4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-19 09:03:30 +08:00
2017-08-30 11:07:54 +08:00

1282 lines
45 KiB
C

/*!
\file gd32f4xx_rcu.c
\brief RCU driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#include "gd32f4xx_rcu.h"
#define SEL_IRC16M 0U
#define SEL_HXTAL 1U
#define SEL_PLLP 2U
#define OSC_STARTUP_TIMEOUT ((uint16_t)0xfffffU)
#define LXTAL_STARTUP_TIMEOUT ((uint16_t)0x3ffffffU)
/*!
\brief deinitialize the RCU
\param[in] none
\param[out] none
\retval none
*/
void rcu_deinit(void)
{
/* enable IRC16M */
RCU_CTL |= RCU_CTL_IRC16MEN;
rcu_osci_stab_wait(RCU_IRC16M);
/* reset CFG0 register */
RCU_CFG0 &= ~(RCU_CFG0_SCS | RCU_CFG0_AHBPSC | RCU_CFG0_APB1PSC | RCU_CFG0_APB2PSC |
RCU_CFG0_RTCDIV | RCU_CFG0_CKOUT0SEL | RCU_CFG0_I2SSEL | RCU_CFG0_CKOUT0DIV |
RCU_CFG0_CKOUT1DIV | RCU_CFG0_CKOUT1SEL);
/* reset CTL register */
RCU_CTL &= ~(RCU_CTL_HXTALEN | RCU_CTL_CKMEN | RCU_CTL_PLLEN | RCU_CTL_PLLI2SEN |
RCU_CTL_PLLSAIEN | RCU_CTL_HXTALBPS);
/* reset PLL register */
RCU_PLL = 0x24003010U;
/* reset PLLI2S register */
RCU_PLLI2S = 0x24003000U;
/* reset PLLSAI register */
RCU_PLLSAI = 0x24003010U;
/* reset INT register */
RCU_INT = 0x00000000U;
/* reset CFG1 register */
RCU_CFG1 &= ~(RCU_CFG1_PLLSAIRDIV | RCU_CFG1_TIMERSEL);
}
/*!
\brief enable the peripherals clock
\param[in] periph: RCU peripherals, refer to rcu_periph_enum
only one parameter can be selected which is shown as below:
\arg RCU_GPIOx (x=A,B,C,D,E,F,G,H,I): GPIO ports clock
\arg RCU_CRC: CRC clock
\arg RCU_BKPSRAM: BKPSRAM clock
\arg RCU_TCMSRAM: TCMSRAM clock
\arg RCU_DMAx (x=0,1): DMA clock
\arg RCU_IPA: IPA clock
\arg RCU_ENET: ENET clock
\arg RCU_ENETTX: ENETTX clock
\arg RCU_ENETRX: ENETRX clock
\arg RCU_ENETPTP: ENETPTP clock
\arg RCU_USBHS: USBHS clock
\arg RCU_USBHSULPI: USBHSULPI clock
\arg RCU_DCI: DCI clock
\arg RCU_TRNG: TRNG clock
\arg RCU_USBFS: USBFS clock
\arg RCU_EXMC: EXMC clock
\arg RCU_TIMERx (x=0,1,2,3,4,5,6,7,8,9,10,11,12,13): TIMER clock
\arg RCU_WWDGT: WWDGT clock
\arg RCU_SPIx (x=0,1,2,3,4,5): SPI clock
\arg RCU_USARTx (x=0,1,2,5): USART clock
\arg RCU_UARTx (x=3,4,6,7): UART clock
\arg RCU_I2Cx (x=0,1,2): I2C clock
\arg RCU_CANx (x=0,1): CAN clock
\arg RCU_PMU: PMU clock
\arg RCU_DAC: DAC clock
\arg RCU_RTC: RTC clock
\arg RCU_ADCx (x=0,1,2): ADC clock
\arg RCU_SDIO: SDIO clock
\arg RCU_SYSCFG: SYSCFG clock
\arg RCU_TLI: TLI clock
\arg RCU_CTC: CTC clock
\arg RCU_IREF: IREF clock
\param[out] none
\retval none
*/
void rcu_periph_clock_enable(rcu_periph_enum periph)
{
RCU_REG_VAL(periph) |= BIT(RCU_BIT_POS(periph));
}
/*!
\brief disable the peripherals clock
\param[in] periph: RCU peripherals, refer to rcu_periph_enum
only one parameter can be selected which is shown as below:
\arg RCU_GPIOx (x=A,B,C,D,E,F,G,H,I): GPIO ports clock
\arg RCU_CRC: CRC clock
\arg RCU_BKPSRAM: BKPSRAM clock
\arg RCU_TCMSRAM: TCMSRAM clock
\arg RCU_DMAx (x=0,1): DMA clock
\arg RCU_IPA: IPA clock
\arg RCU_ENET: ENET clock
\arg RCU_ENETTX: ENETTX clock
\arg RCU_ENETRX: ENETRX clock
\arg RCU_ENETPTP: ENETPTP clock
\arg RCU_USBHS: USBHS clock
\arg RCU_USBHSULPI: USBHSULPI clock
\arg RCU_DCI: DCI clock
\arg RCU_TRNG: TRNG clock
\arg RCU_USBFS: USBFS clock
\arg RCU_EXMC: EXMC clock
\arg RCU_TIMERx (x=0,1,2,3,4,5,6,7,8,9,10,11,12,13): TIMER clock
\arg RCU_WWDGT: WWDGT clock
\arg RCU_SPIx (x=0,1,2,3,4,5): SPI clock
\arg RCU_USARTx (x=0,1,2,5): USART clock
\arg RCU_UARTx (x=3,4,6,7): UART clock
\arg RCU_I2Cx (x=0,1,2): I2C clock
\arg RCU_CANx (x=0,1): CAN clock
\arg RCU_PMU: PMU clock
\arg RCU_DAC: DAC clock
\arg RCU_RTC: RTC clock
\arg RCU_ADCx (x=0,1,2): ADC clock
\arg RCU_SDIO: SDIO clock
\arg RCU_SYSCFG: SYSCFG clock
\arg RCU_TLI: TLI clock
\arg RCU_CTC: CTC clock
\arg RCU_IREF: IREF clock
\param[out] none
\retval none
*/
void rcu_periph_clock_disable(rcu_periph_enum periph)
{
RCU_REG_VAL(periph) &= ~BIT(RCU_BIT_POS(periph));
}
/*!
