rt-thread-official/src/kservice.c

1849 lines
45 KiB
C

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2006-03-16 Bernard the first version
* 2006-05-25 Bernard rewrite vsprintf
* 2006-08-10 Bernard add rt_show_version
* 2010-03-17 Bernard remove rt_strlcpy function
* fix gcc compiling issue.
* 2010-04-15 Bernard remove weak definition on ICCM16C compiler
* 2012-07-18 Arda add the alignment display for signed integer
* 2012-11-23 Bernard fix IAR compiler error.
* 2012-12-22 Bernard fix rt_kprintf issue, which found by Grissiom.
* 2013-06-24 Bernard remove rt_kprintf if RT_USING_CONSOLE is not defined.
* 2013-09-24 aozima make sure the device is in STREAM mode when used by rt_kprintf.
* 2015-07-06 Bernard Add rt_assert_handler routine.
* 2021-02-28 Meco Man add RT_KSERVICE_USING_STDLIB
* 2021-12-20 Meco Man implement rt_strcpy()
* 2022-01-07 Gabriel add __on_rt_assert_hook
* 2022-06-04 Meco Man remove strnlen
*/
#include <rtthread.h>
#include <rthw.h>
#ifdef RT_USING_MODULE
#include <dlmodule.h>
#endif /* RT_USING_MODULE */
/* use precision */
#define RT_PRINTF_PRECISION
/**
* @addtogroup KernelService
*/
/**@{*/
/* global errno in RT-Thread */
static volatile int __rt_errno;
#if defined(RT_USING_DEVICE) && defined(RT_USING_CONSOLE)
static rt_device_t _console_device = RT_NULL;
#endif
RT_WEAK void rt_hw_us_delay(rt_uint32_t us)
{
(void) us;
RT_DEBUG_LOG(RT_DEBUG_DEVICE, ("rt_hw_us_delay() doesn't support for this board."
"Please consider implementing rt_hw_us_delay() in another file."));
}
static const char* rt_errno_strs[] =
{
"OK",
"ERROR",
"ETIMOUT",
"ERSFULL",
"ERSEPTY",
"ENOMEM",
"ENOSYS",
"EBUSY",
"EIO",
"EINTRPT",
"EINVAL",
"EUNKNOW"
};
/**
* This function return a pointer to a string that contains the
* message of error.
*
* @param error the errorno code
* @return a point to error message string
*/
const char *rt_strerror(rt_err_t error)
{
if (error < 0)
error = -error;
return (error > RT_EINVAL + 1) ?
rt_errno_strs[RT_EINVAL + 1] :
rt_errno_strs[error];
}
RTM_EXPORT(rt_strerror);
/**
* This function gets the global errno for the current thread.
*
* @return errno
*/
rt_err_t rt_get_errno(void)
{
rt_thread_t tid;
if (rt_interrupt_get_nest() != 0)
{
/* it's in interrupt context */
return __rt_errno;
}
tid = rt_thread_self();
if (tid == RT_NULL)
return __rt_errno;
return tid->error;
}
RTM_EXPORT(rt_get_errno);
/**
* This function sets the global errno for the current thread.
*
* @param error is the errno shall be set.
*/
void rt_set_errno(rt_err_t error)
{
rt_thread_t tid;
if (rt_interrupt_get_nest() != 0)
{
/* it's in interrupt context */
__rt_errno = error;
return;
}
tid = rt_thread_self();
if (tid == RT_NULL)
{
__rt_errno = error;
return;
}
tid->error = error;
}
RTM_EXPORT(rt_set_errno);
/**
* This function returns the address of the current thread errno.
*
* @return The errno address.
*/
int *_rt_errno(void)
{
rt_thread_t tid;
if (rt_interrupt_get_nest() != 0)
return (int *)&__rt_errno;
tid = rt_thread_self();
if (tid != RT_NULL)
return (int *) & (tid->error);
return (int *)&__rt_errno;
}
RTM_EXPORT(_rt_errno);
#ifndef RT_KSERVICE_USING_STDLIB_MEMORY
/**
* This function will set the content of memory to specified value.
*
* @param s is the address of source memory, point to the memory block to be filled.
*
* @param c is the value to be set. The value is passed in int form, but the function
* uses the unsigned character form of the value when filling the memory block.
*
* @param count number of bytes to be set.
*
* @return The address of source memory.
*/
RT_WEAK void *rt_memset(void *s, int c, rt_ubase_t count)
{
#ifdef RT_KSERVICE_USING_TINY_SIZE
char *xs = (char *)s;
while (count--)
*xs++ = c;
return s;
#else
#define LBLOCKSIZE (sizeof(long))
#define UNALIGNED(X) ((long)X & (LBLOCKSIZE - 1))
#define TOO_SMALL(LEN) ((LEN) < LBLOCKSIZE)
unsigned int i;
char *m = (char *)s;
unsigned long buffer;
unsigned long *aligned_addr;
unsigned int d = c & 0xff; /* To avoid sign extension, copy C to an
unsigned variable. */
if (!TOO_SMALL(count) && !UNALIGNED(s))
{
/* If we get this far, we know that count is large and s is word-aligned. */
aligned_addr = (unsigned long *)s;
/* Store d into each char sized location in buffer so that
* we can set large blocks quickly.
*/
if (LBLOCKSIZE == 4)
{
buffer = (d << 8) | d;
buffer |= (buffer << 16);
}
else
{
buffer = 0;
for (i = 0; i < LBLOCKSIZE; i ++)
buffer = (buffer << 8) | d;
}
while (count >= LBLOCKSIZE * 4)
{
*aligned_addr++ = buffer;
*aligned_addr++ = buffer;
*aligned_addr++ = buffer;
*aligned_addr++ = buffer;
count -= 4 * LBLOCKSIZE;
}
while (count >= LBLOCKSIZE)
{
*aligned_addr++ = buffer;
count -= LBLOCKSIZE;
}
/* Pick up the remainder with a bytewise loop. */
m = (char *)aligned_addr;
}
while (count--)
{
*m++ = (char)d;
}
return s;
#undef LBLOCKSIZE
#undef UNALIGNED
#undef TOO_SMALL
#endif /* RT_KSERVICE_USING_TINY_SIZE */
}
RTM_EXPORT(rt_memset);
/**
* This function will copy memory content from source address to destination address.
