1579 lines
48 KiB
C
1579 lines
48 KiB
C
/*
|
|
* Copyright (c) 2006-2021, RT-Thread Development Team
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Change Logs:
|
|
* Date Author Notes
|
|
* 2010-11-13 weety first version
|
|
*/
|
|
|
|
|
|
#include <edma.h>
|
|
|
|
/* Offsets matching "struct edmacc_param" */
|
|
#define PARM_OPT 0x00
|
|
#define PARM_SRC 0x04
|
|
#define PARM_A_B_CNT 0x08
|
|
#define PARM_DST 0x0c
|
|
#define PARM_SRC_DST_BIDX 0x10
|
|
#define PARM_LINK_BCNTRLD 0x14
|
|
#define PARM_SRC_DST_CIDX 0x18
|
|
#define PARM_CCNT 0x1c
|
|
|
|
#define PARM_SIZE 0x20
|
|
|
|
/* Offsets for EDMA CC global channel registers and their shadows */
|
|
#define SH_ER 0x00 /* 64 bits */
|
|
#define SH_ECR 0x08 /* 64 bits */
|
|
#define SH_ESR 0x10 /* 64 bits */
|
|
#define SH_CER 0x18 /* 64 bits */
|
|
#define SH_EER 0x20 /* 64 bits */
|
|
#define SH_EECR 0x28 /* 64 bits */
|
|
#define SH_EESR 0x30 /* 64 bits */
|
|
#define SH_SER 0x38 /* 64 bits */
|
|
#define SH_SECR 0x40 /* 64 bits */
|
|
#define SH_IER 0x50 /* 64 bits */
|
|
#define SH_IECR 0x58 /* 64 bits */
|
|
#define SH_IESR 0x60 /* 64 bits */
|
|
#define SH_IPR 0x68 /* 64 bits */
|
|
#define SH_ICR 0x70 /* 64 bits */
|
|
#define SH_IEVAL 0x78
|
|
#define SH_QER 0x80
|
|
#define SH_QEER 0x84
|
|
#define SH_QEECR 0x88
|
|
#define SH_QEESR 0x8c
|
|
#define SH_QSER 0x90
|
|
#define SH_QSECR 0x94
|
|
#define SH_SIZE 0x200
|
|
|
|
/* Offsets for EDMA CC global registers */
|
|
#define EDMA_REV 0x0000
|
|
#define EDMA_CCCFG 0x0004
|
|
#define EDMA_QCHMAP 0x0200 /* 8 registers */
|
|
#define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
|
|
#define EDMA_QDMAQNUM 0x0260
|
|
#define EDMA_QUETCMAP 0x0280
|
|
#define EDMA_QUEPRI 0x0284
|
|
#define EDMA_EMR 0x0300 /* 64 bits */
|
|
#define EDMA_EMCR 0x0308 /* 64 bits */
|
|
#define EDMA_QEMR 0x0310
|
|
#define EDMA_QEMCR 0x0314
|
|
#define EDMA_CCERR 0x0318
|
|
#define EDMA_CCERRCLR 0x031c
|
|
#define EDMA_EEVAL 0x0320
|
|
#define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
|
|
#define EDMA_QRAE 0x0380 /* 4 registers */
|
|
#define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
|
|
#define EDMA_QSTAT 0x0600 /* 2 registers */
|
|
#define EDMA_QWMTHRA 0x0620
|
|
#define EDMA_QWMTHRB 0x0624
|
|
#define EDMA_CCSTAT 0x0640
|
|
|
|
#define EDMA_M 0x1000 /* global channel registers */
|
|
#define EDMA_ECR 0x1008
|
|
#define EDMA_ECRH 0x100C
|
|
#define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
|
|
#define EDMA_PARM 0x4000 /* 128 param entries */
|
|
|
|
#define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
|
|
|
|
#define EDMA_DCHMAP 0x0100 /* 64 registers */
|
|
#define CHMAP_EXIST BIT(24)
|
|
|
|
#define EDMA_MAX_DMACH 64
|
|
#define EDMA_MAX_PARAMENTRY 512
|
|
|
|
#define EDMA_CC0_BASE_REG 0x01c00000
|
|
#define EDMA_TC0_BASE_REG 0x01c10000
|
|
#define EDMA_TC1_BASE_REG 0x01c10400
|
|
#define EDMA_TC2_BASE_REG 0x01c10800
|
|
#define EDMA_TC3_BASE_REG 0x01c10c00
|
|
|
|
#define min_t(type, x, y) ({ \
|
|
type __min1 = (x); \
|
|
type __min2 = (y); \
|
|
__min1 < __min2 ? __min1: __min2; })
|
|
|
|
|
|
|
|
/*****************************************************************************/
|
|
|
|
static void volatile *edmacc_regs_base[EDMA_MAX_CC];
|
|
|
|
static inline unsigned int edma_read(unsigned ctlr, int offset)
|
|
{
|
|
return (unsigned int)davinci_readl(edmacc_regs_base[ctlr] + offset);
|
|
}
|
|
|
|
static inline void edma_write(unsigned ctlr, int offset, int val)
|
|
{
|
|
davinci_writel(val, edmacc_regs_base[ctlr] + offset);
|
|
}
|
|
static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
|
|
unsigned or)
|
|
{
|
|
unsigned val = edma_read(ctlr, offset);
|
|
val &= and;
|
|
val |= or;
|
|
edma_write(ctlr, offset, val);
|
|
}
|
|
static inline void edma_and(unsigned ctlr, int offset, unsigned and)
|
|
{
|
|
unsigned val = edma_read(ctlr, offset);
|
|
val &= and;
|
|
edma_write(ctlr, offset, val);
|
|
}
|
|
static inline void edma_or(unsigned ctlr, int offset, unsigned or)
|
|
{
|
|
unsigned val = edma_read(ctlr, offset);
|
|
val |= or;
|
|
edma_write(ctlr, offset, val);
|
|
}
|
|
static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
|
|
{
|
|
return edma_read(ctlr, offset + (i << 2));
|
|
}
|
|
static inline void edma_write_array(unsigned ctlr, int offset, int i,
|
|
unsigned val)
|
|
{
|
|
edma_write(ctlr, offset + (i << 2), val);
|
|
}
|
|
static inline void edma_modify_array(unsigned ctlr, int offset, int i,
|
|
unsigned and, unsigned or)
|
|
{
|
|
edma_modify(ctlr, offset + (i << 2), and, or);
|
|
}
|
|
static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
|
|
{
|
|
edma_or(ctlr, offset + (i << 2), or);
|
|
}
|
|
static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
|
|
unsigned or)
|
|
{
|
|
edma_or(ctlr, offset + ((i*2 + j) << 2), or);
|
|
}
|
|
static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
|
|
unsigned val)
|
|
{
|
|
edma_write(ctlr, offset + ((i*2 + j) << 2), val);
|
|
}
|
|
static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
|
|
{
|
|
return edma_read(ctlr, EDMA_SHADOW0 + offset);
|
|
}
|
|
static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
|
|
int i)
|
|
{
|
|
return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
|
|
}
|
|
static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
|
|
{
|
|
edma_write(ctlr, EDMA_SHADOW0 + offset, val);
|
|
}
|
|
static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