\brief enable the peripherals clock when sleep mode
\param[in] periph: RCU peripherals, refer to rcu_periph_sleep_enum
only one parameter can be selected which is shown as below:
\arg RCU_GPIOx_SLP (x=A,B,C,D,E,F,G,H,I): GPIO ports clock
\arg RCU_CRC_SLP: CRC clock
\arg RCU_FMC_SLP: FMC clock
\arg RCU_SRAM0_SLP: SRAM0 clock
\arg RCU_SRAM1_SLP: SRAM1 clock
\arg RCU_BKPSRAM: BKPSRAM clock
\arg RCU_SRAM2_SLP: SRAM2 clock
\arg RCU_DMAx_SLP (x=0,1): DMA clock
\arg RCU_IPA_SLP: IPA clock
\arg RCU_ENET_SLP: ENET clock
\arg RCU_ENETTX_SLP: ENETTX clock
\arg RCU_ENETRX_SLP: ENETRX clock
\arg RCU_ENETPTP_SLP: ENETPTP clock
\arg RCU_USBHS_SLP: USBHS clock
\arg RCU_USBHSULPI_SLP: USBHSULPI clock
\arg RCU_DCI_SLP: DCI clock
\arg RCU_TRNG_SLP: TRNG clock
\arg RCU_USBFS_SLP: USBFS clock
\arg RCU_EXMC_SLP: EXMC clock
\arg RCU_TIMERx_SLP (x=0,1,2,3,4,5,6,7,8,9,10,11,12,13): TIMER clock
\arg RCU_WWDGT_SLP: WWDGT clock
\arg RCU_SPIx_SLP (x=0,1,2,3,4,5): SPI clock
\arg RCU_USARTx_SLP (x=0,1,2,5): USART clock
\arg RCU_UARTx_SLP (x=3,4,6,7): UART clock
\arg RCU_I2Cx_SLP (x=0,1,2): I2C clock
\arg RCU_CANx_SLP (x=0,1): CAN clock
\arg RCU_PMU_SLP: PMU clock
\arg RCU_DAC_SLP: DAC clock
\arg RCU_RTC_SLP: RTC clock
\arg RCU_ADCx_SLP (x=0,1,2): ADC clock
\arg RCU_SDIO_SLP: SDIO clock
\arg RCU_SYSCFG_SLP: SYSCFG clock
\arg RCU_TLI_SLP: TLI clock
\arg RCU_CTC_SLP: CTC clock
\arg RCU_IREF_SLP: IREF clock
\param[out] none
\retval none
*/
void rcu_periph_clock_sleep_enable(rcu_periph_sleep_enum periph)
{
RCU_REG_VAL(periph) |= BIT(RCU_BIT_POS(periph));
}
/*!
\brief disable the peripherals clock when sleep mode
\param[in] periph: RCU peripherals, refer to rcu_periph_sleep_enum
only one parameter can be selected which is shown as below:
\arg RCU_GPIOx_SLP (x=A,B,C,D,E,F,G,H,I): GPIO ports clock
\arg RCU_CRC_SLP: CRC clock
\arg RCU_FMC_SLP: FMC clock
\arg RCU_SRAM0_SLP: SRAM0 clock
\arg RCU_SRAM1_SLP: SRAM1 clock
\arg RCU_BKPSRAM: BKPSRAM clock
\arg RCU_SRAM2_SLP: SRAM2 clock
\arg RCU_DMAx_SLP (x=0,1): DMA clock
\arg RCU_IPA_SLP: IPA clock
\arg RCU_ENET_SLP: ENET clock
\arg RCU_ENETTX_SLP: ENETTX clock
\arg RCU_ENETRX_SLP: ENETRX clock
\arg RCU_ENETPTP_SLP: ENETPTP clock
\arg RCU_USBHS_SLP: USBHS clock
\arg RCU_USBHSULPI_SLP: USBHSULPI clock
\arg RCU_DCI_SLP: DCI clock
\arg RCU_TRNG_SLP: TRNG clock
\arg RCU_USBFS_SLP: USBFS clock
\arg RCU_EXMC_SLP: EXMC clock
\arg RCU_TIMERx_SLP (x=0,1,2,3,4,5,6,7,8,9,10,11,12,13): TIMER clock
\arg RCU_WWDGT_SLP: WWDGT clock
\arg RCU_SPIx_SLP (x=0,1,2,3,4,5): SPI clock
\arg RCU_USARTx_SLP (x=0,1,2,5): USART clock
\arg RCU_UARTx_SLP (x=3,4,6,7): UART clock
\arg RCU_I2Cx_SLP (x=0,1,2): I2C clock
\arg RCU_CANx_SLP (x=0,1): CAN clock
\arg RCU_PMU_SLP: PMU clock
\arg RCU_DAC_SLP: DAC clock
\arg RCU_RTC_SLP: RTC clock
\arg RCU_ADCx_SLP (x=0,1,2): ADC clock
\arg RCU_SDIO_SLP: SDIO clock
\arg RCU_SYSCFG_SLP: SYSCFG clock
\arg RCU_TLI_SLP: TLI clock
\arg RCU_CTC_SLP: CTC clock
\arg RCU_IREF_SLP: IREF clock
\param[out] none
\retval none
*/
void rcu_periph_clock_sleep_disable(rcu_periph_sleep_enum periph)
{
RCU_REG_VAL(periph) &= ~BIT(RCU_BIT_POS(periph));
}
/*!
\brief reset the peripherals
\param[in] periph_reset: RCU peripherals reset, refer to rcu_periph_reset_enum
only one parameter can be selected which is shown as below:
\arg RCU_GPIOxRST (x=A,B,C,D,E,F,G,H,I): reset GPIO ports
\arg RCU_CRCRST: reset CRC
\arg RCU_DMAxRST (x=0,1): reset DMA
\arg RCU_IPAENRST: reset IPA
\arg RCU_ENETRST: reset ENET
\arg RCU_USBHSRST: reset USBHS
\arg RCU_DCIRST: reset DCI
\arg RCU_TRNGRST: reset TRNG
\arg RCU_USBFSRST: reset USBFS
\arg RCU_EXMCRST: reset EXMC
\arg RCU_TIMERxRST (x=0,1,2,3,4,5,6,7,8,9,10,11,12,13): reset TIMER
\arg RCU_WWDGTRST: reset WWDGT
\arg RCU_SPIxRST (x=0,1,2,3,4,5): reset SPI
\arg RCU_USARTxRST (x=0,1,2,5): reset USART
\arg RCU_UARTxRST (x=3,4,6,7): reset UART
\arg RCU_I2CxRST (x=0,1,2): reset I2C
\arg RCU_CANxRST (x=0,1): reset CAN
\arg RCU_PMURST: reset PMU
\arg RCU_DACRST: reset DAC
\arg RCU_ADCRST (x=0,1,2): reset ADC
\arg RCU_SDIORST: reset SDIO
\arg RCU_SYSCFGRST: reset SYSCFG
\arg RCU_TLIRST: reset TLI
\arg RCU_CTCRST: reset CTC
\arg RCU_IREFRST: reset IREF
\param[out] none
\retval none
*/
void rcu_periph_reset_enable(rcu_periph_reset_enum periph_reset)
{
RCU_REG_VAL(periph_reset) |= BIT(RCU_BIT_POS(periph_reset));
}
/*!