*
* @param dst is the address of destination memory, points to the copied content.
*
* @param src is the address of source memory, pointing to the data source to be copied.
*
* @param count is the copied length.
*
* @return The address of destination memory
*/
RT_WEAK void *rt_memcpy(void *dst, const void *src, rt_ubase_t count)
{
#ifdef RT_KSERVICE_USING_TINY_SIZE
char *tmp = (char *)dst, *s = (char *)src;
rt_ubase_t len;
if (tmp <= s || tmp > (s + count))
{
while (count--)
*tmp ++ = *s ++;
}
else
{
for (len = count; len > 0; len --)
tmp[len - 1] = s[len - 1];
}
return dst;
#else
#define UNALIGNED(X, Y) \
(((long)X & (sizeof (long) - 1)) | ((long)Y & (sizeof (long) - 1)))
#define BIGBLOCKSIZE (sizeof (long) << 2)
#define LITTLEBLOCKSIZE (sizeof (long))
#define TOO_SMALL(LEN) ((LEN) < BIGBLOCKSIZE)
char *dst_ptr = (char *)dst;
char *src_ptr = (char *)src;
long *aligned_dst;
long *aligned_src;
rt_ubase_t len = count;
/* If the size is small, or either SRC or DST is unaligned,
then punt into the byte copy loop. This should be rare. */
if (!TOO_SMALL(len) && !UNALIGNED(src_ptr, dst_ptr))
{
aligned_dst = (long *)dst_ptr;
aligned_src = (long *)src_ptr;
/* Copy 4X long words at a time if possible. */
while (len >= BIGBLOCKSIZE)
{
*aligned_dst++ = *aligned_src++;
*aligned_dst++ = *aligned_src++;
*aligned_dst++ = *aligned_src++;
*aligned_dst++ = *aligned_src++;
len -= BIGBLOCKSIZE;
}
/* Copy one long word at a time if possible. */
while (len >= LITTLEBLOCKSIZE)
{
*aligned_dst++ = *aligned_src++;
len -= LITTLEBLOCKSIZE;
}
/* Pick up any residual with a byte copier. */
dst_ptr = (char *)aligned_dst;
src_ptr = (char *)aligned_src;
}
while (len--)
*dst_ptr++ = *src_ptr++;
return dst;
#undef UNALIGNED
#undef BIGBLOCKSIZE
#undef LITTLEBLOCKSIZE
#undef TOO_SMALL
#endif /* RT_KSERVICE_USING_TINY_SIZE */
}
RTM_EXPORT(rt_memcpy);
/**
* This function will move memory content from source address to destination
* address. If the destination memory does not overlap with the source memory,
* the function is the same as memcpy().
*
* @param dest is the address of destination memory, points to the copied content.
*
* @param src is the address of source memory, point to the data source to be copied.
*
* @param n is the copied length.
*
* @return The address of destination memory.
*/
void *rt_memmove(void *dest, const void *src, rt_size_t n)
{
char *tmp = (char *)dest, *s = (char *)src;
if (s < tmp && tmp < s + n)
{
tmp += n;
s += n;
while (n--)
*(--tmp) = *(--s);
}
else
{
while (n--)
*tmp++ = *s++;
}
return dest;
}
RTM_EXPORT(rt_memmove);
/**
* This function will compare two areas of memory.
*
* @param cs is a block of memory.
*
* @param ct is another block of memory.
*
* @param count is the size of the area.
*
* @return Compare the results:
* If the result < 0, cs is smaller than ct.
* If the result > 0, cs is greater than ct.
* If the result = 0, cs is equal to ct.
*/
rt_int32_t rt_memcmp(const void *cs, const void *ct, rt_size_t count)
{
const unsigned char *su1, *su2;
int res = 0;
for (su1 = (const unsigned char *)cs, su2 = (const unsigned char *)ct; 0 < count; ++su1, ++su2, count--)
if ((res = *su1 - *su2) != 0)
break;
return res;
}
RTM_EXPORT(rt_memcmp);
#endif /* RT_KSERVICE_USING_STDLIB_MEMORY*/
#ifndef RT_KSERVICE_USING_STDLIB
/**
* This function will return the first occurrence of a string, without the
* terminator '\0'.
*
* @param s1 is the source string.
*
* @param s2 is the find string.
*
* @return The first occurrence of a s2 in s1, or RT_NULL if no found.
*/
char *rt_strstr(const char *s1, const char *s2)
{
int l1, l2;
l2 = rt_strlen(s2);
if (!l2)
return (char *)s1;
l1 = rt_strlen(s1);
while (l1 >= l2)
{
l1 --;
if (!rt_memcmp(s1, s2, l2))
return (char *)s1;
s1 ++;
}
return RT_NULL;
}
RTM_EXPORT(rt_strstr);
/**
* This function will compare two strings while ignoring differences in case
*
* @param a is the string to be compared.
*
* @param b is the string to be compared.
*
* @return Compare the results:
* If the result < 0, a is smaller than a.
* If the result > 0, a is greater than a.
* If the result = 0, a is equal to a.
*/
rt_int32_t rt_strcasecmp(const char *a, const char *b)
{
int ca, cb;
do
{
ca = *a++ & 0xff;
cb = *b++ & 0xff;
if (ca >= 'A' && ca <= 'Z')
ca += 'a' - 'A';
if (cb >= 'A' && cb <= 'Z')
cb += 'a' - 'A';
}
while (ca == cb && ca != '\0');
return ca - cb;
}
RTM_EXPORT(rt_strcasecmp);
/**
* This function will copy string no more than n bytes.
*
* @param dst points to the address used to store the copied content.
*
* @param src is the string to be copied.
*
* @param n is the maximum copied length.
*
* @return The address where the copied content is stored.
*/
char *rt_strncpy(char *dst, const char *src, rt_size_t n)
{
if (n != 0)
{
char *d = dst;
const char *s = src;
do
{
if ((*d++ = *s++) == 0)
{
/* NUL pad the remaining n-1 bytes */
while (--n != 0)
*d++ = 0;
break;
}
} while (--n != 0);
}
return (dst);
}
RTM_EXPORT(rt_strncpy);
/**
* This function will copy string.
*
* @param dst points to the address used to store the copied content.
*
* @param src is the string to be copied.
*
* @return The address where the copied content is stored.
*/
char *rt_strcpy(char *dst, const char *src)
{
char *dest = dst;
while (*src != '\0')
{
*dst = *src;
dst++;
src++;
}
*dst = '\0';
return dest;
}
RTM_EXPORT(rt_strcpy);
/**
* This function will compare two strings with specified maximum length.
*
* @param cs is the string to be compared.
*
* @param ct is the string to be compared.
*
* @param count is the maximum compare length.
*
* @return Compare the results:
* If the result < 0, cs is smaller than ct.
* If the result > 0, cs is greater than ct.
* If the result = 0, cs is equal to ct.
*/
rt_int32_t rt_strncmp(const char *cs, const char *ct, rt_size_t count)
{
signed char __res = 0;
while (count)
{
if ((__res = *cs - *ct++) != 0 || !*cs++)
break;
count --;
}
return __res;
}
RTM_EXPORT(rt_strncmp);
/**
* This function will compare two strings without specified length.
*
* @param cs is the string to be compared.
*
* @param ct is the string to be compared.
*
* @return Compare the results:
* If the result < 0, cs is smaller than ct.
* If the result > 0, cs is greater than ct.
* If the result = 0, cs is equal to ct.
*/
rt_int32_t rt_strcmp(const char *cs, const char *ct)
{
while (*cs && *cs == *ct)
{
cs++;
ct++;
}
return (*cs - *ct);
}
RTM_EXPORT(rt_strcmp);
/**
* This function will return the length of a string, which terminate will
* null character.
*
* @param s is the string
*
* @return The length of string.
*/
rt_size_t rt_strlen(const char *s)
{
const char *sc;
for (sc = s; *sc != '\0'; ++sc) /* nothing */
;
return sc - s;
}
RTM_EXPORT(rt_strlen);
#endif /* RT_KSERVICE_USING_STDLIB */
/**
* The strnlen() function returns the number of characters in the
* string pointed to by s, excluding the terminating null byte ('\0'),
* but at most maxlen. In doing this, strnlen() looks only at the
* first maxlen characters in the string pointed to by s and never
* beyond s+maxlen.
*
* @param s is the string.
*
* @param maxlen is the max size.
*
* @return The length of string.
*/
rt_size_t rt_strnlen(const char *s, rt_ubase_t maxlen)
{
const char *sc;
for (sc = s; *sc != '\0' && (rt_ubase_t)(sc - s) < maxlen; ++sc) /* nothing */
;
return sc - s;
}
RTM_EXPORT(rt_strnlen);
#ifdef RT_USING_HEAP
/**
* This function will duplicate a string.
*
* @param s is the string to be duplicated.
*
* @return The string address of the copy.
*/
char *rt_strdup(const char *s)
{
rt_size_t len = rt_strlen(s) + 1;
char *tmp = (char *)rt_malloc(len);
if (!tmp)
return RT_NULL;
rt_memcpy(tmp, s, len);
return tmp;
}
RTM_EXPORT(rt_strdup);
#endif /* RT_USING_HEAP */
/**
* This function will show the version of rt-thread rtos
*/
void rt_show_version(void)
{
rt_kprintf("\n \\ | /\n");
rt_kprintf("- RT - Thread Operating System\n");
rt_kprintf(" / | \\ %d.%d.%d build %s %s\n",
RT_VERSION, RT_SUBVERSION, RT_REVISION, __DATE__, __TIME__);
rt_kprintf(" 2006 - 2022 Copyright by RT-Thread team\n");
}
RTM_EXPORT(rt_show_version);
/* private function */
#define _ISDIGIT(c) ((unsigned)((c) - '0') < 10)
/**
* This function will duplicate a string.
*
* @param n is the string to be duplicated.
*
* @param base is support divide instructions value.
*
* @return the duplicated string pointer.
