4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-22 19:37:24 +08:00
2018-12-05 11:44:53 +08:00

450 lines
15 KiB
C

/*
* The Clear BSD License
* Copyright (c) 2016, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided
* that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_ctimer.h"
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.ctimer"
#endif
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Gets the instance from the base address
*
* @param base Ctimer peripheral base address
*
* @return The Timer instance
*/
static uint32_t CTIMER_GetInstance(CTIMER_Type *base);
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Pointers to Timer bases for each instance. */
static CTIMER_Type *const s_ctimerBases[] = CTIMER_BASE_PTRS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to Timer clocks for each instance. */
static const clock_ip_name_t s_ctimerClocks[] = CTIMER_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
#if defined(FSL_FEATURE_CTIMER_WRITE_ZERO_ASSERT_RESET) && FSL_FEATURE_CTIMER_WRITE_ZERO_ASSERT_RESET
/*! @brief Pointers to Timer resets for each instance, writing a zero asserts the reset */
static const reset_ip_name_t s_ctimerResets[] = CTIMER_RSTS_N;
#else
/*! @brief Pointers to Timer resets for each instance, writing a one asserts the reset */
static const reset_ip_name_t s_ctimerResets[] = CTIMER_RSTS;
#endif
/*! @brief Pointers real ISRs installed by drivers for each instance. */
static ctimer_callback_t *s_ctimerCallback[FSL_FEATURE_SOC_CTIMER_COUNT] = {0};
/*! @brief Callback type installed by drivers for each instance. */
static ctimer_callback_type_t ctimerCallbackType[FSL_FEATURE_SOC_CTIMER_COUNT] = {kCTIMER_SingleCallback};
/*! @brief Array to map timer instance to IRQ number. */
static const IRQn_Type s_ctimerIRQ[] = CTIMER_IRQS;
/*******************************************************************************
* Code
******************************************************************************/
static uint32_t CTIMER_GetInstance(CTIMER_Type *base)
{
uint32_t instance;
uint32_t ctimerArrayCount = (sizeof(s_ctimerBases) / sizeof(s_ctimerBases[0]));
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ctimerArrayCount; instance++)
{
if (s_ctimerBases[instance] == base)
{
break;
}
}
assert(instance < ctimerArrayCount);
return instance;
}
void CTIMER_Init(CTIMER_Type *base, const ctimer_config_t *config)
{
assert(config);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Enable the timer clock*/
CLOCK_EnableClock(s_ctimerClocks[CTIMER_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Reset the module */
RESET_PeripheralReset(s_ctimerResets[CTIMER_GetInstance(base)]);
/* Setup the cimer mode and count select */
base->CTCR = CTIMER_CTCR_CTMODE(config->mode) | CTIMER_CTCR_CINSEL(config->input);
/* Setup the timer prescale value */
base->PR = CTIMER_PR_PRVAL(config->prescale);
}
void CTIMER_Deinit(CTIMER_Type *base)
{
uint32_t index = CTIMER_GetInstance(base);
/* Stop the timer */
base->TCR &= ~CTIMER_TCR_CEN_MASK;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Disable the timer clock*/
CLOCK_DisableClock(s_ctimerClocks[index]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Disable IRQ at NVIC Level */
DisableIRQ(s_ctimerIRQ[index]);
}
void CTIMER_GetDefaultConfig(ctimer_config_t *config)
{
assert(config);
/* Run as a timer */
config->mode = kCTIMER_TimerMode;
/* This field is ignored when mode is timer */
config->input = kCTIMER_Capture_0;
/* Timer counter is incremented on every APB bus clock */
config->prescale = 0;
}
status_t CTIMER_SetupPwm(CTIMER_Type *base,
ctimer_match_t matchChannel,
uint8_t dutyCyclePercent,
uint32_t pwmFreq_Hz,