\brief disable reset the peripheral
\param[in] periph_reset: RCU peripherals reset, refer to rcu_periph_reset_enum
only one parameter can be selected which is shown as below:
\arg RCU_GPIOxRST (x=A,B,C,D,E,F,G,H,I): reset GPIO ports
\arg RCU_CRCRST: reset CRC
\arg RCU_DMAxRST (x=0,1): reset DMA
\arg RCU_IPAENRST: reset IPA
\arg RCU_ENETRST: reset ENET
\arg RCU_USBHSRST: reset USBHS
\arg RCU_DCIRST: reset DCI
\arg RCU_TRNGRST: reset TRNG
\arg RCU_USBFSRST: reset USBFS
\arg RCU_EXMCRST: reset EXMC
\arg RCU_TIMERxRST (x=0,1,2,3,4,5,6,7,8,9,10,11,12,13): reset TIMER
\arg RCU_WWDGTRST: reset WWDGT
\arg RCU_SPIxRST (x=0,1,2,3,4,5): reset SPI
\arg RCU_USARTxRST (x=0,1,2,5): reset USART
\arg RCU_UARTxRST (x=3,4,6,7): reset UART
\arg RCU_I2CxRST (x=0,1,2): reset I2C
\arg RCU_CANxRST (x=0,1): reset CAN
\arg RCU_PMURST: reset PMU
\arg RCU_DACRST: reset DAC
\arg RCU_ADCRST (x=0,1,2): reset ADC
\arg RCU_SDIORST: reset SDIO
\arg RCU_SYSCFGRST: reset SYSCFG
\arg RCU_TLIRST: reset TLI
\arg RCU_CTCRST: reset CTC
\arg RCU_IREFRST: reset IREF
\param[out] none
\retval none
*/
void rcu_periph_reset_disable(rcu_periph_reset_enum periph_reset)
{
RCU_REG_VAL(periph_reset) &= ~BIT(RCU_BIT_POS(periph_reset));
}
/*!
\brief reset the BKP
\param[in] none
\param[out] none
\retval none
*/
void rcu_bkp_reset_enable(void)
{
RCU_BDCTL |= RCU_BDCTL_BKPRST;
}
/*!
\brief disable the BKP reset
\param[in] none
\param[out] none
\retval none
*/
void rcu_bkp_reset_disable(void)
{
RCU_BDCTL &= ~RCU_BDCTL_BKPRST;
}
/*!
\brief configure the system clock source
\param[in] ck_sys: system clock source select
only one parameter can be selected which is shown as below:
\arg RCU_CKSYSSRC_IRC16M: select CK_IRC16M as the CK_SYS source
\arg RCU_CKSYSSRC_HXTAL: select CK_HXTAL as the CK_SYS source
\arg RCU_CKSYSSRC_PLLP: select CK_PLLP as the CK_SYS source
\param[out] none
\retval none
*/
void rcu_system_clock_source_config(uint32_t ck_sys)
{
uint32_t reg;
reg = RCU_CFG0;
/* reset the SCS bits and set according to ck_sys */
reg &= ~RCU_CFG0_SCS;
RCU_CFG0 = (reg | ck_sys);
}
/*!
\brief get the system clock source
\param[in] none
\param[out] none
\retval which clock is selected as CK_SYS source
\arg RCU_SCSS_IRC16M: CK_IRC16M is selected as the CK_SYS source
\arg RCU_SCSS_HXTAL: CK_HXTAL is selected as the CK_SYS source
\arg RCU_SCSS_PLLP: CK_PLLP is selected as the CK_SYS source
*/
uint32_t rcu_system_clock_source_get(void)
{
return (RCU_CFG0 & RCU_CFG0_SCSS);
}
/*!
\brief configure the AHB clock prescaler selection
\param[in] ck_ahb: AHB clock prescaler selection
only one parameter can be selected which is shown as below:
\arg RCU_AHB_CKSYS_DIVx, x=1, 2, 4, 8, 16, 64, 128, 256, 512
\param[out] none
\retval none
*/
void rcu_ahb_clock_config(uint32_t ck_ahb)
{
uint32_t reg;
reg = RCU_CFG0;
/* reset the AHBPS bits and set according to ck_ahb */
reg &= ~RCU_CFG0_AHBPSC;
RCU_CFG0 = (reg | ck_ahb);
}
/*!
\brief configure the APB1 clock prescaler selection
\param[in] ck_apb1: APB1 clock prescaler selection
only one parameter can be selected which is shown as below:
\arg RCU_APB1_CKAHB_DIV1: select CK_AHB as CK_APB1
\arg RCU_APB1_CKAHB_DIV2: select CK_AHB/2 as CK_APB1
\arg RCU_APB1_CKAHB_DIV4: select CK_AHB/4 as CK_APB1
\arg RCU_APB1_CKAHB_DIV8: select CK_AHB/8 as CK_APB1
\arg RCU_APB1_CKAHB_DIV16: select CK_AHB/16 as CK_APB1
\param[out] none
\retval none
*/
void rcu_apb1_clock_config(uint32_t ck_apb1)
{
uint32_t reg;
reg = RCU_CFG0;
/* reset the APB1PS and set according to ck_apb1 */
reg &= ~RCU_CFG0_APB1PSC;
RCU_CFG0 = (reg | ck_apb1);
}
/*!
\brief configure the APB2 clock prescaler selection
\param[in] ck_apb2: APB2 clock prescaler selection
only one parameter can be selected which is shown as below:
\arg RCU_APB2_CKAHB_DIV1: select CK_AHB as CK_APB2
\arg RCU_APB2_CKAHB_DIV2: select CK_AHB/2 as CK_APB2
\arg RCU_APB2_CKAHB_DIV4: select CK_AHB/4 as CK_APB2
\arg RCU_APB2_CKAHB_DIV8: select CK_AHB/8 as CK_APB2
\arg RCU_APB2_CKAHB_DIV16: select CK_AHB/16 as CK_APB2
\param[out] none
\retval none
*/
void rcu_apb2_clock_config(uint32_t ck_apb2)
{
uint32_t reg;
reg = RCU_CFG0;
/* reset the APB2PS and set according to ck_apb2 */
reg &= ~RCU_CFG0_APB2PSC;
RCU_CFG0 = (reg | ck_apb2);
}
/*!
\brief configure the CK_OUT0 clock source and divider
\param[in] ckout0_src: CK_OUT0 clock source selection
only one parameter can be selected which is shown as below:
\arg RCU_CKOUT0SRC_IRC16M: IRC16M selected
\arg RCU_CKOUT0SRC_LXTAL: LXTAL selected
\arg RCU_CKOUT0SRC_HXTAL: HXTAL selected
\arg RCU_CKOUT0SRC_PLLP: PLLP selected
\param[in] ckout0_div: CK_OUT0 divider
\arg RCU_CKOUT0_DIVx(x=1,2,3,4,5): CK_OUT0 is divided by x
\param[out] none
\retval none
*/
void rcu_ckout0_config(uint32_t ckout0_src, uint32_t ckout0_div)
{
uint32_t reg;
reg = RCU_CFG0;
/* reset the CKOUT0SRC, CKOUT0DIV and set according to ckout0_src and ckout0_div */
reg &= ~(RCU_CFG0_CKOUT0SEL | RCU_CFG0_CKOUT0DIV );
RCU_CFG0 = (reg | ckout0_src | ckout0_div);
}
/*!