|
|
unsigned val)
|
|
{
|
|
edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
|
|
}
|
|
static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
|
|
int param_no)
|
|
{
|
|
return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
|
|
}
|
|
static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
|
|
unsigned val)
|
|
{
|
|
edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
|
|
}
|
|
static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
|
|
unsigned and, unsigned or)
|
|
{
|
|
edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
|
|
}
|
|
static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
|
|
unsigned and)
|
|
{
|
|
edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
|
|
}
|
|
static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
|
|
unsigned or)
|
|
{
|
|
edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
|
|
}
|
|
#if 0
|
|
static inline void set_bits(int offset, int len, unsigned long *p)
|
|
{
|
|
for (; len > 0; len--)
|
|
set_bit(offset + (len - 1), p);
|
|
}
|
|
|
|
static inline void clear_bits(int offset, int len, unsigned long *p)
|
|
{
|
|
for (; len > 0; len--)
|
|
clear_bit(offset + (len - 1), p);
|
|
}
|
|
#endif
|
|
/*****************************************************************************/
|
|
|
|
#define BIT(nr) (1UL << (nr))
|
|
#define BITS_PER_LONG 32
|
|
#define BIT_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
|
|
#define BIT_WORD(nr) ((nr) / BITS_PER_LONG)
|
|
#define BITS_PER_BYTE 8
|
|
#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
|
|
|
|
#define BITS_TO_LONGS(nr) DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(long))
|
|
|
|
#define DECLARE_BITMAP(name,bits) \
|
|
unsigned long name[BITS_TO_LONGS(bits)]
|
|
|
|
/**
|
|
* test_bit - Determine whether a bit is set
|
|
* @nr: bit number to test
|
|
* @addr: Address to start counting from
|
|
*/
|
|
static inline int test_bit(int nr, const volatile unsigned long *addr)
|
|
{
|
|
return 1UL & (addr[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));
|
|
}
|
|
|
|
static inline void clear_bit(int nr, volatile unsigned long *addr)
|
|
{
|
|
unsigned long mask = BIT_MASK(nr);
|
|
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
|
|
rt_base_t level;
|
|
|
|
level = rt_hw_interrupt_disable();
|
|
*p &= ~mask;
|
|
rt_hw_interrupt_enable(level);
|
|
}
|
|
|
|
static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
|
|
{
|
|
unsigned long mask = BIT_MASK(nr);
|
|
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
|
|
unsigned long old;
|
|
rt_base_t level;
|
|
|
|
level = rt_hw_interrupt_disable();
|
|
old = *p;
|
|
*p = old | mask;
|
|
rt_hw_interrupt_enable(level);
|
|
|
|
return (old & mask) != 0;
|
|
}
|
|
|
|
static inline void set_bit(int nr, volatile unsigned long *addr)
|
|
{
|
|
unsigned long mask = BIT_MASK(nr);
|
|
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
|
|
rt_base_t level;
|
|
|
|
level = rt_hw_interrupt_disable();
|
|
*p |= mask;
|
|
rt_hw_interrupt_enable(level);
|
|
}
|
|
|
|
/*
|
|
* Little endian assembly bitops. nr = 0 -> byte 0 bit 0.
|
|
*/
|
|
extern int _find_first_zero_bit_le(const void * p, unsigned size);
|
|
extern int _find_next_zero_bit_le(const void * p, int size, int offset);
|
|
extern int _find_first_bit_le(const unsigned long *p, unsigned size);
|
|
extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
|
|
|
|
/*
|
|
* These are the little endian, atomic definitions.
|
|
*/
|
|
#define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
|
|
#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
|
|
#define find_first_bit(p,sz) _find_first_bit_le(p,sz)
|
|
#define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off)
|
|
|
|
|
|
|
|
/* actual number of DMA channels and slots on this silicon */
|
|
struct edma {
|
|
/* how many dma resources of each type */
|
|
unsigned num_channels;
|
|
unsigned num_region;
|
|
unsigned num_slots;
|
|
unsigned num_tc;
|
|
unsigned num_cc;
|
|
enum dma_event_q default_queue;
|
|
|
|
/* list of channels with no even trigger; terminated by "-1" */
|
|
const rt_int8_t *noevent;
|
|
|
|
/* The edma_inuse bit for each PaRAM slot is clear unless the
|
|
* channel is in use ... by ARM or DSP, for QDMA, or whatever.
|
|
*/
|
|
DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
|
|
|
|
/* The edma_unused bit for each channel is clear unless
|
|
* it is not being used on this platform. It uses a bit
|
|
* of SOC-specific initialization code.
|
|
*/
|
|
DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
|
|
|
|
unsigned irq_res_start;
|
|
unsigned irq_res_end;
|
|
|
|
struct dma_interrupt_data {
|
|
void (*callback)(unsigned channel, unsigned short ch_status,
|
|
void *data);
|
|
void *data;
|
|
} intr_data[EDMA_MAX_DMACH];
|
|
};
|
|
|
|
static struct edma *edma_cc[EDMA_MAX_CC];
|
|
static int arch_num_cc;
|
|
|
|
/* dummy param set used to (re)initialize parameter RAM slots */
|
|
static const struct edmacc_param dummy_paramset = {
|
|
.link_bcntrld = 0xffff,
|
|
.ccnt = 1,
|
|
};
|
|
|
|
/*****************************************************************************/
|
|
|
|
static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
|
|
enum dma_event_q queue_no)
|
|
{
|
|
int bit = (ch_no & 0x7) * 4;
|
|
|
|
/* default to low priority queue */
|
|
if (queue_no == EVENTQ_DEFAULT)
|
|
queue_no = edma_cc[ctlr]->default_queue;
|
|
|
|
queue_no &= 7;
|
|
edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
|
|
~(0x7 << bit), queue_no << bit);
|
|
}
|
|
|
|
static void map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
|
|
{
|
|
int bit = queue_no * 4;
|
|
edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
|
|
}
|
|
|
|
static void assign_priority_to_queue(unsigned ctlr, int queue_no,
|
|
int priority)
|
|
{
|
|
int bit = queue_no * 4;
|
|
edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
|
|
((priority & 0x7) << bit));
|
|
}
|
|
|
|
/**
|
|
* map_dmach_param - Maps channel number to param entry number
|
|
*
|
|
* This maps the dma channel number to param entry numberter. In
|
|
* other words using the DMA channel mapping registers a param entry
|
|
* can be mapped to any channel
|
|
*
|
|
* Callers are responsible for ensuring the channel mapping logic is
|
|
* included in that particular EDMA variant (Eg : dm646x)
|
|
*
|
|
*/
|
|
static void map_dmach_param(unsigned ctlr)
|
|
{
|
|
int i;
|
|
for (i = 0; i < EDMA_MAX_DMACH; i++)
|
|
edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
|
|
}
|
|
|
|
static inline void
|
|
setup_dma_interrupt(unsigned lch,
|
|
void (*callback)(unsigned channel, rt_uint16_t ch_status, void *data),
|
|
void *data)
|
|
{
|
|
unsigned ctlr;
|
|
|
|
ctlr = EDMA_CTLR(lch);
|
|
lch = EDMA_CHAN_SLOT(lch);
|
|
|
|
if (!callback)
|
|
edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
|
|
BIT(lch & 0x1f));
|
|
|
|
edma_cc[ctlr]->intr_data[lch].callback = callback;
|
|
edma_cc[ctlr]->intr_data[lch].data = data;
|
|
|
|
if (callback) {
|
|
edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
|
|
BIT(lch & 0x1f));
|
|
edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
|
|
BIT(lch & 0x1f));
|
|
}
|
|
}
|
|
|
|
static int irq2ctlr(int irq)
|
|
{
|
|
if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
|
|
return 0;
|
|
else if (irq >= edma_cc[1]->irq_res_start &&
|
|
irq <= edma_cc[1]->irq_res_end)
|
|
return 1;
|
|
|
|
return -1;
|
|
}
|
|
|
|
/******************************************************************************
|
|
*
|
|
* DMA interrupt handler
|
|
*
|
|
*****************************************************************************/
|
|
static void dma_irq_handler(int irq, void *data)
|
|
{
|
|
int i;
|
|
int ctlr;
|
|
unsigned int cnt = 0;
|
|
|
|
ctlr = irq2ctlr(irq);
|
|
if (ctlr < 0)
|
|
return ;
|
|
|
|
edma_dbg("dma_irq_handler\n");
|
|
|
|
if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0) &&
|
|
(edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0))
|
|
return ;
|
|
|
|
while (1) {
|
|
int j;
|
|
if (edma_shadow0_read_array(ctlr, SH_IPR, 0) &
|
|
edma_shadow0_read_array(ctlr, SH_IER, 0))
|
|
j = 0;
|
|
else if (edma_shadow0_read_array(ctlr, SH_IPR, 1) &
|
|
edma_shadow0_read_array(ctlr, SH_IER, 1))
|
|
j = 1;
|
|
else
|
|
break;
|
|
edma_dbg("IPR%d %08x\n", j,
|
|
edma_shadow0_read_array(ctlr, SH_IPR, j));
|
|
for (i = 0; i < 32; i++) {
|
|
int k = (j << 5) + i;
|
|
if ((edma_shadow0_read_array(ctlr, SH_IPR, j) & BIT(i))
|
|
&& (edma_shadow0_read_array(ctlr,
|
|
SH_IER, j) & BIT(i))) {
|
|
/* Clear the corresponding IPR bits */
|
|
edma_shadow0_write_array(ctlr, SH_ICR, j,
|
|
BIT(i));
|
|
if (edma_cc[ctlr]->intr_data[k].callback)
|
|
edma_cc[ctlr]->intr_data[k].callback(
|
|
k, DMA_COMPLETE,
|
|
edma_cc[ctlr]->intr_data[k].
|
|
data);
|
|
}
|
|
}
|
|
cnt++;
|
|
if (cnt > 10)
|
|
break;
|
|
}
|
|
edma_shadow0_write(ctlr, SH_IEVAL, 1);
|
|
return ;
|
|
}
|
|
|
|
/******************************************************************************
|
|
*
|
|
* DMA error interrupt handler
|
|
*
|
|
*****************************************************************************/
|
|
static void dma_ccerr_handler(int irq, void *data)
|
|
{
|
|
int i;
|
|
int ctlr;
|
|
unsigned int cnt = 0;
|
|
|
|
ctlr = irq2ctlr(irq);
|
|
if (ctlr < 0)
|
|
return ;
|
|
|
|
edma_dbg("dma_ccerr_handler\n");
|
|
|
|
if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
|
|
(edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
|
|
(edma_read(ctlr, EDMA_QEMR) == 0) &&
|
|
(edma_read(ctlr, EDMA_CCERR) == 0))
|
|
return ;
|
|
|
|
while (1) {
|
|
int j = -1;
|
|
if (edma_read_array(ctlr, EDMA_EMR, 0))
|
|
j = 0;
|
|
else if (edma_read_array(ctlr, EDMA_EMR, 1))
|
|
j = 1;
|
|
if (j >= 0) {
|
|
edma_dbg("EMR%d %08x\n", j,
|
|
edma_read_array(ctlr, EDMA_EMR, j));
|
|
for (i = 0; i < 32; i++) {
|
|
int k = (j << 5) + i;
|
|
if (edma_read_array(ctlr, EDMA_EMR, j) &
|
|
BIT(i)) {
|
|
/* Clear the corresponding EMR bits */
|
|
edma_write_array(ctlr, EDMA_EMCR, j,
|
|
BIT(i));
|
|
/* Clear any SER */
|
|
edma_shadow0_write_array(ctlr, SH_SECR,
|
|
j, BIT(i));
|
|
if (edma_cc[ctlr]->intr_data[k].
|
|
callback) {
|
|
edma_cc[ctlr]->intr_data[k].
|
|
callback(k,
|
|
DMA_CC_ERROR,
|
|
edma_cc[ctlr]->intr_data
|
|
[k].data);
|
|
}
|
|
}
|
|
}
|
|
} else if (edma_read(ctlr, EDMA_QEMR)) {
|
|
edma_dbg("QEMR %02x\n",
|
|
edma_read(ctlr, EDMA_QEMR));
|
|
for (i = 0; i < 8; i++) {
|
|
if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
|
|
/* Clear the corresponding IPR bits */
|
|
edma_write(ctlr, EDMA_QEMCR, BIT(i));
|
|
edma_shadow0_write(ctlr, SH_QSECR,
|
|
BIT(i));
|
|
|
|
/* NOTE: not reported!! */
|
|
}
|
|
}
|
|
} else if (edma_read(ctlr, EDMA_CCERR)) {
|
|
edma_dbg("CCERR %08x\n",
|
|
edma_read(ctlr, EDMA_CCERR));
|
|
/* FIXME: CCERR.BIT(16) ignored! much better
|
|
* to just write CCERRCLR with CCERR value...