*/
#ifdef RT_KPRINTF_USING_LONGLONG
rt_inline int divide(long long *n, int base)
#else
rt_inline int divide(long *n, int base)
#endif /* RT_KPRINTF_USING_LONGLONG */
{
int res;
/* optimized for processor which does not support divide instructions. */
if (base == 10)
{
#ifdef RT_KPRINTF_USING_LONGLONG
res = (int)(((unsigned long long)*n) % 10U);
*n = (long long)(((unsigned long long)*n) / 10U);
#else
res = (int)(((unsigned long)*n) % 10U);
*n = (long)(((unsigned long)*n) / 10U);
#endif
}
else
{
#ifdef RT_KPRINTF_USING_LONGLONG
res = (int)(((unsigned long long)*n) % 16U);
*n = (long long)(((unsigned long long)*n) / 16U);
#else
res = (int)(((unsigned long)*n) % 16U);
*n = (long)(((unsigned long)*n) / 16U);
#endif
}
return res;
}
rt_inline int skip_atoi(const char **s)
{
int i = 0;
while (_ISDIGIT(**s))
i = i * 10 + *((*s)++) - '0';
return i;
}
#define ZEROPAD (1 << 0) /* pad with zero */
#define SIGN (1 << 1) /* unsigned/signed long */
#define PLUS (1 << 2) /* show plus */
#define SPACE (1 << 3) /* space if plus */
#define LEFT (1 << 4) /* left justified */
#define SPECIAL (1 << 5) /* 0x */
#define LARGE (1 << 6) /* use 'ABCDEF' instead of 'abcdef' */
static char *print_number(char *buf,
char *end,
#ifdef RT_KPRINTF_USING_LONGLONG
long long num,
#else
long num,
#endif /* RT_KPRINTF_USING_LONGLONG */
int base,
int s,
#ifdef RT_PRINTF_PRECISION
int precision,
#endif /* RT_PRINTF_PRECISION */
int type)
{
char c, sign;
#ifdef RT_KPRINTF_USING_LONGLONG
char tmp[32];
#else
char tmp[16];
#endif /* RT_KPRINTF_USING_LONGLONG */
int precision_bak = precision;
const char *digits;
static const char small_digits[] = "0123456789abcdef";
static const char large_digits[] = "0123456789ABCDEF";
int i, size;
size = s;
digits = (type & LARGE) ? large_digits : small_digits;
if (type & LEFT)
type &= ~ZEROPAD;
c = (type & ZEROPAD) ? '0' : ' ';
/* get sign */
sign = 0;
if (type & SIGN)
{
if (num < 0)
{
sign = '-';
num = -num;
}
else if (type & PLUS)
sign = '+';
else if (type & SPACE)
sign = ' ';
}
#ifdef RT_PRINTF_SPECIAL
if (type & SPECIAL)
{
if (base == 16)
size -= 2;
else if (base == 8)
size--;
}
#endif /* RT_PRINTF_SPECIAL */
i = 0;
if (num == 0)
tmp[i++] = '0';
else
{
while (num != 0)
tmp[i++] = digits[divide(&num, base)];
}
#ifdef RT_PRINTF_PRECISION
if (i > precision)
precision = i;
size -= precision;
#else
size -= i;
#endif /* RT_PRINTF_PRECISION */
if (!(type & (ZEROPAD | LEFT)))
{
if ((sign) && (size > 0))
size--;
while (size-- > 0)
{
if (buf < end)
*buf = ' ';
++ buf;
}
}
if (sign)
{
if (buf < end)
{
*buf = sign;
}
-- size;
++ buf;
}
#ifdef RT_PRINTF_SPECIAL
if (type & SPECIAL)
{
if (base == 8)
{
if (buf < end)
*buf = '0';
++ buf;
}
else if (base == 16)
{
if (buf < end)
*buf = '0';
++ buf;
if (buf < end)
{
*buf = type & LARGE ? 'X' : 'x';
}
++ buf;
}
}
#endif /* RT_PRINTF_SPECIAL */
/* no align to the left */
if (!(type & LEFT))
{
while (size-- > 0)
{
if (buf < end)
*buf = c;
++ buf;
}
}
#ifdef RT_PRINTF_PRECISION
while (i < precision--)
{
if (buf < end)
*buf = '0';
++ buf;
}
#endif /* RT_PRINTF_PRECISION */
/* put number in the temporary buffer */
while (i-- > 0 && (precision_bak != 0))
{
if (buf < end)
*buf = tmp[i];
++ buf;
}
while (size-- > 0)
{
if (buf < end)
*buf = ' ';
++ buf;
}
return buf;
}
/**
* This function will fill a formatted string to buffer.
*
* @param buf is the buffer to save formatted string.
*
* @param size is the size of buffer.
*
* @param fmt is the format parameters.
*
* @param args is a list of variable parameters.
*
* @return The number of characters actually written to buffer.
*/
RT_WEAK int rt_vsnprintf(char *buf, rt_size_t size, const char *fmt, va_list args)
{
#ifdef RT_KPRINTF_USING_LONGLONG
unsigned long long num;
#else
rt_uint32_t num;
#endif /* RT_KPRINTF_USING_LONGLONG */
int i, len;
char *str, *end, c;
const char *s;
rt_uint8_t base; /* the base of number */
rt_uint8_t flags; /* flags to print number */
rt_uint8_t qualifier; /* 'h', 'l', or 'L' for integer fields */
rt_int32_t field_width; /* width of output field */
#ifdef RT_PRINTF_PRECISION
int precision; /* min. # of digits for integers and max for a string */
#endif /* RT_PRINTF_PRECISION */
str = buf;
end = buf + size;
/* Make sure end is always >= buf */
if (end < buf)
{
end = ((char *) - 1);
size = end - buf;
}
for (; *fmt ; ++fmt)
{
if (*fmt != '%')
{
if (str < end)
*str = *fmt;
++ str;
continue;
}
/* process flags */
flags = 0;
while (1)
{
/* skips the first '%' also */
++ fmt;
if (*fmt == '-') flags |= LEFT;
else if (*fmt == '+') flags |= PLUS;
else if (*fmt == ' ') flags |= SPACE;
else if (*fmt == '#') flags |= SPECIAL;
else if (*fmt == '0') flags |= ZEROPAD;
else break;
}
/* get field width */
field_width = -1;
if (_ISDIGIT(*fmt)) field_width = skip_atoi(&fmt);
else if (*fmt == '*')
{
++ fmt;
/* it's the next argument */
field_width = va_arg(args, int);
if (field_width < 0)
{
field_width = -field_width;
flags |= LEFT;
}
}
#ifdef RT_PRINTF_PRECISION
/* get the precision */
precision = -1;
if (*fmt == '.')