\brief configure the CK_OUT1 clock source and divider
\param[in] ckout1_src: CK_OUT1 clock source selection
only one parameter can be selected which is shown as below:
\arg RCU_CKOUT1SRC_SYSTEMCLOCK: system clock selected
\arg RCU_CKOUT1SRC_PLLI2SR: PLLI2SR selected
\arg RCU_CKOUT1SRC_HXTAL: HXTAL selected
\arg RCU_CKOUT1SRC_PLLP: PLLP selected
\param[in] ckout1_div: CK_OUT1 divider
\arg RCU_CKOUT1_DIVx(x=1,2,3,4,5): CK_OUT1 is divided by x
\param[out] none
\retval none
*/
void rcu_ckout1_config(uint32_t ckout1_src, uint32_t ckout1_div)
{
uint32_t reg;
reg = RCU_CFG0;
/* reset the CKOUT1SRC, CKOUT1DIV and set according to ckout1_src and ckout1_div */
reg &= ~(RCU_CFG0_CKOUT1SEL | RCU_CFG0_CKOUT1DIV);
RCU_CFG0 = (reg | ckout1_src | ckout1_div);
}
/*!
\brief configure the main PLL clock
\param[in] pll_src: PLL clock source selection
\arg RCU_PLLSRC_IRC16M: select IRC16M as PLL source clock
\arg RCU_PLLSRC_HXTAL: select HXTAL as PLL source clock
\param[in] pll_psc: the PLL VCO source clock prescaler
\arg this parameter should be selected between 2 and 63
\param[in] pll_n: the PLL VCO clock multi factor
\arg this parameter should be selected between 64 and 500
\param[in] pll_p: the PLLP output frequency division factor from PLL VCO clock
\arg this parameter should be selected 2,4,6,8
\param[in] pll_q: the PLL Q output frequency division factor from PLL VCO clock
\arg this parameter should be selected between 2 and 15
\param[out] none
\retval ErrStatus: SUCCESS or ERROR
*/
ErrStatus rcu_pll_config(uint32_t pll_src, uint32_t pll_psc, uint32_t pll_n, uint32_t pll_p, uint32_t pll_q)
{
uint32_t ss_modulation_inc;
uint32_t ss_modulation_reg;
ss_modulation_inc = 0U;
ss_modulation_reg = RCU_PLLSSCTL;
/* calculate the minimum factor of PLLN */
if((ss_modulation_reg & RCU_PLLSSCTL_SSCGON) == RCU_PLLSSCTL_SSCGON){
if((ss_modulation_reg & RCU_SS_TYPE_DOWN) == RCU_SS_TYPE_DOWN){
ss_modulation_inc += RCU_SS_MODULATION_DOWN_INC;
}else{
ss_modulation_inc += RCU_SS_MODULATION_CENTER_INC;
}
}
/* check the function parameter */
if(CHECK_PLL_PSC_VALID(pll_psc) && CHECK_PLL_N_VALID(pll_n,ss_modulation_inc) &&
CHECK_PLL_P_VALID(pll_p) && CHECK_PLL_Q_VALID(pll_q)){
RCU_PLL = pll_psc | (pll_n << 6) | (((pll_p >> 1) - 1U) << 16) |
(pll_src) | (pll_q << 24);
}else{
/* return status */
return ERROR;
}
/* return status */
return SUCCESS;
}
/*!
\brief configure the PLLI2S clock
\param[in] plli2s_n: the PLLI2S VCO clock multi factor
\arg this parameter should be selected between 50 and 500
\param[in] plli2s_q: the PLLI2S Q output frequency division factor from PLLI2S VCO clock
\arg this parameter should be selected between 2 and 15
\param[in] plli2s_r: the PLLI2S R output frequency division factor from PLLI2S VCO clock
\arg this parameter should be selected between 2 and 7
\param[out] none
\retval ErrStatus: SUCCESS or ERROR
*/
ErrStatus rcu_plli2s_config(uint32_t plli2s_n, uint32_t plli2s_q, uint32_t plli2s_r)
{
/* check the function parameter */
if(CHECK_PLLI2S_N_VALID(plli2s_n) && CHECK_PLLI2S_Q_VALID(plli2s_q) && CHECK_PLLI2S_R_VALID(plli2s_r)){
RCU_PLLI2S = (plli2s_n << 6) | (plli2s_q << 24) | (plli2s_r << 28);
}else{
/* return status */
return ERROR;
}
/* return status */
return SUCCESS;
}
/*!
\brief configure the PLLSAI clock
\param[in] pllsai_n: the PLLSAI VCO clock multi factor
\arg this parameter should be selected between 50 and 500
\param[in] pllsai_p: the PLLSAI P output frequency division factor from PLL VCO clock
\arg this parameter should be selected 2,4,6,8
\param[in] pllsai_q: the PLLSAI Q output frequency division factor from PLL VCO clock
\arg this parameter should be selected between 2 and 15
\param[in] pllsai_r: the PLLSAI R output frequency division factor from PLL VCO clock
\arg this parameter should be selected between 2 and 7
\param[out] none
\retval ErrStatus: SUCCESS or ERROR
*/
ErrStatus rcu_pllsai_config(uint32_t pllsai_n, uint32_t pllsai_p, uint32_t pllsai_q, uint32_t pllsai_r)
{
/* check the function parameter */
if(CHECK_PLLSAI_N_VALID(pllsai_n) && CHECK_PLLSAI_P_VALID(pllsai_p) &&
CHECK_PLLSAI_Q_VALID(pllsai_q) && CHECK_PLLSAI_R_VALID(pllsai_r)){
RCU_PLLSAI = (pllsai_n << 6U) | (((pllsai_p >> 1U) - 1U) << 16U) | (pllsai_q << 24U) | (pllsai_r << 28U);
}else{
/* return status */
return ERROR;
}
/* return status */
return SUCCESS;
}
/*!
\brief configure the RTC clock source selection
\param[in] rtc_clock_source: RTC clock source selection
only one parameter can be selected which is shown as below:
\arg RCU_RTCSRC_NONE: no clock selected
\arg RCU_RTCSRC_LXTAL: CK_LXTAL selected as RTC source clock
\arg RCU_RTCSRC_IRC32K: CK_IRC32K selected as RTC source clock
\arg RCU_RTCSRC_HXTAL_DIV_RTCDIV: CK_HXTAL/RTCDIV selected as RTC source clock
\param[out] none
\retval none
*/
void rcu_rtc_clock_config(uint32_t rtc_clock_source)
{
uint32_t reg;
reg = RCU_BDCTL;
/* reset the RTCSRC bits and set according to rtc_clock_source */
reg &= ~RCU_BDCTL_RTCSRC;
RCU_BDCTL = (reg | rtc_clock_source);
}
/*!
\brief configure the I2S clock source selection
\param[in] i2s_clock_source: I2S clock source selection
only one parameter can be selected which is shown as below:
\arg RCU_I2SSRC_PLLI2S: CK_PLLI2S selected as I2S source clock
\arg RCU_I2SSRC_I2S_CKIN: external i2s_ckin pin selected as I2S source clock
\param[out] none
\retval none
*/
void rcu_i2s_clock_config(uint32_t i2s_clock_source)
{
uint32_t reg;
reg = RCU_CFG0;
/* reset the I2SSEL bit and set according to i2s_clock_source */
reg &= ~RCU_CFG0_I2SSEL;
RCU_CFG0 = (reg | i2s_clock_source);
}
/*!
\brief configure the CK48M clock source selection
\param[in] ck48m_clock_source: CK48M clock source selection
only one parameter can be selected which is shown as below:
\arg RCU_CK48MSRC_PLL48M: CK_PLL48M selected as CK48M source clock
\arg RCU_CK48MSRC_IRC48M: CK_IRC48M selected as CK48M source clock
\param[out] none
\retval none
*/
void rcu_ck48m_clock_config(uint32_t ck48m_clock_source)
{
uint32_t reg;
reg = RCU_ADDCTL;
/* reset the I2SSEL bit and set according to i2s_clock_source */
reg &= ~RCU_ADDCTL_CK48MSEL;
RCU_ADDCTL = (reg | ck48m_clock_source);
}
/*!
\brief configure the PLL48M clock source selection
\param[in] pll48m_clock_source: PLL48M clock source selection
only one parameter can be selected which is shown as below:
\arg RCU_PLL48MSRC_PLLQ: CK_PLLQ selected as PLL48M source clock
\arg RCU_PLL48MSRC_PLLSAIP: CK_PLLSAIP selected as PLL48M source clock
\param[out] none
\retval none
*/
void rcu_pll48m_clock_config(uint32_t pll48m_clock_source)
{
uint32_t reg;
reg = RCU_ADDCTL;
/* reset the PLL48MSEL bit and set according to pll48m_clock_source */
reg &= ~RCU_ADDCTL_PLL48MSEL;
RCU_ADDCTL = (reg | pll48m_clock_source);
}
/*!
\brief configure the TIMER clock prescaler selection
\param[in] timer_clock_prescaler: TIMER clock selection
only one parameter can be selected which is shown as below:
\arg RCU_TIMER_PSC_MUL2: if APB1PSC/APB2PSC in RCU_CFG0 register is 0b0xx(CK_APBx = CK_AHB)
or 0b100(CK_APBx = CK_AHB/2), the TIMER clock is equal to CK_AHB(CK_TIMERx = CK_AHB).
or else, the TIMER clock is twice the corresponding APB clock (TIMER in APB1 domain: CK_TIMERx = 2 x CK_APB1;
TIMER in APB2 domain: CK_TIMERx = 2 x CK_APB2)
\arg RCU_TIMER_PSC_MUL4: if APB1PSC/APB2PSC in RCU_CFG0 register is 0b0xx(CK_APBx = CK_AHB),
0b100(CK_APBx = CK_AHB/2), or 0b101(CK_APBx = CK_AHB/4), the TIMER clock is equal to CK_AHB(CK_TIMERx = CK_AHB).
or else, the TIMER clock is four timers the corresponding APB clock (TIMER in APB1 domain: CK_TIMERx = 4 x CK_APB1;
TIMER in APB2 domain: CK_TIMERx = 4 x CK_APB2)
\param[out] none
\retval none
*/
void rcu_timer_clock_prescaler_config(uint32_t timer_clock_prescaler)
{
/* configure the TIMERSEL bit and select the TIMER clock prescaler */
if(timer_clock_prescaler == RCU_TIMER_PSC_MUL2){
RCU_CFG1 &= timer_clock_prescaler;
}else{
RCU_CFG1 |= timer_clock_prescaler;
}
}
/*!
\brief configure the PLLSAIR divider used as input of TLI
\param[in] pllsai_r_div: PLLSAIR divider used as input of TLI
only one parameter can be selected which is shown as below:
\arg RCU_PLLSAIR_DIVx(x=2,4,8,16): PLLSAIR divided x used as input of TLI
\param[out] none
\retval none
*/
void rcu_tli_clock_div_config(uint32_t pllsai_r_div)
{
uint32_t reg;
reg = RCU_CFG1;
/* reset the PLLSAIRDIV bit and set according to pllsai_r_div */
reg &= ~RCU_CFG1_PLLSAIRDIV;
RCU_CFG1 = (reg | pllsai_r_div);
}
/*!
\brief get the clock stabilization and periphral reset flags
\param[in] flag: the clock stabilization and periphral reset flags, refer to rcu_flag_enum
only one parameter can be selected which is shown as below:
\arg RCU_FLAG_IRC16MSTB: IRC16M stabilization flag
\arg RCU_FLAG_HXTALSTB: HXTAL stabilization flag
\arg RCU_FLAG_PLLSTB: PLL stabilization flag
\arg RCU_FLAG_PLLI2SSTB: PLLI2S stabilization flag
\arg RCU_FLAG_PLLSAISTB: PLLSAI stabilization flag
\arg RCU_FLAG_LXTALSTB: LXTAL stabilization flag
\arg RCU_FLAG_IRC32KSTB: IRC32K stabilization flag
\arg RCU_FLAG_IRC48MSTB: IRC48M stabilization flag
\arg RCU_FLAG_BORRST: BOR reset flags
\arg RCU_FLAG_EPRST: external PIN reset flag
\arg RCU_FLAG_PORRST: Power reset flag
\arg RCU_FLAG_SWRST: software reset flag
\arg RCU_FLAG_FWDGTRST: free watchdog timer reset flag
\arg RCU_FLAG_WWDGTRST: window watchdog timer reset flag
\arg RCU_FLAG_LPRST: low-power reset flag
\param[out] none
\retval none
*/
FlagStatus rcu_flag_get(rcu_flag_enum flag)
{
/* get the rcu flag */
if(RESET != (RCU_REG_VAL(flag) & BIT(RCU_BIT_POS(flag)))){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear all the reset flag
\param[in] none
\param[out] none
\retval none
*/
void rcu_all_reset_flag_clear(void)
{
RCU_RSTSCK |= RCU_RSTSCK_RSTFC;
}
/*!