|
|
*/
|
|
for (i = 0; i < 8; i++) {
|
|
if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
|
|
/* Clear the corresponding IPR bits */
|
|
edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
|
|
|
|
/* NOTE: not reported!! */
|
|
}
|
|
}
|
|
}
|
|
if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
|
|
(edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
|
|
(edma_read(ctlr, EDMA_QEMR) == 0) &&
|
|
(edma_read(ctlr, EDMA_CCERR) == 0))
|
|
break;
|
|
cnt++;
|
|
if (cnt > 10)
|
|
break;
|
|
}
|
|
edma_write(ctlr, EDMA_EEVAL, 1);
|
|
return ;
|
|
}
|
|
|
|
/******************************************************************************
|
|
*
|
|
* Transfer controller error interrupt handlers
|
|
*
|
|
*****************************************************************************/
|
|
|
|
#define tc_errs_handled RT_FALSE/* disabled as long as they're NOPs */
|
|
|
|
static void dma_tc0err_handler(int irq, void *data)
|
|
{
|
|
edma_dbg("dma_tc0err_handler\n");
|
|
return ;
|
|
}
|
|
|
|
static void dma_tc1err_handler(int irq, void *data)
|
|
{
|
|
edma_dbg("dma_tc1err_handler\n");
|
|
return ;
|
|
}
|
|
|
|
static int reserve_contiguous_slots(int ctlr, unsigned int id,
|
|
unsigned int num_slots,
|
|
unsigned int start_slot)
|
|
{
|
|
int i, j;
|
|
unsigned int count = num_slots;
|
|
int stop_slot = start_slot;
|
|
DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
|
|
|
|
for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
|
|
j = EDMA_CHAN_SLOT(i);
|
|
if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
|
|
/* Record our current beginning slot */
|
|
if (count == num_slots)
|
|
stop_slot = i;
|
|
|
|
count--;
|
|
set_bit(j, tmp_inuse);
|
|
|
|
if (count == 0)
|
|
break;
|
|
} else {
|
|
clear_bit(j, tmp_inuse);
|
|
|
|
if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
|
|
stop_slot = i;
|
|
break;
|
|
} else {
|
|
count = num_slots;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We have to clear any bits that we set
|
|
* if we run out parameter RAM slots, i.e we do find a set
|
|
* of contiguous parameter RAM slots but do not find the exact number
|
|
* requested as we may reach the total number of parameter RAM slots
|
|
*/
|
|
if (i == edma_cc[ctlr]->num_slots)
|
|
stop_slot = i;
|
|
|
|
for (j = start_slot; j < stop_slot; j++)
|
|
if (test_bit(j, tmp_inuse))
|
|
clear_bit(j, edma_cc[ctlr]->edma_inuse);
|
|
|
|
if (count)
|
|
return -RT_EBUSY;
|
|
|
|
for (j = i - num_slots + 1; j <= i; ++j)
|
|
rt_memcpy((void *)(edmacc_regs_base[ctlr] + PARM_OFFSET(j)),
|
|
&dummy_paramset, PARM_SIZE);
|
|
|
|
return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
|
|
}
|
|
|
|
#if 0
|
|
static int prepare_unused_channel_list(struct device *dev, void *data)
|
|
{
|
|
struct platform_device *pdev = to_platform_device(dev);
|
|
int i, ctlr;
|
|
|
|
for (i = 0; i < pdev->num_resources; i++) {
|
|
if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
|
|
(int)pdev->resource[i].start >= 0) {
|
|
ctlr = EDMA_CTLR(pdev->resource[i].start);
|
|
clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
|
|
edma_cc[ctlr]->edma_unused);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*-----------------------------------------------------------------------*/
|
|
|
|
static rt_bool_t unused_chan_list_done;
|
|
|
|
/* Resource alloc/free: dma channels, parameter RAM slots */
|
|
|
|
/**
|
|
* edma_alloc_channel - allocate DMA channel and paired parameter RAM
|
|
* @channel: specific channel to allocate; negative for "any unmapped channel"
|
|
* @callback: optional; to be issued on DMA completion or errors
|
|
* @data: passed to callback
|
|
* @eventq_no: an EVENTQ_* constant, used to choose which Transfer
|
|
* Controller (TC) executes requests using this channel. Use
|
|
* EVENTQ_DEFAULT unless you really need a high priority queue.
|
|
*
|
|
* This allocates a DMA channel and its associated parameter RAM slot.
|
|
* The parameter RAM is initialized to hold a dummy transfer.
|
|
*
|
|
* Normal use is to pass a specific channel number as @channel, to make
|
|
* use of hardware events mapped to that channel. When the channel will
|
|
* be used only for software triggering or event chaining, channels not
|
|
* mapped to hardware events (or mapped to unused events) are preferable.
|
|
*
|
|
* DMA transfers start from a channel using edma_start(), or by
|
|
* chaining. When the transfer described in that channel's parameter RAM
|
|
* slot completes, that slot's data may be reloaded through a link.
|
|
*
|
|
* DMA errors are only reported to the @callback associated with the
|
|
* channel driving that transfer, but transfer completion callbacks can
|
|
* be sent to another channel under control of the TCC field in
|
|
* the option word of the transfer's parameter RAM set. Drivers must not
|
|
* use DMA transfer completion callbacks for channels they did not allocate.
|
|
* (The same applies to TCC codes used in transfer chaining.)
|
|
*
|
|
* Returns the number of the channel, else negative errno.
|
|
*/
|
|
int edma_alloc_channel(int channel,
|
|
void (*callback)(unsigned channel, rt_uint16_t ch_status, void *data),
|
|
void *data,
|
|
enum dma_event_q eventq_no)
|
|
{
|
|
unsigned i, done = 0, ctlr = 0;
|
|
int ret = 0;
|
|
#if 0
|
|
if (!unused_chan_list_done) {
|
|
/*
|
|
* Scan all the platform devices to find out the EDMA channels
|
|
* used and clear them in the unused list, making the rest
|
|
* available for ARM usage.
|
|
*/
|
|
ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
|
|
prepare_unused_channel_list);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
unused_chan_list_done = true;
|
|
}
|
|
#endif
|
|
|
|
if (channel >= 0) {
|
|
ctlr = EDMA_CTLR(channel);
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
clear_bit(channel, edma_cc[ctlr]->edma_unused);
|
|
}
|
|
|
|
if (channel < 0) {
|
|
for (i = 0; i < arch_num_cc; i++) {
|
|
channel = 0;
|
|
for (;;) {
|
|
channel = find_next_bit(edma_cc[i]->edma_unused,
|
|
edma_cc[i]->num_channels,
|
|
channel);
|
|
if (channel == edma_cc[i]->num_channels)
|
|
break;
|
|
if (!test_and_set_bit(channel,
|
|
edma_cc[i]->edma_inuse)) {
|
|
done = 1;
|
|
ctlr = i;
|
|
break;
|
|
}
|
|
channel++;
|
|
}
|
|
if (done)
|
|
break;
|
|
}
|
|
if (!done)
|
|
return -RT_ENOMEM;
|
|
} else if (channel >= edma_cc[ctlr]->num_channels) {
|
|
return -RT_ERROR;
|
|
} else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
|
|
return -RT_EBUSY;
|
|
}
|
|
|
|
/* ensure access through shadow region 0 */
|
|
edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
|
|
|
|
/* ensure no events are pending */
|
|
edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
|
|
rt_memcpy((void *)(edmacc_regs_base[ctlr] + PARM_OFFSET(channel)),
|
|
&dummy_paramset, PARM_SIZE);
|
|
|
|
if (callback)
|
|
setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
|
|
callback, data);
|
|
|
|
map_dmach_queue(ctlr, channel, eventq_no);
|
|
|
|
return EDMA_CTLR_CHAN(ctlr, channel);
|
|
}
|
|
|
|
|
|
/**
|
|
* edma_free_channel - deallocate DMA channel
|
|
* @channel: dma channel returned from edma_alloc_channel()
|
|
*
|
|
* This deallocates the DMA channel and associated parameter RAM slot
|
|
* allocated by edma_alloc_channel().
|
|
*
|
|
* Callers are responsible for ensuring the channel is inactive, and
|
|
* will not be reactivated by linking, chaining, or software calls to
|
|
* edma_start().
|
|
*/
|
|
void edma_free_channel(unsigned channel)
|
|
{
|
|
unsigned ctlr;
|
|
|
|
ctlr = EDMA_CTLR(channel);
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
if (channel >= edma_cc[ctlr]->num_channels)
|
|
return;
|
|
|
|
setup_dma_interrupt(channel, RT_NULL, RT_NULL);
|
|
/* REVISIT should probably take out of shadow region 0 */
|
|
|
|
rt_memcpy((void *)(edmacc_regs_base[ctlr] + PARM_OFFSET(channel)),
|
|
&dummy_paramset, PARM_SIZE);
|
|
clear_bit(channel, edma_cc[ctlr]->edma_inuse);
|
|
}
|
|
|
|
|
|
/**
|
|
* edma_alloc_slot - allocate DMA parameter RAM
|
|
* @slot: specific slot to allocate; negative for "any unused slot"
|
|
*
|
|
* This allocates a parameter RAM slot, initializing it to hold a
|
|
* dummy transfer. Slots allocated using this routine have not been
|
|
* mapped to a hardware DMA channel, and will normally be used by
|
|
* linking to them from a slot associated with a DMA channel.