{
++ fmt;
if (_ISDIGIT(*fmt)) precision = skip_atoi(&fmt);
else if (*fmt == '*')
{
++ fmt;
/* it's the next argument */
precision = va_arg(args, int);
}
if (precision < 0) precision = 0;
}
#endif /* RT_PRINTF_PRECISION */
/* get the conversion qualifier */
qualifier = 0;
#ifdef RT_KPRINTF_USING_LONGLONG
if (*fmt == 'h' || *fmt == 'l' || *fmt == 'L')
#else
if (*fmt == 'h' || *fmt == 'l')
#endif /* RT_KPRINTF_USING_LONGLONG */
{
qualifier = *fmt;
++ fmt;
#ifdef RT_KPRINTF_USING_LONGLONG
if (qualifier == 'l' && *fmt == 'l')
{
qualifier = 'L';
++ fmt;
}
#endif /* RT_KPRINTF_USING_LONGLONG */
}
/* the default base */
base = 10;
switch (*fmt)
{
case 'c':
if (!(flags & LEFT))
{
while (--field_width > 0)
{
if (str < end) *str = ' ';
++ str;
}
}
/* get character */
c = (rt_uint8_t)va_arg(args, int);
if (str < end) *str = c;
++ str;
/* put width */
while (--field_width > 0)
{
if (str < end) *str = ' ';
++ str;
}
continue;
case 's':
s = va_arg(args, char *);
if (!s) s = "(NULL)";
for (len = 0; (len != field_width) && (s[len] != '\0'); len++);
#ifdef RT_PRINTF_PRECISION
if (precision > 0 && len > precision) len = precision;
#endif /* RT_PRINTF_PRECISION */
if (!(flags & LEFT))
{
while (len < field_width--)
{
if (str < end) *str = ' ';
++ str;
}
}
for (i = 0; i < len; ++i)
{
if (str < end) *str = *s;
++ str;
++ s;
}
while (len < field_width--)
{
if (str < end) *str = ' ';
++ str;
}
continue;
case 'p':
if (field_width == -1)
{
field_width = sizeof(void *) << 1;
flags |= ZEROPAD;
}
#ifdef RT_PRINTF_PRECISION
str = print_number(str, end,
(long)va_arg(args, void *),
16, field_width, precision, flags);
#else
str = print_number(str, end,
(long)va_arg(args, void *),
16, field_width, flags);
#endif /* RT_PRINTF_PRECISION */
continue;
case '%':
if (str < end) *str = '%';
++ str;
continue;
/* integer number formats - set up the flags and "break" */
case 'o':
base = 8;
break;
case 'X':
flags |= LARGE;
case 'x':
base = 16;
break;
case 'd':
case 'i':
flags |= SIGN;
case 'u':
break;
default:
if (str < end) *str = '%';
++ str;
if (*fmt)
{
if (str < end) *str = *fmt;
++ str;
}
else
{
-- fmt;
}
continue;
}
#ifdef RT_KPRINTF_USING_LONGLONG
if (qualifier == 'L') num = va_arg(args, long long);
else if (qualifier == 'l')
#else
if (qualifier == 'l')
#endif /* RT_KPRINTF_USING_LONGLONG */
{
num = va_arg(args, rt_uint32_t);
if (flags & SIGN) num = (rt_int32_t)num;
}
else if (qualifier == 'h')
{
num = (rt_uint16_t)va_arg(args, rt_int32_t);
if (flags & SIGN) num = (rt_int16_t)num;
}
else
{
num = va_arg(args, rt_uint32_t);
if (flags & SIGN) num = (rt_int32_t)num;
}
#ifdef RT_PRINTF_PRECISION
str = print_number(str, end, num, base, field_width, precision, flags);
#else
str = print_number(str, end, num, base, field_width, flags);
#endif /* RT_PRINTF_PRECISION */
}
if (size > 0)
{
if (str < end) *str = '\0';
else
{
end[-1] = '\0';
}
}
/* the trailing null byte doesn't count towards the total
* ++str;
*/
return str - buf;
}
RTM_EXPORT(rt_vsnprintf);
/**
* This function will fill a formatted string to buffer.
*
* @param buf is the buffer to save formatted string.
*
* @param size is the size of buffer.
*
* @param fmt is the format parameters.
*
* @return The number of characters actually written to buffer.
*/
int rt_snprintf(char *buf, rt_size_t size, const char *fmt, ...)
{
rt_int32_t n;
va_list args;
va_start(args, fmt);
n = rt_vsnprintf(buf, size, fmt, args);
va_end(args);
return n;
}
RTM_EXPORT(rt_snprintf);
/**
* This function will fill a formatted string to buffer.
*
* @param buf is the buffer to save formatted string.
*
* @param format is the format parameters.
*
* @param arg_ptr is a list of variable parameters.
*
* @return The number of characters actually written to buffer.
*/
int rt_vsprintf(char *buf, const char *format, va_list arg_ptr)
{
return rt_vsnprintf(buf, (rt_size_t) - 1, format, arg_ptr);
}
RTM_EXPORT(rt_vsprintf);
/**
* This function will fill a formatted string to buffer
*
* @param buf the buffer to save formatted string.
*
* @param format is the format parameters.
*
* @return The number of characters actually written to buffer.
*/
int rt_sprintf(char *buf, const char *format, ...)
{
rt_int32_t n;
va_list arg_ptr;
va_start(arg_ptr, format);
n = rt_vsprintf(buf, format, arg_ptr);
va_end(arg_ptr);
return n;
}
RTM_EXPORT(rt_sprintf);
#ifdef RT_USING_CONSOLE
#ifdef RT_USING_DEVICE
/**
* This function returns the device using in console.
*
* @return Returns the console device pointer or RT_NULL.
*/
rt_device_t rt_console_get_device(void)
{
return _console_device;
}
RTM_EXPORT(rt_console_get_device);
/**
* This function will set a device as console device.
* After set a device to console, all output of rt_kprintf will be
* redirected to this new device.
*
* @param name is the name of new console device.
*
* @return the old console device handler on successful, or RT_NULL on failure.
