uint8_t *)&zero_frame[0], 2, 0);
HAL_SAI_Receive_DMA(&hsai_BlockB2, mic_dev->rx_fifo, RX_FIFO_SIZE / 2);
/* save configs */
mic_dev->record_config.samplerate = caps->udata.config.samplerate;
mic_dev->record_config.channels = caps->udata.config.channels;
mic_dev->record_config.samplebits = caps->udata.config.samplebits;
LOG_D("set samplerate %d", mic_dev->record_config.samplerate);
LOG_D("set channels %d", mic_dev->record_config.channels);
break;
}
case AUDIO_DSP_SAMPLERATE:
{
mic_dev->record_config.samplerate = caps->udata.config.samplerate;
LOG_D("set channels %d", mic_dev->record_config.channels);
break;
}
case AUDIO_DSP_CHANNELS:
{
mic_dev->record_config.channels = caps->udata.config.channels;
LOG_D("set channels %d", mic_dev->record_config.channels);
break;
}
default:
break;
}
break;
}
default:
break;
}
return result;
}
static rt_err_t mic_init(struct rt_audio_device *audio)
{
struct mic_device *mic_dev;
RT_ASSERT(audio != RT_NULL);
mic_dev = (struct mic_device *)audio->parent.user_data;
SAIB_Init();
/* set default params */
SAIB_Channels_Set(mic_dev->record_config.channels);
return RT_EOK;
}
static rt_err_t mic_start(struct rt_audio_device *audio, int stream)
{
struct mic_device *mic_dev;
RT_ASSERT(audio != RT_NULL);
mic_dev = (struct mic_device *)audio->parent.user_data;
if (stream == AUDIO_STREAM_RECORD)
{
cs42l51_drv.init(IN_MIC1, MIC_BUS_NAME, 40);
/* open receive */
if (HAL_SAI_Receive_DMA(&hsai_BlockB2, mic_dev->rx_fifo, RX_FIFO_SIZE / 2) != HAL_OK)
{
return RT_ERROR;
}
/* supply clk */
HAL_SAI_Transmit(&hsai_BlockA2, (uint8_t *)&zero_frame[0], 2, 0);
cs42l51_drv.play();
}
return RT_EOK;
}
static rt_err_t mic_stop(struct rt_audio_device *audio, int stream)
{
if (stream == AUDIO_STREAM_RECORD)
{
HAL_SAI_DMAStop(&hsai_BlockB2);
HAL_SAI_Abort(&hsai_BlockB2);
cs42l51_drv.stop();
}
return RT_EOK;
}
static struct rt_audio_ops mic_ops =
{
.getcaps = mic_getcaps,
.configure = mic_configure,
.init = mic_init,
.start = mic_start,
.stop = mic_stop,
.transmit = RT_NULL,
.buffer_info = RT_NULL,
};
int rt_hw_mic_init(void)
{
rt_err_t result = RT_EOK;
struct rt_device *device;
rt_memset(MIC_RX_FIFO, 0, RX_FIFO_SIZE);
mic_dev.rx_fifo = MIC_RX_FIFO;
/* init default configuration */
{
mic_dev.record_config.samplerate = 44100;
mic_dev.record_config.channels = 2;
mic_dev.record_config.samplebits = 16;
mic_dev.volume = 55;
}
/* register sound device */
mic_dev.audio.ops = &mic_ops;
result = rt_audio_register(&mic_dev.audio, "mic0", RT_DEVICE_FLAG_RDONLY, &mic_dev);
if (result != RT_EOK)
{
device = &(mic_dev.audio.parent);
rt_device_unregister(device);
LOG_E("mic device init error!");
return RT_ERROR;
}
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_mic_init);
#endif