\brief get the clock stabilization interrupt and ckm flags
\param[in] int_flag: interrupt and ckm flags, refer to rcu_int_flag_enum
only one parameter can be selected which is shown as below:
\arg RCU_INT_FLAG_IRC32KSTB: IRC40K stabilization interrupt flag
\arg RCU_INT_FLAG_LXTALSTB: LXTAL stabilization interrupt flag
\arg RCU_INT_FLAG_IRC8MSTB: IRC8M stabilization interrupt flag
\arg RCU_INT_FLAG_HXTALSTB: HXTAL stabilization interrupt flag
\arg RCU_INT_FLAG_PLLSTB: PLL stabilization interrupt flag
\arg RCU_INT_FLAG_PLLI2SSTB: PLLI2S stabilization interrupt flag
\arg RCU_INT_FLAG_PLLSAISTB: PLLSAI stabilization interrupt flag
\arg RCU_INT_FLAG_CKM: HXTAL clock stuck interrupt flag
\arg RCU_INT_FLAG_IRC48MSTB: IRC48M stabilization interrupt flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus rcu_interrupt_flag_get(rcu_int_flag_enum int_flag)
{
/* get the rcu interrupt flag */
if(RESET != (RCU_REG_VAL(int_flag) & BIT(RCU_BIT_POS(int_flag)))){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear the interrupt flags
\param[in] int_flag_clear: clock stabilization and stuck interrupt flags clear, refer to rcu_int_flag_clear_enum
only one parameter can be selected which is shown as below:
\arg RCU_INT_FLAG_IRC32KSTB_CLR: IRC32K stabilization interrupt flag clear
\arg RCU_INT_FLAG_LXTALSTB_CLR: LXTAL stabilization interrupt flag clear
\arg RCU_INT_FLAG_IRC16MSTB_CLR: IRC16M stabilization interrupt flag clear
\arg RCU_INT_FLAG_HXTALSTB_CLR: HXTAL stabilization interrupt flag clear
\arg RCU_INT_FLAG_PLLSTB_CLR: PLL stabilization interrupt flag clear
\arg RCU_INT_FLAG_PLLI2SSTB_CLR: PLLI2S stabilization interrupt flag clear
\arg RCU_INT_FLAG_PLLSAISTB_CLR: PLLSAI stabilization interrupt flag clear
\arg RCU_INT_FLAG_CKM_CLR: clock stuck interrupt flag clear
\arg RCU_INT_FLAG_IRC48MSTB_CLR: IRC48M stabilization interrupt flag clear
\param[out] none
\retval none
*/
void rcu_interrupt_flag_clear(rcu_int_flag_clear_enum int_flag_clear)
{
RCU_REG_VAL(int_flag_clear) |= BIT(RCU_BIT_POS(int_flag_clear));
}
/*!
\brief enable the stabilization interrupt
\param[in] stab_int: clock stabilization interrupt, refer to rcu_int_enum
Only one parameter can be selected which is shown as below:
\arg RCU_INT_IRC32KSTB: IRC32K stabilization interrupt enable
\arg RCU_INT_LXTALSTB: LXTAL stabilization interrupt enable
\arg RCU_INT_IRC16MSTB: IRC16M stabilization interrupt enable
\arg RCU_INT_HXTALSTB: HXTAL stabilization interrupt enable
\arg RCU_INT_PLLSTB: PLL stabilization interrupt enable
\arg RCU_INT_PLLI2SSTB: PLLI2S stabilization interrupt enable
\arg RCU_INT_PLLSAISTB: PLLSAI stabilization interrupt enable
\arg RCU_INT_IRC48MSTB: IRC48M stabilization interrupt enable
\param[out] none
\retval none
*/
void rcu_interrupt_enable(rcu_int_enum stab_int)
{
RCU_REG_VAL(stab_int) |= BIT(RCU_BIT_POS(stab_int));
}
/*!
\brief disable the stabilization interrupt
\param[in] stab_int: clock stabilization interrupt, refer to rcu_int_enum
only one parameter can be selected which is shown as below:
\arg RCU_INT_IRC32KSTB: IRC32K stabilization interrupt disable
\arg RCU_INT_LXTALSTB: LXTAL stabilization interrupt disable
\arg RCU_INT_IRC16MSTB: IRC16M stabilization interrupt disable
\arg RCU_INT_HXTALSTB: HXTAL stabilization interrupt disable
\arg RCU_INT_PLLSTB: PLL stabilization interrupt disable
\arg RCU_INT_PLLI2SSTB: PLLI2S stabilization interrupt disable
\arg RCU_INT_PLLSAISTB: PLLSAI stabilization interrupt disable
\arg RCU_INT_IRC48MSTB: IRC48M stabilization interrupt disable
\param[out] none
\retval none
*/
void rcu_interrupt_disable(rcu_int_enum stab_int)
{
RCU_REG_VAL(stab_int) &= ~BIT(RCU_BIT_POS(stab_int));
}
/*!
\brief configure the LXTAL drive capability
\param[in] lxtal_dricap: drive capability of LXTAL
only one parameter can be selected which is shown as below:
\arg RCU_LXTALDRI_LOWER_DRIVE: lower driving capability
\arg RCU_LXTALDRI_HIGHER_DRIVE: higher driving capability
\param[out] none
\retval none
*/
void rcu_lxtal_drive_capability_config(uint32_t lxtal_dricap)
{
uint32_t reg;
reg = RCU_BDCTL;
/* reset the LXTALDRI bits and set according to lxtal_dricap */
reg &= ~RCU_BDCTL_LXTALDRI;
RCU_BDCTL = (reg | lxtal_dricap);
}
/*!