*/
rt_device_t rt_console_set_device(const char *name)
{
rt_device_t new_device, old_device;
/* save old device */
old_device = _console_device;
/* find new console device */
new_device = rt_device_find(name);
/* check whether it's a same device */
if (new_device == old_device) return RT_NULL;
if (new_device != RT_NULL)
{
if (_console_device != RT_NULL)
{
/* close old console device */
rt_device_close(_console_device);
}
/* set new console device */
rt_device_open(new_device, RT_DEVICE_OFLAG_RDWR | RT_DEVICE_FLAG_STREAM);
_console_device = new_device;
}
return old_device;
}
RTM_EXPORT(rt_console_set_device);
#endif /* RT_USING_DEVICE */
RT_WEAK void rt_hw_console_output(const char *str)
{
/* empty console output */
}
RTM_EXPORT(rt_hw_console_output);
/**
* This function will put string to the console.
*
* @param str is the string output to the console.
*/
void rt_kputs(const char *str)
{
if (!str) return;
#ifdef RT_USING_DEVICE
if (_console_device == RT_NULL)
{
rt_hw_console_output(str);
}
else
{
rt_device_write(_console_device, 0, str, rt_strlen(str));
}
#else
rt_hw_console_output(str);
#endif /* RT_USING_DEVICE */
}
/**
* This function will print a formatted string on system console.
*
* @param fmt is the format parameters.
*
* @return The number of characters actually written to buffer.
*/
RT_WEAK int rt_kprintf(const char *fmt, ...)
{
va_list args;
rt_size_t length;
static char rt_log_buf[RT_CONSOLEBUF_SIZE];
va_start(args, fmt);
/* the return value of vsnprintf is the number of bytes that would be
* written to buffer had if the size of the buffer been sufficiently
* large excluding the terminating null byte. If the output string
* would be larger than the rt_log_buf, we have to adjust the output
* length. */
length = rt_vsnprintf(rt_log_buf, sizeof(rt_log_buf) - 1, fmt, args);
if (length > RT_CONSOLEBUF_SIZE - 1)
length = RT_CONSOLEBUF_SIZE - 1;
#ifdef RT_USING_DEVICE
if (_console_device == RT_NULL)
{
rt_hw_console_output(rt_log_buf);
}
else
{
rt_device_write(_console_device, 0, rt_log_buf, length);
}
#else
rt_hw_console_output(rt_log_buf);
#endif /* RT_USING_DEVICE */
va_end(args);
return length;
}
RTM_EXPORT(rt_kprintf);
#endif /* RT_USING_CONSOLE */
#if defined(RT_USING_HEAP) && !defined(RT_USING_USERHEAP)
#ifdef RT_USING_HOOK
static void (*rt_malloc_hook)(void *ptr, rt_size_t size);
static void (*rt_free_hook)(void *ptr);
/**
* @addtogroup Hook
*/
/**@{*/
/**
* @brief This function will set a hook function, which will be invoked when a memory
* block is allocated from heap memory.
*
* @param hook the hook function.
*/
void rt_malloc_sethook(void (*hook)(void *ptr, rt_size_t size))
{
rt_malloc_hook = hook;
}
/**
* @brief This function will set a hook function, which will be invoked when a memory
* block is released to heap memory.
*
* @param hook the hook function
*/
void rt_free_sethook(void (*hook)(void *ptr))
{
rt_free_hook = hook;
}
/**@}*/
#endif /* RT_USING_HOOK */
#if defined(RT_USING_HEAP_ISR)
#elif defined(RT_USING_MUTEX)
static struct rt_mutex _lock;
#endif
rt_inline void _heap_lock_init(void)
{
#if defined(RT_USING_HEAP_ISR)
#elif defined(RT_USING_MUTEX)
rt_mutex_init(&_lock, "heap", RT_IPC_FLAG_PRIO);
#endif
}
rt_inline rt_base_t _heap_lock(void)
{
#if defined(RT_USING_HEAP_ISR)
return rt_hw_interrupt_disable();
#elif defined(RT_USING_MUTEX)
if (rt_thread_self())
return rt_mutex_take(&_lock, RT_WAITING_FOREVER);
else
return RT_EOK;
#else
rt_enter_critical();
return RT_EOK;
#endif
}
rt_inline void _heap_unlock(rt_base_t level)
{
#if defined(RT_USING_HEAP_ISR)
rt_hw_interrupt_enable(level);
#elif defined(RT_USING_MUTEX)
RT_ASSERT(level == RT_EOK);
if (rt_thread_self())
rt_mutex_release(&_lock);
#else
rt_exit_critical();
#endif
}
#if defined(RT_USING_SMALL_MEM_AS_HEAP)
static rt_smem_t system_heap;
rt_inline void _smem_info(rt_size_t *total,
rt_size_t *used, rt_size_t *max_used)
{
if (total)
*total = system_heap->total;
if (used)
*used = system_heap->used;
if (max_used)
*max_used = system_heap->max;
}
#define _MEM_INIT(_name, _start, _size) \
system_heap = rt_smem_init(_name, _start, _size)
#define _MEM_MALLOC(_size) \
rt_smem_alloc(system_heap, _size)
#define _MEM_REALLOC(_ptr, _newsize)\
rt_smem_realloc(system_heap, _ptr, _newsize)
#define _MEM_FREE(_ptr) \
rt_smem_free(_ptr)
#define _MEM_INFO(_total, _used, _max) \
_smem_info(_total, _used, _max)
#elif defined(RT_USING_MEMHEAP_AS_HEAP)
static struct rt_memheap system_heap;
void *_memheap_alloc(struct rt_memheap *heap, rt_size_t size);
void _memheap_free(void *rmem);
void *_memheap_realloc(struct rt_memheap *heap, void *rmem, rt_size_t newsize);
#define _MEM_INIT(_name, _start, _size) \
rt_memheap_init(&system_heap, _name, _start, _size)
#define _MEM_MALLOC(_size) \
_memheap_alloc(&system_heap, _size)
#define _MEM_REALLOC(_ptr, _newsize) \
_memheap_realloc(&system_heap, _ptr, _newsize)
#define _MEM_FREE(_ptr) \
_memheap_free(_ptr)
#define _MEM_INFO(_total, _used, _max) \
rt_memheap_info(&system_heap, _total, _used, _max)
#elif defined(RT_USING_SLAB_AS_HEAP)
static rt_slab_t system_heap;
rt_inline void _slab_info(rt_size_t *total,
rt_size_t *used, rt_size_t *max_used)
{
if (total)
*total = system_heap->total;
if (used)
*used = system_heap->used;
if (max_used)
*max_used = system_heap->max;
}
#define _MEM_INIT(_name, _start, _size) \
system_heap = rt_slab_init(_name, _start, _size)
#define _MEM_MALLOC(_size) \
rt_slab_alloc(system_heap, _size)
#define _MEM_REALLOC(_ptr, _newsize) \
rt_slab_realloc(system_heap, _ptr, _newsize)
#define _MEM_FREE(_ptr) \
rt_slab_free(system_heap, _ptr)
#define _MEM_INFO _slab_info
#else
#define _MEM_INIT(...)