|
|
*
|
|
* Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
|
|
* slots may be allocated on behalf of DSP firmware.
|
|
*
|
|
* Returns the number of the slot, else negative errno.
|
|
*/
|
|
int edma_alloc_slot(unsigned ctlr, int slot)
|
|
{
|
|
if (slot >= 0)
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
|
|
if (slot < 0) {
|
|
slot = edma_cc[ctlr]->num_channels;
|
|
for (;;) {
|
|
slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
|
|
edma_cc[ctlr]->num_slots, slot);
|
|
if (slot == edma_cc[ctlr]->num_slots)
|
|
return -RT_ENOMEM;
|
|
if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
|
|
break;
|
|
}
|
|
} else if (slot < edma_cc[ctlr]->num_channels ||
|
|
slot >= edma_cc[ctlr]->num_slots) {
|
|
return -RT_ERROR;
|
|
} else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
|
|
return -RT_EBUSY;
|
|
}
|
|
|
|
rt_memcpy((void *)(edmacc_regs_base[ctlr] + PARM_OFFSET(slot)),
|
|
&dummy_paramset, PARM_SIZE);
|
|
|
|
return EDMA_CTLR_CHAN(ctlr, slot);
|
|
}
|
|
|
|
|
|
/**
|
|
* edma_free_slot - deallocate DMA parameter RAM
|
|
* @slot: parameter RAM slot returned from edma_alloc_slot()
|
|
*
|
|
* This deallocates the parameter RAM slot allocated by edma_alloc_slot().
|
|
* Callers are responsible for ensuring the slot is inactive, and will
|
|
* not be activated.
|
|
*/
|
|
void edma_free_slot(unsigned slot)
|
|
{
|
|
unsigned ctlr;
|
|
|
|
ctlr = EDMA_CTLR(slot);
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
|
|
if (slot < edma_cc[ctlr]->num_channels ||
|
|
slot >= edma_cc[ctlr]->num_slots)
|
|
return;
|
|
|
|
rt_memcpy((void *)(edmacc_regs_base[ctlr] + PARM_OFFSET(slot)),
|
|
&dummy_paramset, PARM_SIZE);
|
|
clear_bit(slot, edma_cc[ctlr]->edma_inuse);
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* edma_alloc_cont_slots- alloc contiguous parameter RAM slots
|
|
* The API will return the starting point of a set of
|
|
* contiguous parameter RAM slots that have been requested
|
|
*
|
|
* @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
|
|
* or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
|
|
* @count: number of contiguous Paramter RAM slots
|
|
* @slot - the start value of Parameter RAM slot that should be passed if id
|
|
* is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
|
|
*
|
|
* If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
|
|
* contiguous Parameter RAM slots from parameter RAM 64 in the case of
|
|
* DaVinci SOCs and 32 in the case of DA8xx SOCs.
|
|
*
|
|
* If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
|
|
* set of contiguous parameter RAM slots from the "slot" that is passed as an
|
|
* argument to the API.
|
|
*
|
|
* If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
|
|
* starts looking for a set of contiguous parameter RAMs from the "slot"
|
|
* that is passed as an argument to the API. On failure the API will try to
|
|
* find a set of contiguous Parameter RAM slots from the remaining Parameter
|
|
* RAM slots
|
|
*/
|
|
int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
|
|
{
|
|
/*
|
|
* The start slot requested should be greater than
|
|
* the number of channels and lesser than the total number
|
|
* of slots
|
|
*/
|
|
if ((id != EDMA_CONT_PARAMS_ANY) &&
|
|
(slot < edma_cc[ctlr]->num_channels ||
|
|
slot >= edma_cc[ctlr]->num_slots))
|
|
return -RT_ERROR;
|
|
|
|
/*
|
|
* The number of parameter RAM slots requested cannot be less than 1
|
|
* and cannot be more than the number of slots minus the number of
|
|
* channels
|
|
*/
|
|
if (count < 1 || count >
|
|
(edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
|
|
return -RT_ERROR;
|
|
|
|
switch (id) {
|
|
case EDMA_CONT_PARAMS_ANY:
|
|
return reserve_contiguous_slots(ctlr, id, count,
|
|
edma_cc[ctlr]->num_channels);
|
|
case EDMA_CONT_PARAMS_FIXED_EXACT:
|
|
case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
|
|
return reserve_contiguous_slots(ctlr, id, count, slot);
|
|
default:
|
|
return -RT_ERROR;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* edma_free_cont_slots - deallocate DMA parameter RAM slots
|
|
* @slot: first parameter RAM of a set of parameter RAM slots to be freed
|
|
* @count: the number of contiguous parameter RAM slots to be freed
|
|
*
|
|
* This deallocates the parameter RAM slots allocated by
|
|
* edma_alloc_cont_slots.
|
|
* Callers/applications need to keep track of sets of contiguous
|
|
* parameter RAM slots that have been allocated using the edma_alloc_cont_slots
|
|
* API.
|
|
* Callers are responsible for ensuring the slots are inactive, and will
|
|
* not be activated.
|
|
*/
|
|
int edma_free_cont_slots(unsigned slot, int count)
|
|
{
|
|
unsigned ctlr, slot_to_free;
|
|
int i;
|
|
|
|
ctlr = EDMA_CTLR(slot);
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
|
|
if (slot < edma_cc[ctlr]->num_channels ||
|
|
slot >= edma_cc[ctlr]->num_slots ||
|
|
count < 1)
|
|
return -RT_ERROR;
|
|
|
|
for (i = slot; i < slot + count; ++i) {
|
|
ctlr = EDMA_CTLR(i);
|
|
slot_to_free = EDMA_CHAN_SLOT(i);
|
|
|
|
rt_memcpy((void *)(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free)),
|
|
&dummy_paramset, PARM_SIZE);
|
|
clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*-----------------------------------------------------------------------*/
|
|
|
|
/* Parameter RAM operations (i) -- read/write partial slots */
|
|
|
|
/**
|
|
* edma_set_src - set initial DMA source address in parameter RAM slot
|
|
* @slot: parameter RAM slot being configured
|
|
* @src_port: physical address of source (memory, controller FIFO, etc)
|
|
* @addressMode: INCR, except in very rare cases
|
|
* @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
|
|
* width to use when addressing the fifo (e.g. W8BIT, W32BIT)
|
|
*
|
|
* Note that the source address is modified during the DMA transfer
|
|
* according to edma_set_src_index().
|
|
*/
|
|
void edma_set_src(unsigned slot, rt_uint32_t src_port,
|
|
enum address_mode mode, enum fifo_width width)
|
|
{
|
|
unsigned ctlr;
|
|
|
|
ctlr = EDMA_CTLR(slot);
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
|
|
if (slot < edma_cc[ctlr]->num_slots) {
|
|
unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
|
|
|
|
if (mode) {
|
|
/* set SAM and program FWID */
|
|
i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
|
|
} else {
|
|
/* clear SAM */
|
|
i &= ~SAM;
|
|
}
|
|
edma_parm_write(ctlr, PARM_OPT, slot, i);
|
|
|
|
/* set the source port address
|
|
in source register of param structure */
|
|
edma_parm_write(ctlr, PARM_SRC, slot, src_port);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* edma_set_dest - set initial DMA destination address in parameter RAM slot
|
|
* @slot: parameter RAM slot being configured
|
|
* @dest_port: physical address of destination (memory, controller FIFO, etc)
|
|
* @addressMode: INCR, except in very rare cases
|
|
* @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
|
|
* width to use when addressing the fifo (e.g. W8BIT, W32BIT)
|
|
*
|
|
* Note that the destination address is modified during the DMA transfer
|
|
* according to edma_set_dest_index().
|
|
*/
|
|
void edma_set_dest(unsigned slot, rt_uint32_t dest_port,
|
|
enum address_mode mode, enum fifo_width width)
|
|
{
|
|
unsigned ctlr;
|
|
|
|
ctlr = EDMA_CTLR(slot);
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
|
|
if (slot < edma_cc[ctlr]->num_slots) {
|
|
unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
|
|
|
|
if (mode) {
|
|
/* set DAM and program FWID */
|
|
i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
|
|
} else {
|
|
/* clear DAM */
|
|
i &= ~DAM;
|
|
}
|
|
edma_parm_write(ctlr, PARM_OPT, slot, i);
|
|
/* set the destination port address
|
|
in dest register of param structure */
|
|
edma_parm_write(ctlr, PARM_DST, slot, dest_port);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* edma_get_position - returns the current transfer points
|
|
* @slot: parameter RAM slot being examined
|
|
* @src: pointer to source port position
|
|
* @dst: pointer to destination port position
|
|
*
|
|
* Returns current source and destination addresses for a particular
|
|
* parameter RAM slot. Its channel should not be active when this is called.
|
|
*/
|
|
void edma_get_position(unsigned slot, rt_uint32_t *src, rt_uint32_t *dst)
|
|
{
|
|
struct edmacc_param temp;
|
|
unsigned ctlr;
|
|
|
|
ctlr = EDMA_CTLR(slot);
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
|
|
edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
|
|
if (src != RT_NULL)
|
|
*src = temp.src;
|
|
if (dst != RT_NULL)
|
|
*dst = temp.dst;
|
|
}
|
|
|
|
|
|
/**
|
|
* edma_set_src_index - configure DMA source address indexing
|
|
* @slot: parameter RAM slot being configured
|
|
* @src_bidx: byte offset between source arrays in a frame
|
|
* @src_cidx: byte offset between source frames in a block
|
|
*
|
|
* Offsets are specified to support either contiguous or discontiguous
|
|
* memory transfers, or repeated access to a hardware register, as needed.
|
|
* When accessing hardware registers, both offsets are normally zero.
|
|
*/
|
|
void edma_set_src_index(unsigned slot, rt_int16_t src_bidx, rt_int16_t src_cidx)
|
|
{
|
|
unsigned ctlr;
|
|
|
|
ctlr = EDMA_CTLR(slot);
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
|
|
if (slot < edma_cc[ctlr]->num_slots) {
|
|
edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
|
|
0xffff0000, src_bidx);
|
|
edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
|
|
0xffff0000, src_cidx);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* edma_set_dest_index - configure DMA destination address indexing
|
|
* @slot: parameter RAM slot being configured
|
|
* @dest_bidx: byte offset between destination arrays in a frame
|
|
* @dest_cidx: byte offset between destination frames in a block
|
|
*
|
|
* Offsets are specified to support either contiguous or discontiguous
|
|
* memory transfers, or repeated access to a hardware register, as needed.
|
|
* When accessing hardware registers, both offsets are normally zero.
|
|
*/
|
|
void edma_set_dest_index(unsigned slot, rt_int16_t dest_bidx, rt_int16_t dest_cidx)
|
|
{
|
|
unsigned ctlr;
|
|
|
|
ctlr = EDMA_CTLR(slot);
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
|
|
if (slot < edma_cc[ctlr]->num_slots) {
|
|
edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
|
|
0x0000ffff, dest_bidx << 16);
|
|
edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
|
|
0x0000ffff, dest_cidx << 16);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* edma_set_transfer_params - configure DMA transfer parameters
|
|
* @slot: parameter RAM slot being configured
|
|
* @acnt: how many bytes per array (at least one)
|
|
* @bcnt: how many arrays per frame (at least one)
|
|
* @ccnt: how many frames per block (at least one)
|
|
* @bcnt_rld: used only for A-Synchronized transfers; this specifies
|
|
* the value to reload into bcnt when it decrements to zero
|
|
* @sync_mode: ASYNC or ABSYNC
|
|
*
|
|
* See the EDMA3 documentation to understand how to configure and link
|
|
* transfers using the fields in PaRAM slots. If you are not doing it
|
|
* all at once with edma_write_slot(), you will use this routine
|
|
* plus two calls each for source and destination, setting the initial
|
|
* address and saying how to index that address.
|
|
*
|
|
* An example of an A-Synchronized transfer is a serial link using a
|
|
* single word shift register. In that case, @acnt would be equal to
|
|
* that word size; the serial controller issues a DMA synchronization
|
|
* event to transfer each word, and memory access by the DMA transfer
|
|
* controller will be word-at-a-time.
|
|
*
|
|
* An example of an AB-Synchronized transfer is a device using a FIFO.
|
|
* In that case, @acnt equals the FIFO width and @bcnt equals its depth.
|
|
* The controller with the FIFO issues DMA synchronization events when
|
|
* the FIFO threshold is reached, and the DMA transfer controller will
|
|
* transfer one frame to (or from) the FIFO. It will probably use
|
|
* efficient burst modes to access memory.
|
|
*/
|
|
void edma_set_transfer_params(unsigned slot,
|
|
rt_uint16_t acnt, rt_uint16_t bcnt, rt_uint16_t ccnt,
|
|
rt_uint16_t bcnt_rld, enum sync_dimension sync_mode)
|
|
{
|
|
unsigned ctlr;
|
|
|
|
ctlr = EDMA_CTLR(slot);
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
|
|
if (slot < edma_cc[ctlr]->num_slots) {
|
|
edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
|
|
0x0000ffff, bcnt_rld << 16);
|
|
if (sync_mode == ASYNC)
|
|
edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
|
|
else
|
|
edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
|
|
/* Set the acount, bcount, ccount registers */
|
|
edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
|
|
edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* edma_link - link one parameter RAM slot to another
|
|
* @from: parameter RAM slot originating the link
|
|
* @to: parameter RAM slot which is the link target
|
|
*
|
|
* The originating slot should not be part of any active DMA transfer.