\brief wait for oscillator stabilization flags is SET or oscillator startup is timeout
\param[in] osci: oscillator types, refer to rcu_osci_type_enum
only one parameter can be selected which is shown as below:
\arg RCU_HXTAL: HXTAL
\arg RCU_LXTAL: LXTAL
\arg RCU_IRC16M: IRC16M
\arg RCU_IRC48M: IRC48M
\arg RCU_IRC32K: IRC32K
\arg RCU_PLL_CK: PLL
\arg RCU_PLLI2S_CK: PLLI2S
\arg RCU_PLLSAI_CK: PLLSAI
\param[out] none
\retval ErrStatus: SUCCESS or ERROR
*/
ErrStatus rcu_osci_stab_wait(rcu_osci_type_enum osci)
{
uint32_t stb_cnt = 0U;
ErrStatus reval = ERROR;
FlagStatus osci_stat = RESET;
switch(osci){
/* wait HXTAL stable */
case RCU_HXTAL:
while((RESET == osci_stat) && (HXTAL_STARTUP_TIMEOUT != stb_cnt)){
osci_stat = rcu_flag_get(RCU_FLAG_HXTALSTB);
stb_cnt++;
}
/* check whether flag is set */
if(RESET != rcu_flag_get(RCU_FLAG_HXTALSTB)){
reval = SUCCESS;
}
break;
/* wait LXTAL stable */
case RCU_LXTAL:
while((RESET == osci_stat) && (LXTAL_STARTUP_TIMEOUT != stb_cnt)){
osci_stat = rcu_flag_get(RCU_FLAG_LXTALSTB);
stb_cnt++;
}
/* check whether flag is set */
if(RESET != rcu_flag_get(RCU_FLAG_LXTALSTB)){
reval = SUCCESS;
}
break;
/* wait IRC16M stable */
case RCU_IRC16M:
while((RESET == osci_stat) && (IRC16M_STARTUP_TIMEOUT != stb_cnt)){
osci_stat = rcu_flag_get(RCU_FLAG_IRC16MSTB);
stb_cnt++;
}
/* check whether flag is set */
if(RESET != rcu_flag_get(RCU_FLAG_IRC16MSTB)){
reval = SUCCESS;
}
break;
/* wait IRC48M stable */
case RCU_IRC48M:
while((RESET == osci_stat) && (OSC_STARTUP_TIMEOUT != stb_cnt)){
osci_stat = rcu_flag_get(RCU_FLAG_IRC48MSTB);
stb_cnt++;
}
/* check whether flag is set */
if (RESET != rcu_flag_get(RCU_FLAG_IRC48MSTB)){
reval = SUCCESS;
}
break;
/* wait IRC32K stable */
case RCU_IRC32K:
while((RESET == osci_stat) && (OSC_STARTUP_TIMEOUT != stb_cnt)){
osci_stat = rcu_flag_get(RCU_FLAG_IRC32KSTB);
stb_cnt++;
}
/* check whether flag is set */
if(RESET != rcu_flag_get(RCU_FLAG_IRC32KSTB)){
reval = SUCCESS;
}
break;
/* wait PLL stable */
case RCU_PLL_CK:
while((RESET == osci_stat) && (OSC_STARTUP_TIMEOUT != stb_cnt)){
osci_stat = rcu_flag_get(RCU_FLAG_PLLSTB);
stb_cnt++;
}
/* check whether flag is set */
if(RESET != rcu_flag_get(RCU_FLAG_PLLSTB)){
reval = SUCCESS;
}
break;
/* wait PLLI2S stable */
case RCU_PLLI2S_CK:
while((RESET == osci_stat) && (OSC_STARTUP_TIMEOUT != stb_cnt)){
osci_stat = rcu_flag_get(RCU_FLAG_PLLI2SSTB);
stb_cnt++;
}
/* check whether flag is set */
if(RESET != rcu_flag_get(RCU_FLAG_PLLI2SSTB)){
reval = SUCCESS;
}
break;
/* wait PLLSAI stable */
case RCU_PLLSAI_CK:
while((RESET == osci_stat) && (OSC_STARTUP_TIMEOUT != stb_cnt)){
osci_stat = rcu_flag_get(RCU_FLAG_PLLSAISTB);
stb_cnt++;
}
/* check whether flag is set */
if(RESET != rcu_flag_get(RCU_FLAG_PLLSAISTB)){
reval = SUCCESS;
}
break;
default:
break;
}
/* return value */
return reval;
}
/*!
\brief turn on the oscillator
\param[in] osci: oscillator types, refer to rcu_osci_type_enum
only one parameter can be selected which is shown as below:
\arg RCU_HXTAL: HXTAL
\arg RCU_LXTAL: LXTAL
\arg RCU_IRC16M: IRC16M
\arg RCU_IRC48M: IRC48M
\arg RCU_IRC32K: IRC32K
\arg RCU_PLL_CK: PLL
\arg RCU_PLLI2S_CK: PLLI2S
\arg RCU_PLLSAI_CK: PLLSAI
\param[out] none
\retval none
*/
void rcu_osci_on(rcu_osci_type_enum osci)
{
RCU_REG_VAL(osci) |= BIT(RCU_BIT_POS(osci));
}
/*!
\brief turn off the oscillator
\param[in] osci: oscillator types, refer to rcu_osci_type_enum
only one parameter can be selected which is shown as below:
\arg RCU_HXTAL: HXTAL
\arg RCU_LXTAL: LXTAL
\arg RCU_IRC16M: IRC16M
\arg RCU_IRC48M: IRC48M
\arg RCU_IRC32K: IRC32K
\arg RCU_PLL_CK: PLL
\arg RCU_PLLI2S_CK: PLLI2S
\arg RCU_PLLSAI_CK: PLLSAI
\param[out] none
\retval none
*/
void rcu_osci_off(rcu_osci_type_enum osci)
{
RCU_REG_VAL(osci) &= ~BIT(RCU_BIT_POS(osci));
}
/*!
\brief enable the oscillator bypass mode, HXTALEN or LXTALEN must be reset before it
\param[in] osci: oscillator types, refer to rcu_osci_type_enum
only one parameter can be selected which is shown as below:
\arg RCU_HXTAL: HXTAL
\arg RCU_LXTAL: LXTAL
\param[out] none
\retval none
*/
void rcu_osci_bypass_mode_enable(rcu_osci_type_enum osci)
{
uint32_t reg;
switch(osci){
/* enable HXTAL to bypass mode */
case RCU_HXTAL:
reg = RCU_CTL;
RCU_CTL &= ~RCU_CTL_HXTALEN;
RCU_CTL = (reg | RCU_CTL_HXTALBPS);
break;
/* enable LXTAL to bypass mode */
case RCU_LXTAL:
reg = RCU_BDCTL;
RCU_BDCTL &= ~RCU_BDCTL_LXTALEN;
RCU_BDCTL = (reg | RCU_BDCTL_LXTALBPS);
break;
case RCU_IRC16M:
case RCU_IRC48M:
case RCU_IRC32K:
case RCU_PLL_CK:
case RCU_PLLI2S_CK:
case RCU_PLLSAI_CK:
break;
default:
break;
}
}
/*!
\brief disable the oscillator bypass mode, HXTALEN or LXTALEN must be reset before it
\param[in] osci: oscillator types, refer to rcu_osci_type_enum
only one parameter can be selected which is shown as below:
\arg RCU_HXTAL: HXTAL
\arg RCU_LXTAL: LXTAL
\param[out] none
\retval none
*/
void rcu_osci_bypass_mode_disable(rcu_osci_type_enum osci)
{
uint32_t reg;
switch(osci){
/* disable HXTAL to bypass mode */
case RCU_HXTAL:
reg = RCU_CTL;
RCU_CTL &= ~RCU_CTL_HXTALEN;
RCU_CTL = (reg & ~RCU_CTL_HXTALBPS);
break;
/* disable LXTAL to bypass mode */
case RCU_LXTAL:
reg = RCU_BDCTL;
RCU_BDCTL &= ~RCU_BDCTL_LXTALEN;
RCU_BDCTL = (reg & ~RCU_BDCTL_LXTALBPS);
break;
case RCU_IRC16M:
case RCU_IRC48M:
case RCU_IRC32K:
case RCU_PLL_CK:
case RCU_PLLI2S_CK:
case RCU_PLLSAI_CK:
break;
default:
break;
}
}
/*!