#define _MEM_MALLOC(...) RT_NULL
#define _MEM_REALLOC(...) RT_NULL
#define _MEM_FREE(...)
#define _MEM_INFO(...)
#endif
/**
* @brief This function will init system heap.
*
* @param begin_addr the beginning address of system page.
*
* @param end_addr the end address of system page.
*/
RT_WEAK void rt_system_heap_init(void *begin_addr, void *end_addr)
{
rt_ubase_t begin_align = RT_ALIGN((rt_ubase_t)begin_addr, RT_ALIGN_SIZE);
rt_ubase_t end_align = RT_ALIGN_DOWN((rt_ubase_t)end_addr, RT_ALIGN_SIZE);
RT_ASSERT(end_align > begin_align);
/* Initialize system memory heap */
_MEM_INIT("heap", begin_addr, end_align - begin_align);
/* Initialize multi thread contention lock */
_heap_lock_init();
}
/**
* @brief Allocate a block of memory with a minimum of 'size' bytes.
*
* @param size is the minimum size of the requested block in bytes.
*
* @return the pointer to allocated memory or NULL if no free memory was found.
*/
RT_WEAK void *rt_malloc(rt_size_t size)
{
rt_base_t level;
void *ptr;
/* Enter critical zone */
level = _heap_lock();
/* allocate memory block from system heap */
ptr = _MEM_MALLOC(size);
/* Exit critical zone */
_heap_unlock(level);
/* call 'rt_malloc' hook */
RT_OBJECT_HOOK_CALL(rt_malloc_hook, (ptr, size));
return ptr;
}
RTM_EXPORT(rt_malloc);
/**
* @brief This function will change the size of previously allocated memory block.
*
* @param rmem is the pointer to memory allocated by rt_malloc.
*
* @param newsize is the required new size.
*
* @return the changed memory block address.
*/
RT_WEAK void *rt_realloc(void *rmem, rt_size_t newsize)
{
rt_base_t level;
void *nptr;
/* Enter critical zone */
level = _heap_lock();
/* Change the size of previously allocated memory block */
nptr = _MEM_REALLOC(rmem, newsize);
/* Exit critical zone */
_heap_unlock(level);
return nptr;
}
RTM_EXPORT(rt_realloc);
/**
* @brief This function will contiguously allocate enough space for count objects
* that are size bytes of memory each and returns a pointer to the allocated
* memory.
*
* @note The allocated memory is filled with bytes of value zero.
*
* @param count is the number of objects to allocate.
*
* @param size is the size of one object to allocate.
*
* @return pointer to allocated memory / NULL pointer if there is an error.
*/
RT_WEAK void *rt_calloc(rt_size_t count, rt_size_t size)
{
void *p;
/* allocate 'count' objects of size 'size' */
p = rt_malloc(count * size);
/* zero the memory */
if (p)
{
rt_memset(p, 0, count * size);
}
return p;
}
RTM_EXPORT(rt_calloc);
/**
* @brief This function will release the previously allocated memory block by
* rt_malloc. The released memory block is taken back to system heap.
*
* @param rmem the address of memory which will be released.
*/
RT_WEAK void rt_free(void *rmem)
{
rt_base_t level;
/* call 'rt_free' hook */
RT_OBJECT_HOOK_CALL(rt_free_hook, (rmem));
/* NULL check */
if (rmem == RT_NULL) return;
/* Enter critical zone */
level = _heap_lock();
_MEM_FREE(rmem);
/* Exit critical zone */
_heap_unlock(level);
}
RTM_EXPORT(rt_free);
/**
* @brief This function will caculate the total memory, the used memory, and
* the max used memory.
*
* @param total is a pointer to get the total size of the memory.
*
* @param used is a pointer to get the size of memory used.
*
* @param max_used is a pointer to get the maximum memory used.
*/
RT_WEAK void rt_memory_info(rt_size_t *total,
rt_size_t *used,
rt_size_t *max_used)
{
rt_base_t level;
/* Enter critical zone */
level = _heap_lock();
_MEM_INFO(total, used, max_used);
/* Exit critical zone */
_heap_unlock(level);
}
RTM_EXPORT(rt_memory_info);
#if defined(RT_USING_SLAB) && defined(RT_USING_SLAB_AS_HEAP)
void *rt_page_alloc(rt_size_t npages)
{
rt_base_t level;
void *ptr;
/* Enter critical zone */
level = _heap_lock();
/* alloc page */
ptr = rt_slab_page_alloc(system_heap, npages);
/* Exit critical zone */
_heap_unlock(level);
return ptr;
}
void rt_page_free(void *addr, rt_size_t npages)
{
rt_base_t level;
/* Enter critical zone */
level = _heap_lock();
/* free page */
rt_slab_page_free(system_heap, addr, npages);
/* Exit critical zone */
_heap_unlock(level);
}
#endif
/**
* This function allocates a memory block, which address is aligned to the
* specified alignment size.