|
|
*/
|
|
void edma_link(unsigned from, unsigned to)
|
|
{
|
|
unsigned ctlr_from, ctlr_to;
|
|
|
|
ctlr_from = EDMA_CTLR(from);
|
|
from = EDMA_CHAN_SLOT(from);
|
|
ctlr_to = EDMA_CTLR(to);
|
|
to = EDMA_CHAN_SLOT(to);
|
|
|
|
if (from >= edma_cc[ctlr_from]->num_slots)
|
|
return;
|
|
if (to >= edma_cc[ctlr_to]->num_slots)
|
|
return;
|
|
edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
|
|
PARM_OFFSET(to));
|
|
}
|
|
|
|
|
|
/**
|
|
* edma_unlink - cut link from one parameter RAM slot
|
|
* @from: parameter RAM slot originating the link
|
|
*
|
|
* The originating slot should not be part of any active DMA transfer.
|
|
* Its link is set to 0xffff.
|
|
*/
|
|
void edma_unlink(unsigned from)
|
|
{
|
|
unsigned ctlr;
|
|
|
|
ctlr = EDMA_CTLR(from);
|
|
from = EDMA_CHAN_SLOT(from);
|
|
|
|
if (from >= edma_cc[ctlr]->num_slots)
|
|
return;
|
|
edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
|
|
}
|
|
|
|
|
|
/*-----------------------------------------------------------------------*/
|
|
|
|
/* Parameter RAM operations (ii) -- read/write whole parameter sets */
|
|
|
|
/**
|
|
* edma_write_slot - write parameter RAM data for slot
|
|
* @slot: number of parameter RAM slot being modified
|
|
* @param: data to be written into parameter RAM slot
|
|
*
|
|
* Use this to assign all parameters of a transfer at once. This
|
|
* allows more efficient setup of transfers than issuing multiple
|
|
* calls to set up those parameters in small pieces, and provides
|
|
* complete control over all transfer options.
|
|
*/
|
|
void edma_write_slot(unsigned slot, const struct edmacc_param *param)
|
|
{
|
|
unsigned ctlr;
|
|
|
|
ctlr = EDMA_CTLR(slot);
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
|
|
if (slot >= edma_cc[ctlr]->num_slots)
|
|
return;
|
|
rt_memcpy((void *)(edmacc_regs_base[ctlr] + PARM_OFFSET(slot)), param,
|
|
PARM_SIZE);
|
|
}
|
|
|
|
|
|
/**
|
|
* edma_read_slot - read parameter RAM data from slot
|
|
* @slot: number of parameter RAM slot being copied
|
|
* @param: where to store copy of parameter RAM data
|
|
*
|
|
* Use this to read data from a parameter RAM slot, perhaps to
|
|
* save them as a template for later reuse.
|
|
*/
|
|
void edma_read_slot(unsigned slot, struct edmacc_param *param)
|
|
{
|
|
unsigned ctlr;
|
|
|
|
ctlr = EDMA_CTLR(slot);
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
|
|
if (slot >= edma_cc[ctlr]->num_slots)
|
|
return;
|
|
rt_memcpy(param, (void *)(edmacc_regs_base[ctlr] + PARM_OFFSET(slot)),
|
|
PARM_SIZE);
|
|
}
|
|
|
|
|
|
/*-----------------------------------------------------------------------*/
|
|
|
|
/* Various EDMA channel control operations */
|
|
|
|
/**
|
|
* edma_pause - pause dma on a channel
|
|
* @channel: on which edma_start() has been called
|
|
*
|
|
* This temporarily disables EDMA hardware events on the specified channel,
|
|
* preventing them from triggering new transfers on its behalf
|
|
*/
|
|
void edma_pause(unsigned channel)
|
|
{
|
|
unsigned ctlr;
|
|
|
|
ctlr = EDMA_CTLR(channel);
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
if (channel < edma_cc[ctlr]->num_channels) {
|
|
unsigned int mask = BIT(channel & 0x1f);
|
|
|
|
edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* edma_resume - resumes dma on a paused channel
|
|
* @channel: on which edma_pause() has been called
|
|
*
|
|
* This re-enables EDMA hardware events on the specified channel.
|
|
*/
|
|
void edma_resume(unsigned channel)
|
|
{
|
|
unsigned ctlr;
|
|
|
|
ctlr = EDMA_CTLR(channel);
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
if (channel < edma_cc[ctlr]->num_channels) {
|
|
unsigned int mask = BIT(channel & 0x1f);
|
|
|
|
edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* edma_start - start dma on a channel
|
|
* @channel: channel being activated
|
|
*
|
|
* Channels with event associations will be triggered by their hardware
|
|
* events, and channels without such associations will be triggered by
|
|
* software. (At this writing there is no interface for using software
|
|
* triggers except with channels that don't support hardware triggers.)
|
|
*
|
|
* Returns zero on success, else negative errno.
|
|
*/
|
|
int edma_start(unsigned channel)
|
|
{
|
|
unsigned ctlr;
|
|
|
|
ctlr = EDMA_CTLR(channel);
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
if (channel < edma_cc[ctlr]->num_channels) {
|
|
int j = channel >> 5;
|
|
unsigned int mask = BIT(channel & 0x1f);
|
|
|
|
/* EDMA channels without event association */
|
|
if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
|
|
edma_dbg("EDMA: ESR%d %08x\n", j,
|
|
edma_shadow0_read_array(ctlr, SH_ESR, j));
|
|
edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
|
|
return 0;
|
|
}
|
|
|
|
/* EDMA channel with event association */
|
|
edma_dbg("EDMA: ER%d %08x\n", j,
|
|
edma_shadow0_read_array(ctlr, SH_ER, j));
|
|
/* Clear any pending event or error */
|
|
edma_write_array(ctlr, EDMA_ECR, j, mask);
|
|
edma_write_array(ctlr, EDMA_EMCR, j, mask);
|
|
/* Clear any SER */
|
|
edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
|
|
edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
|
|
edma_dbg("EDMA: EER%d %08x\n", j,
|
|
edma_shadow0_read_array(ctlr, SH_EER, j));
|
|
return 0;
|
|
}
|
|
|
|
return -RT_ERROR;
|
|
}
|
|
|
|
|
|
/**
|
|
* edma_stop - stops dma on the channel passed
|
|
* @channel: channel being deactivated
|
|
*
|
|
* When @lch is a channel, any active transfer is paused and
|
|
* all pending hardware events are cleared. The current transfer
|
|
* may not be resumed, and the channel's Parameter RAM should be
|
|
* reinitialized before being reused.
|
|
*/
|
|
void edma_stop(unsigned channel)
|
|
{
|
|
unsigned ctlr;
|
|
|
|
ctlr = EDMA_CTLR(channel);
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
if (channel < edma_cc[ctlr]->num_channels) {
|
|
int j = channel >> 5;
|
|
unsigned int mask = BIT(channel & 0x1f);
|
|
|
|
edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
|
|
edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
|
|
edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
|
|
edma_write_array(ctlr, EDMA_EMCR, j, mask);
|
|
|
|
edma_dbg("EDMA: EER%d %08x\n", j,
|
|
edma_shadow0_read_array(ctlr, SH_EER, j));
|
|
|
|
/* REVISIT: consider guarding against inappropriate event
|
|
* chaining by overwriting with dummy_paramset.
|
|
*/
|
|
}
|
|
}
|
|
|
|
|
|
/******************************************************************************
|
|
*
|
|
* It cleans ParamEntry qand bring back EDMA to initial state if media has
|
|
* been removed before EDMA has finished.It is usedful for removable media.
|
|
* Arguments:
|
|
* ch_no - channel no
|
|
*
|
|
* Return: zero on success, or corresponding error no on failure
|
|
*
|
|
* FIXME this should not be needed ... edma_stop() should suffice.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
void edma_clean_channel(unsigned channel)
|
|
{
|
|
unsigned ctlr;
|
|
|
|
ctlr = EDMA_CTLR(channel);
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
if (channel < edma_cc[ctlr]->num_channels) {
|
|
int j = (channel >> 5);
|
|
unsigned int mask = BIT(channel & 0x1f);
|
|
|
|
edma_dbg("EDMA: EMR%d %08x\n", j,
|
|
edma_read_array(ctlr, EDMA_EMR, j));
|
|
edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
|
|
/* Clear the corresponding EMR bits */
|
|
edma_write_array(ctlr, EDMA_EMCR, j, mask);
|
|
/* Clear any SER */
|
|
edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
|
|
edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* edma_clear_event - clear an outstanding event on the DMA channel
|
|
* Arguments:
|
|
* channel - channel number
|
|
*/
|
|
void edma_clear_event(unsigned channel)
|
|
{
|
|
unsigned ctlr;
|
|
|
|
ctlr = EDMA_CTLR(channel);
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
if (channel >= edma_cc[ctlr]->num_channels)
|
|
return;
|
|
if (channel < 32)
|
|
edma_write(ctlr, EDMA_ECR, BIT(channel));
|
|
else
|
|
edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
|
|
}
|
|
|
|
|
|
/*-----------------------------------------------------------------------*/
|
|
|
|
int edma_init(struct edma_soc_info **info)
|
|
{
|
|
//struct edma_soc_info **info = pdev->dev.platform_data;
|
|
const rt_int8_t (*queue_priority_mapping)[2];
|
|
const rt_int8_t (*queue_tc_mapping)[2];
|
|
int i, j, off, ln, found = 0;
|
|
int status = -1;
|
|
const rt_int16_t (*rsv_chans)[2];
|
|
const rt_int16_t (*rsv_slots)[2];
|
|
int irq[EDMA_MAX_CC] = {0, 0};
|
|
int err_irq[EDMA_MAX_CC] = {0, 0};
|
|
|
|
RT_ASSERT(info != RT_NULL);
|
|
|
|
psc_change_state(DAVINCI_DM365_LPSC_TPCC, PSC_ENABLE);
|
|
psc_change_state(DAVINCI_DM365_LPSC_TPTC0, PSC_ENABLE);
|
|
psc_change_state(DAVINCI_DM365_LPSC_TPTC1, PSC_ENABLE);
|
|
psc_change_state(DAVINCI_DM365_LPSC_TPTC2, PSC_ENABLE);
|
|
psc_change_state(DAVINCI_DM365_LPSC_TPTC3, PSC_ENABLE);
|
|
|
|
edmacc_regs_base[0] = (void *)EDMA_CC0_BASE_REG;
|
|
|
|
edma_cc[0] = rt_malloc(sizeof(struct edma));
|
|
if (!edma_cc[0]) {
|
|
status = -RT_ENOMEM;
|
|
goto fail1;
|
|
}
|
|
rt_memset(edma_cc[0], 0, sizeof(struct edma));
|
|
|
|
edma_cc[0]->num_channels = min_t(unsigned, info[0]->n_channel,
|
|
EDMA_MAX_DMACH);
|
|
edma_cc[0]->num_slots = min_t(unsigned, info[0]->n_slot,
|
|
EDMA_MAX_PARAMENTRY);
|
|
edma_cc[0]->num_cc = min_t(unsigned, info[0]->n_cc,
|
|
EDMA_MAX_CC);
|
|
|
|
edma_cc[0]->default_queue = info[0]->default_queue;
|
|
if (!edma_cc[0]->default_queue)
|
|
edma_cc[0]->default_queue = EVENTQ_1;
|
|
|
|
edma_dbg("DMA REG BASE ADDR=%p\n",
|
|
edmacc_regs_base[j]);
|
|
|
|
for (i = 0; i < edma_cc[0]->num_slots; i++)
|
|
rt_memcpy((void *)(edmacc_regs_base[0] + PARM_OFFSET(i)),
|
|
&dummy_paramset, PARM_SIZE);
|
|
|
|
/* Mark all channels as unused */
|
|
rt_memset(edma_cc[0]->edma_unused, 0xff,
|
|
sizeof(edma_cc[0]->edma_unused));
|
|
|
|
edma_cc[0]->irq_res_start = IRQ_CCINT0;
|
|
rt_hw_interrupt_install(IRQ_CCINT0, dma_irq_handler, RT_NULL, "edma");
|
|
rt_hw_interrupt_umask(IRQ_CCINT0);
|
|
|
|
edma_cc[0]->irq_res_end = IRQ_CCERRINT;
|
|
rt_hw_interrupt_install(IRQ_CCERRINT, dma_ccerr_handler, RT_NULL, "edma_error");
|
|
rt_hw_interrupt_umask(IRQ_CCERRINT);
|
|
|
|
/* Everything lives on transfer controller 1 until otherwise
|
|
* specified. This way, long transfers on the low priority queue
|
|
* started by the codec engine will not cause audio defects.
|
|
*/
|
|
for (i = 0; i < edma_cc[0]->num_channels; i++)
|
|
map_dmach_queue(0, i, EVENTQ_1);
|
|
|
|
queue_tc_mapping = info[0]->queue_tc_mapping;
|
|
queue_priority_mapping = info[0]->queue_priority_mapping;
|
|
|
|
/* Event queue to TC mapping */
|
|
for (i = 0; queue_tc_mapping[i][0] != -1; i++)
|
|
map_queue_tc(0, queue_tc_mapping[i][0],
|
|
queue_tc_mapping[i][1]);
|
|
|
|
/* Event queue priority mapping */
|
|
for (i = 0; queue_priority_mapping[i][0] != -1; i++)
|
|
assign_priority_to_queue(0,
|
|
queue_priority_mapping[i][0],
|
|
queue_priority_mapping[i][1]);
|
|
|
|
/* Map the channel to param entry if channel mapping logic
|
|
* exist
|
|
*/
|
|
if (edma_read(0, EDMA_CCCFG) & CHMAP_EXIST)
|
|
map_dmach_param(0);
|
|
|
|
for (i = 0; i < info[0]->n_region; i++) {
|
|
edma_write_array2(0, EDMA_DRAE, i, 0, 0x0);
|
|
edma_write_array2(0, EDMA_DRAE, i, 1, 0x0);
|
|
edma_write_array(0, EDMA_QRAE, i, 0x0);
|
|
}
|
|
arch_num_cc++;
|
|
|
|
if (tc_errs_handled) {
|
|
rt_hw_interrupt_install(IRQ_TCERRINT0, dma_tc0err_handler, "edma_tc0");
|
|
rt_hw_interrupt_umask(IRQ_TCERRINT0);
|
|
rt_hw_interrupt_install(IRQ_TCERRINT, dma_tc1err_handler, "edma_tc1");
|
|
rt_hw_interrupt_umask(IRQ_TCERRINT);
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
|
|
fail1:
|
|
rt_free(edma_cc[0]);
|
|
|
|
return status;
|
|
}
|
|
|
|
|