uint32_t srcClock_Hz,
bool enableInt)
{
assert(pwmFreq_Hz > 0);
uint32_t reg;
uint32_t period, pulsePeriod = 0;
uint32_t timerClock = srcClock_Hz / (base->PR + 1);
uint32_t index = CTIMER_GetInstance(base);
if (matchChannel == kCTIMER_Match_3)
{
return kStatus_Fail;
}
/* Enable PWM mode on the channel */
base->PWMC |= (1U << matchChannel);
/* Clear the stop, reset and interrupt bits for this channel */
reg = base->MCR;
reg &= ~((CTIMER_MCR_MR0R_MASK | CTIMER_MCR_MR0S_MASK | CTIMER_MCR_MR0I_MASK) << (matchChannel * 3));
/* If call back function is valid then enable match interrupt for the channel */
if (enableInt)
{
reg |= (CTIMER_MCR_MR0I_MASK << (CTIMER_MCR_MR0I_SHIFT + (matchChannel * 3)));
}
/* Reset the counter when match on channel 3 */
reg |= CTIMER_MCR_MR3R_MASK;
base->MCR = reg;
/* Calculate PWM period match value */
period = (timerClock / pwmFreq_Hz) - 1;
/* Calculate pulse width match value */
if (dutyCyclePercent == 0)
{
pulsePeriod = period + 1;
}
else
{
pulsePeriod = (period * (100 - dutyCyclePercent)) / 100;
}
/* Match on channel 3 will define the PWM period */
base->MR[kCTIMER_Match_3] = period;
/* This will define the PWM pulse period */
base->MR[matchChannel] = pulsePeriod;
/* Clear status flags */
CTIMER_ClearStatusFlags(base, CTIMER_IR_MR0INT_MASK << matchChannel);
/* If call back function is valid then enable interrupt and update the call back function */
if (enableInt)
{
EnableIRQ(s_ctimerIRQ[index]);
}
return kStatus_Success;
}
status_t CTIMER_SetupPwmPeriod(CTIMER_Type *base,
ctimer_match_t matchChannel,
uint32_t pwmPeriod,
uint32_t pulsePeriod,
bool enableInt)
{
uint32_t reg;
uint32_t index = CTIMER_GetInstance(base);
if (matchChannel == kCTIMER_Match_3)
{
return kStatus_Fail;
}
/* Enable PWM mode on the channel */
base->PWMC |= (1U << matchChannel);
/* Clear the stop, reset and interrupt bits for this channel */
reg = base->MCR;
reg &= ~((CTIMER_MCR_MR0R_MASK | CTIMER_MCR_MR0S_MASK | CTIMER_MCR_MR0I_MASK) << (matchChannel * 3));
/* If call back function is valid then enable match interrupt for the channel */
if (enableInt)
{
reg |= (CTIMER_MCR_MR0I_MASK << (CTIMER_MCR_MR0I_SHIFT + (matchChannel * 3)));
}
/* Reset the counter when match on channel 3 */
reg |= CTIMER_MCR_MR3R_MASK;
base->MCR = reg;
/* Match on channel 3 will define the PWM period */
base->MR[kCTIMER_Match_3] = pwmPeriod;
/* This will define the PWM pulse period */
base->MR[matchChannel] = pulsePeriod;
/* Clear status flags */
CTIMER_ClearStatusFlags(base, CTIMER_IR_MR0INT_MASK << matchChannel);
/* If call back function is valid then enable interrupt and update the call back function */
if (enableInt)
{
EnableIRQ(s_ctimerIRQ[index]);
}
return kStatus_Success;
}
void CTIMER_UpdatePwmDutycycle(CTIMER_Type *base, ctimer_match_t matchChannel, uint8_t dutyCyclePercent)
{
uint32_t pulsePeriod = 0, period;
/* Match channel 3 defines the PWM period */
period = base->MR[kCTIMER_Match_3];
/* Calculate pulse width match value */
pulsePeriod = (period * dutyCyclePercent) / 100;
/* For 0% dutycyle, make pulse period greater than period so the event will never occur */
if (dutyCyclePercent == 0)
{
pulsePeriod = period + 1;
}
else
{
pulsePeriod = (period * (100 - dutyCyclePercent)) / 100;
}
/* Update dutycycle */
base->MR[matchChannel] = pulsePeriod;
}
void CTIMER_SetupMatch(CTIMER_Type *base, ctimer_match_t matchChannel, const ctimer_match_config_t *config)
{
uint32_t reg;
uint32_t index = CTIMER_GetInstance(base);
/* Set the counter operation when a match on this channel occurs */
reg = base->MCR;
reg &= ~((CTIMER_MCR_MR0R_MASK | CTIMER_MCR_MR0S_MASK | CTIMER_MCR_MR0I_MASK) << (matchChannel * 3));