*
* @param size is the allocated memory block size.
*
* @param align is the alignment size.
*
* @return The memory block address was returned successfully, otherwise it was
* returned empty RT_NULL.
*/
RT_WEAK void *rt_malloc_align(rt_size_t size, rt_size_t align)
{
void *ptr;
void *align_ptr;
int uintptr_size;
rt_size_t align_size;
/* sizeof pointer */
uintptr_size = sizeof(void*);
uintptr_size -= 1;
/* align the alignment size to uintptr size byte */
align = ((align + uintptr_size) & ~uintptr_size);
/* get total aligned size */
align_size = ((size + uintptr_size) & ~uintptr_size) + align;
/* allocate memory block from heap */
ptr = rt_malloc(align_size);
if (ptr != RT_NULL)
{
/* the allocated memory block is aligned */
if (((rt_ubase_t)ptr & (align - 1)) == 0)
{
align_ptr = (void *)((rt_ubase_t)ptr + align);
}
else
{
align_ptr = (void *)(((rt_ubase_t)ptr + (align - 1)) & ~(align - 1));
}
/* set the pointer before alignment pointer to the real pointer */
*((rt_ubase_t *)((rt_ubase_t)align_ptr - sizeof(void *))) = (rt_ubase_t)ptr;
ptr = align_ptr;
}
return ptr;
}
RTM_EXPORT(rt_malloc_align);
/**
* This function release the memory block, which is allocated by
* rt_malloc_align function and address is aligned.
*
* @param ptr is the memory block pointer.
*/
RT_WEAK void rt_free_align(void *ptr)
{
void *real_ptr;
/* NULL check */
if (ptr == RT_NULL) return;
real_ptr = (void *) * (rt_ubase_t *)((rt_ubase_t)ptr - sizeof(void *));
rt_free(real_ptr);
}
RTM_EXPORT(rt_free_align);
#endif /* RT_USING_HEAP */
#ifndef RT_USING_CPU_FFS
#ifdef RT_USING_TINY_FFS
const rt_uint8_t __lowest_bit_bitmap[] =
{
/* 0 - 7 */ 0, 1, 2, 27, 3, 24, 28, 32,
/* 8 - 15 */ 4, 17, 25, 31, 29, 12, 32, 14,
/* 16 - 23 */ 5, 8, 18, 32, 26, 23, 32, 16,
/* 24 - 31 */ 30, 11, 13, 7, 32, 22, 15, 10,
/* 32 - 36 */ 6, 21, 9, 20, 19
};
/**
* This function finds the first bit set (beginning with the least significant bit)
* in value and return the index of that bit.
*
* Bits are numbered starting at 1 (the least significant bit). A return value of
* zero from any of these functions means that the argument was zero.
*
* @return return the index of the first bit set. If value is 0, then this function
* shall return 0.
*/
int __rt_ffs(int value)
{
return __lowest_bit_bitmap[(rt_uint32_t)(value & (value - 1) ^ value) % 37];
}
#else
const rt_uint8_t __lowest_bit_bitmap[] =
{
/* 00 */ 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 10 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 20 */ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 30 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 40 */ 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 50 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 60 */ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 70 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 80 */ 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 90 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* A0 */ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* B0 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* C0 */ 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* D0 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* E0 */ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* F0 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};
/**
* This function finds the first bit set (beginning with the least significant bit)
* in value and return the index of that bit.
*
* Bits are numbered starting at 1 (the least significant bit). A return value of
* zero from any of these functions means that the argument was zero.
*
* @return Return the index of the first bit set. If value is 0, then this function
* shall return 0.
*/
int __rt_ffs(int value)
{
if (value == 0) return 0;
if (value & 0xff)
return __lowest_bit_bitmap[value & 0xff] + 1;
if (value & 0xff00)
return __lowest_bit_bitmap[(value & 0xff00) >> 8] + 9;
if (value & 0xff0000)
return __lowest_bit_bitmap[(value & 0xff0000) >> 16] + 17;
return __lowest_bit_bitmap[(value & 0xff000000) >> 24] + 25;
}
#endif /* RT_USING_TINY_FFS */
#endif /* RT_USING_CPU_FFS */
#ifndef __on_rt_assert_hook
#define __on_rt_assert_hook(ex, func, line) __ON_HOOK_ARGS(rt_assert_hook, (ex, func, line))
#endif
#ifdef RT_DEBUG
/* RT_ASSERT(EX)'s hook */
void (*rt_assert_hook)(const char *ex, const char *func, rt_size_t line);
/**
* This function will set a hook function to RT_ASSERT(EX). It will run when the expression is false.
*
* @param hook is the hook function.
*/
void rt_assert_set_hook(void (*hook)(const char *ex, const char *func, rt_size_t line))
{
rt_assert_hook = hook;
}
/**
* The RT_ASSERT function.
*
* @param ex_string is the assertion condition string.
*
* @param func is the function name when assertion.
*
* @param line is the file line number when assertion.
*/
void rt_assert_handler(const char *ex_string, const char *func, rt_size_t line)
{
volatile char dummy = 0;
if (rt_assert_hook == RT_NULL)
{
#ifdef RT_USING_MODULE
if (dlmodule_self())
{
/* close assertion module */
dlmodule_exit(-1);
}
else
#endif /*RT_USING_MODULE*/
{
rt_kprintf("(%s) assertion failed at function:%s, line number:%d \n", ex_string, func, line);
while (dummy == 0);
}
}
else
{
rt_assert_hook(ex_string, func, line);
}
}
RTM_EXPORT(rt_assert_handler);
#endif /* RT_DEBUG */
/**@}*/