\brief enable the HXTAL clock monitor
\param[in] none
\param[out] none
\retval none
*/
void rcu_hxtal_clock_monitor_enable(void)
{
RCU_CTL |= RCU_CTL_CKMEN;
}
/*!
\brief disable the HXTAL clock monitor
\param[in] none
\param[out] none
\retval none
*/
void rcu_hxtal_clock_monitor_disable(void)
{
RCU_CTL &= ~RCU_CTL_CKMEN;
}
/*!
\brief set the IRC16M adjust value
\param[in] irc16m_adjval: IRC16M adjust value, must be between 0 and 0x1F
\param[out] none
\retval none
*/
void rcu_irc16m_adjust_value_set(uint32_t irc16m_adjval)
{
uint32_t reg;
reg = RCU_CTL;
/* reset the IRC16MADJ bits and set according to irc16m_adjval */
reg &= ~RCU_CTL_IRC16MADJ;
RCU_CTL = (reg | ((irc16m_adjval & 0x1FU) << 3));
}
/*!
\brief unlock the voltage key
\param[in] none
\param[out] none
\retval none
*/
void rcu_voltage_key_unlock(void)
{
RCU_VKEY = RCU_VKEY_UNLOCK;
}
/*!
\brief deep-sleep mode voltage select
\param[in] dsvol: deep sleep mode voltage
only one parameter can be selected which is shown as below:
\arg RCU_DEEPSLEEP_V_1_2: the core voltage is 1.2V
\arg RCU_DEEPSLEEP_V_1_1: the core voltage is 1.1V
\arg RCU_DEEPSLEEP_V_1_0: the core voltage is 1.0V
\arg RCU_DEEPSLEEP_V_0_9: the core voltage is 0.9V
\param[out] none
\retval none
*/
void rcu_deepsleep_voltage_set(uint32_t dsvol)
{
dsvol &= RCU_DSV_DSLPVS;
RCU_DSV = dsvol;
}
/*!
\brief configure the spread spectrum modulation for the main PLL clock
\param[in] spread_spectrum_type: PLL spread spectrum modulation type select
\arg RCU_SS_TYPE_CENTER: center spread type is selected
\arg RCU_SS_TYPE_DOWN: down spread type is selected
\param[in] modstep: configure PLL spread spectrum modulation profile amplitude and frequency
\arg This parameter should be selected between 0 and 7FFF.The following criteria must be met: MODSTEP*MODCNT=215-1
\param[in] modcnt: configure PLL spread spectrum modulation profile amplitude and frequency
\arg This parameter should be selected between 0 and 1FFF.The following criteria must be met: MODSTEP*MODCNT=215-1
\param[out] none
\retval none
*/
void rcu_spread_spectrum_config(uint32_t spread_spectrum_type, uint32_t modstep, uint32_t modcnt)
{
uint32_t reg;
reg = RCU_PLLSSCTL;
/* reset the RCU_PLLSSCTL register bits */
reg &= ~(RCU_PLLSSCTL_MODCNT | RCU_PLLSSCTL_MODSTEP | RCU_PLLSSCTL_SS_TYPE);
RCU_PLLSSCTL = (reg | spread_spectrum_type | modstep << 13 | modcnt);
}
/*!
\brief enable the PLL spread spectrum modulation
\param[in] none
\param[out] none
\retval none
*/
void rcu_spread_spectrum_enable(void)
{
RCU_PLLSSCTL |= RCU_PLLSSCTL_SSCGON;
}
/*!
\brief disable the PLL spread spectrum modulation
\param[in] none
\param[out] none
\retval none
*/
void rcu_spread_spectrum_disable(void)
{
RCU_PLLSSCTL &= ~RCU_PLLSSCTL_SSCGON;
}
/*!
\brief get the system clock, bus and peripheral clock frequency
\param[in] clock: the clock frequency which to get
only one parameter can be selected which is shown as below:
\arg CK_SYS: system clock frequency
\arg CK_AHB: AHB clock frequency
\arg CK_APB1: APB1 clock frequency
\arg CK_APB2: APB2 clock frequency
\param[out] none
\retval clock frequency of system, AHB, APB1, APB2
*/
uint32_t rcu_clock_freq_get(rcu_clock_freq_enum clock)
{
uint32_t sws, ck_freq = 0U;
uint32_t cksys_freq, ahb_freq, apb1_freq, apb2_freq;
uint32_t pllpsc, plln, pllsel, pllp, ck_src, idx, clk_exp;
/* exponent of AHB, APB1 and APB2 clock divider */
const uint8_t ahb_exp[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
const uint8_t apb1_exp[8] = {0, 0, 0, 0, 1, 2, 3, 4};
const uint8_t apb2_exp[8] = {0, 0, 0, 0, 1, 2, 3, 4};
sws = GET_BITS(RCU_CFG0, 2, 3);
switch(sws){
/* IRC16M is selected as CK_SYS */
case SEL_IRC16M:
cksys_freq = IRC16M_VALUE;
break;
/* HXTAL is selected as CK_SYS */
case SEL_HXTAL:
cksys_freq = HXTAL_VALUE;
break;
/* PLLP is selected as CK_SYS */
case SEL_PLLP:
/* get the value of PLLPSC[5:0] */
pllpsc = GET_BITS(RCU_PLL, 0U, 5U);
plln = GET_BITS(RCU_PLL, 6U, 14U);
pllp = (GET_BITS(RCU_PLL, 16U, 17U) + 1U) * 2U;
/* PLL clock source selection, HXTAL or IRC8M/2 */
pllsel = (RCU_PLL & RCU_PLL_PLLSEL);
if (RCU_PLLSRC_HXTAL == pllsel) {
ck_src = HXTAL_VALUE;
} else {
ck_src = IRC16M_VALUE;
}
cksys_freq = ((ck_src / pllpsc) * plln)/pllp;
break;
/* IRC16M is selected as CK_SYS */
default:
cksys_freq = IRC16M_VALUE;
break;
}
/* calculate AHB clock frequency */
idx = GET_BITS(RCU_CFG0, 4, 7);
clk_exp = ahb_exp[idx];
ahb_freq = cksys_freq >> clk_exp;
/* calculate APB1 clock frequency */
idx = GET_BITS(RCU_CFG0, 10, 12);
clk_exp = apb1_exp[idx];
apb1_freq = ahb_freq >> clk_exp;
/* calculate APB2 clock frequency */
idx = GET_BITS(RCU_CFG0, 13, 15);
clk_exp = apb2_exp[idx];
apb2_freq = ahb_freq >> clk_exp;
/* return the clocks frequency */
switch(clock){
case CK_SYS:
ck_freq = cksys_freq;
break;
case CK_AHB:
ck_freq = ahb_freq;
break;
case CK_APB1:
ck_freq = apb1_freq;
break;
case CK_APB2:
ck_freq = apb2_freq;
break;
default:
break;
}
return ck_freq;
}