reg |= (uint32_t)((uint32_t)(config->enableCounterReset) << (CTIMER_MCR_MR0R_SHIFT + (matchChannel * 3)));
reg |= (uint32_t)((uint32_t)(config->enableCounterStop) << (CTIMER_MCR_MR0S_SHIFT + (matchChannel * 3)));
reg |= (uint32_t)((uint32_t)(config->enableInterrupt) << (CTIMER_MCR_MR0I_SHIFT + (matchChannel * 3)));
base->MCR = reg;
reg = base->EMR;
/* Set the match output operation when a match on this channel occurs */
reg &= ~(CTIMER_EMR_EMC0_MASK << (matchChannel * 2));
reg |= (uint32_t)config->outControl << (CTIMER_EMR_EMC0_SHIFT + (matchChannel * 2));
/* Set the initial state of the EM bit/output */
reg &= ~(CTIMER_EMR_EM0_MASK << matchChannel);
reg |= (uint32_t)config->outPinInitState << matchChannel;
base->EMR = reg;
/* Set the match value */
base->MR[matchChannel] = config->matchValue;
/* Clear status flags */
CTIMER_ClearStatusFlags(base, CTIMER_IR_MR0INT_MASK << matchChannel);
/* If interrupt is enabled then enable interrupt and update the call back function */
if (config->enableInterrupt)
{
EnableIRQ(s_ctimerIRQ[index]);
}
}
void CTIMER_SetupCapture(CTIMER_Type *base,
ctimer_capture_channel_t capture,
ctimer_capture_edge_t edge,
bool enableInt)
{
uint32_t reg = base->CCR;
uint32_t index = CTIMER_GetInstance(base);
/* Set the capture edge */
reg &= ~((CTIMER_CCR_CAP0RE_MASK | CTIMER_CCR_CAP0FE_MASK | CTIMER_CCR_CAP0I_MASK) << (capture * 3));
reg |= (uint32_t)edge << (CTIMER_CCR_CAP0RE_SHIFT + (capture * 3));
/* Clear status flags */
CTIMER_ClearStatusFlags(base, (kCTIMER_Capture0Flag << capture));
/* If call back function is valid then enable capture interrupt for the channel and update the call back function */
if (enableInt)
{
reg |= CTIMER_CCR_CAP0I_MASK << (capture * 3);
EnableIRQ(s_ctimerIRQ[index]);
}
base->CCR = reg;
}
void CTIMER_RegisterCallBack(CTIMER_Type *base, ctimer_callback_t *cb_func, ctimer_callback_type_t cb_type)
{
uint32_t index = CTIMER_GetInstance(base);
s_ctimerCallback[index] = cb_func;
ctimerCallbackType[index] = cb_type;
}
void CTIMER_GenericIRQHandler(uint32_t index)
{
uint32_t int_stat, i, mask;
/* Get Interrupt status flags */
int_stat = CTIMER_GetStatusFlags(s_ctimerBases[index]);
/* Clear the status flags that were set */
CTIMER_ClearStatusFlags(s_ctimerBases[index], int_stat);
if (ctimerCallbackType[index] == kCTIMER_SingleCallback)
{
if (s_ctimerCallback[index][0])
{
s_ctimerCallback[index][0](int_stat);
}
}
else
{
#if defined(FSL_FEATURE_CTIMER_HAS_IR_CR3INT) && FSL_FEATURE_CTIMER_HAS_IR_CR3INT
for (i = 0; i <= CTIMER_IR_CR3INT_SHIFT; i++)
#else
for (i = 0; i <= CTIMER_IR_CR2INT_SHIFT; i++)
#endif /* FSL_FEATURE_CTIMER_HAS_IR_CR3INT */
{
mask = 0x01 << i;
/* For each status flag bit that was set call the callback function if it is valid */
if ((int_stat & mask) && (s_ctimerCallback[index][i]))
{
s_ctimerCallback[index][i](int_stat);
}
}
}
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
/* IRQ handler functions overloading weak symbols in the startup */
#if defined(CTIMER0)
void CTIMER0_DriverIRQHandler(void)
{
CTIMER_GenericIRQHandler(0);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif
#if defined(CTIMER1)
void CTIMER1_DriverIRQHandler(void)
{
CTIMER_GenericIRQHandler(1);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif
#if defined(CTIMER2)
void CTIMER2_DriverIRQHandler(void)
{
CTIMER_GenericIRQHandler(2);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif
#if defined(CTIMER3)
void CTIMER3_DriverIRQHandler(void)
{
CTIMER_GenericIRQHandler(3);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif
#if defined(CTIMER4)
void CTIMER4_DriverIRQHandler(void)
{
CTIMER_GenericIRQHandler(4);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif