rt-thread-official/bsp/qemu-vexpress-a9/drivers/drv_sdio.c

483 lines
14 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020/12/31 Bernard Add license info
*/
#include <rthw.h>
#include <rtthread.h>
#include <rtdevice.h>
#include <drivers/mmcsd_core.h>
#include <stdint.h>
#include <stdio.h>
#include "board.h"
#include "drv_sdio.h"
#ifdef RT_USING_SDIO
#define MMC_BASE_ADDR (0x10005000)
#define PL180_POWER (0x00)
#define PL180_CLOCK (0x04)
#define PL180_ARGUMENT (0x08)
#define PL180_COMMAND (0x0c)
#define PL180_RESPCMD (0x10)
#define PL180_RESP0 (0x14)
#define PL180_RESP1 (0x18)
#define PL180_RESP2 (0x1c)
#define PL180_RESP3 (0x20)
#define PL180_DATA_TIMER (0x24)
#define PL180_DATA_LENGTH (0x28)
#define PL180_DATA_CTRL (0x2c)
#define PL180_DATA_CNT (0x30)
#define PL180_STATUS (0x34)
#define PL180_CLEAR (0x38)
#define PL180_MASK0 (0x3c)
#define PL180_MASK1 (0x40)
#define PL180_SELECT (0x44)
#define PL180_FIFO_CNT (0x48)
#define PL180_FIFO (0x80)
#define PL180_RSP_NONE (0 << 0)
#define PL180_RSP_PRESENT (1 << 0)
#define PL180_RSP_136BIT (1 << 1)
#define PL180_RSP_CRC (1 << 2)
#define PL180_CMD_WAITRESP (1 << 6)
#define PL180_CMD_LONGRSP (1 << 7)
#define PL180_CMD_WAITINT (1 << 8)
#define PL180_CMD_WAITPEND (1 << 9)
#define PL180_CMD_ENABLE (1 << 10)
#define PL180_STAT_CMD_CRC_FAIL (1 << 0)
#define PL180_STAT_DAT_CRC_FAIL (1 << 1)
#define PL180_STAT_CMD_TIME_OUT (1 << 2)
#define PL180_STAT_DAT_TIME_OUT (1 << 3)
#define PL180_STAT_TX_UNDERRUN (1 << 4)
#define PL180_STAT_RX_OVERRUN (1 << 5)
#define PL180_STAT_CMD_RESP_END (1 << 6)
#define PL180_STAT_CMD_SENT (1 << 7)
#define PL180_STAT_DAT_END (1 << 8)
#define PL180_STAT_DAT_BLK_END (1 << 10)
#define PL180_STAT_CMD_ACT (1 << 11)
#define PL180_STAT_TX_ACT (1 << 12)
#define PL180_STAT_RX_ACT (1 << 13)
#define PL180_STAT_TX_FIFO_HALF (1 << 14)
#define PL180_STAT_RX_FIFO_HALF (1 << 15)
#define PL180_STAT_TX_FIFO_FULL (1 << 16)
#define PL180_STAT_RX_FIFO_FULL (1 << 17)
#define PL180_STAT_TX_FIFO_ZERO (1 << 18)
#define PL180_STAT_RX_DAT_ZERO (1 << 19)
#define PL180_STAT_TX_DAT_AVL (1 << 20)
#define PL180_STAT_RX_FIFO_AVL (1 << 21)
#define PL180_CLR_CMD_CRC_FAIL (1 << 0)
#define PL180_CLR_DAT_CRC_FAIL (1 << 1)
#define PL180_CLR_CMD_TIMEOUT (1 << 2)
#define PL180_CLR_DAT_TIMEOUT (1 << 3)
#define PL180_CLR_TX_UNDERRUN (1 << 4)
#define PL180_CLR_RX_OVERRUN (1 << 5)
#define PL180_CLR_CMD_RESP_END (1 << 6)
#define PL180_CLR_CMD_SENT (1 << 7)
#define PL180_CLR_DAT_END (1 << 8)
#define PL180_CLR_DAT_BLK_END (1 << 10)
#define DBG_TAG "drv.sdio"
#define DBG_LVL DBG_INFO
#include "rtdbg.h"
struct sdhci_pl180_pdata_t
{
rt_uint32_t virt;
};
static inline rt_uint32_t read32(uint32_t addr)
{
return( *((volatile rt_uint32_t *)(addr)) );
}
static inline void write32(uint32_t addr, rt_uint32_t value)
{
*((volatile rt_uint32_t *)(addr)) = value;
}
static rt_err_t pl180_transfer_command(struct sdhci_pl180_pdata_t * pdat, struct sdhci_cmd_t * cmd)
{
rt_uint32_t cmdidx;
rt_uint32_t status;
rt_err_t ret = RT_EOK;
if(read32(pdat->virt + PL180_COMMAND) & PL180_CMD_ENABLE)
write32(pdat->virt + PL180_COMMAND, 0x0);
cmdidx = (cmd->cmdidx & 0xff) | PL180_CMD_ENABLE;
if(cmd->resptype)
{
cmdidx |= PL180_CMD_WAITRESP;
if(cmd->resptype & PL180_RSP_136BIT)
cmdidx |= PL180_CMD_LONGRSP;
}
write32(pdat->virt + PL180_ARGUMENT, cmd->cmdarg);
write32(pdat->virt + PL180_COMMAND, cmdidx);
do {
status = read32(pdat->virt + PL180_STATUS);
} while(!(status & (PL180_STAT_CMD_SENT | PL180_STAT_CMD_RESP_END | PL180_STAT_CMD_TIME_OUT | PL180_STAT_CMD_CRC_FAIL)));
LOG_D("mmc status done!");
if(cmd->resptype & PL180_RSP_PRESENT)
{
cmd->response[0] = read32(pdat->virt + PL180_RESP0);
if(cmd->resptype & PL180_RSP_136BIT)
{
LOG_D("136bit response");
cmd->response[1] = read32(pdat->virt + PL180_RESP1);
cmd->response[2] = read32(pdat->virt + PL180_RESP2);
cmd->response[3] = read32(pdat->virt + PL180_RESP3);
}
}
if(status & PL180_STAT_CMD_TIME_OUT)
{
ret = -RT_ETIMEOUT;
}
else if ((status & PL180_STAT_CMD_CRC_FAIL) && (cmd->resptype & PL180_RSP_CRC))
{
ret = -RT_ERROR;
}
write32(pdat->virt + PL180_CLEAR, (PL180_CLR_CMD_SENT | PL180_CLR_CMD_RESP_END | PL180_CLR_CMD_TIMEOUT | PL180_CLR_CMD_CRC_FAIL));
return ret;
}
static rt_err_t read_bytes(struct sdhci_pl180_pdata_t * pdat, rt_uint32_t * buf, rt_uint32_t blkcount, rt_uint32_t blksize)
{
rt_uint32_t * tmp = buf;
rt_uint32_t count = blkcount * blksize;
rt_uint32_t status, err;
status = read32(pdat->virt + PL180_STATUS);
err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT | PL180_STAT_RX_OVERRUN);
while((!err) && (count >= sizeof(rt_uint32_t)))
{
if(status & PL180_STAT_RX_FIFO_AVL)
{
*(tmp) = read32(pdat->virt + PL180_FIFO);
tmp++;
count -= sizeof(rt_uint32_t);
}
status = read32(pdat->virt + PL180_STATUS);
err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT | PL180_STAT_RX_OVERRUN);
}
err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT | PL180_STAT_DAT_BLK_END | PL180_STAT_RX_OVERRUN);
while(!err)
{
status = read32(pdat->virt + PL180_STATUS);
err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT | PL180_STAT_DAT_BLK_END | PL180_STAT_RX_OVERRUN);
}
if(status & PL180_STAT_DAT_TIME_OUT)
return -RT_ERROR;
else if (status & PL180_STAT_DAT_CRC_FAIL)
return -RT_ERROR;
else if (status & PL180_STAT_RX_OVERRUN)
return -RT_ERROR;
write32(pdat->virt + PL180_CLEAR, 0x1DC007FF);
if(count)
return -RT_ERROR;
return RT_EOK;
}
static rt_err_t write_bytes(struct sdhci_pl180_pdata_t * pdat, rt_uint32_t * buf, rt_uint32_t blkcount, rt_uint32_t blksize)
{
rt_uint32_t * tmp = buf;
rt_uint32_t count = blkcount * blksize;
rt_uint32_t status, err;
int i;
status = read32(pdat->virt + PL180_STATUS);
err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT);
while(!err && count)
{
if(status & PL180_STAT_TX_FIFO_HALF)
{
if(count >= 8 * sizeof(rt_uint32_t))
{
for(i = 0; i < 8; i++)
write32(pdat->virt + PL180_FIFO, *(tmp + i));
tmp += 8;
count -= 8 * sizeof(rt_uint32_t);
}
else
{
while(count >= sizeof(rt_uint32_t))
{
write32(pdat->virt + PL180_FIFO, *tmp);
tmp++;
count -= sizeof(rt_uint32_t);
}
}
}
status = read32(pdat->virt + PL180_STATUS);
err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT);
}
err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT | PL180_STAT_DAT_BLK_END);
while(!err)
{
status = read32(pdat->virt + PL180_STATUS);
err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT | PL180_STAT_DAT_BLK_END);
}
if(status & PL180_STAT_DAT_TIME_OUT)
return -RT_ERROR;
else if (status & PL180_STAT_DAT_CRC_FAIL)
return -RT_ERROR;
write32(pdat->virt + PL180_CLEAR, 0x1DC007FF);
if(count)
return -RT_ERROR;
return RT_EOK;
}
static rt_err_t pl180_transfer_data(struct sdhci_pl180_pdata_t * pdat, struct sdhci_cmd_t * cmd, struct sdhci_data_t * dat)
{
rt_uint32_t dlen = (rt_uint32_t)(dat->blkcnt * dat->blksz);
rt_uint32_t blksz_bits = dat->blksz - 1;
rt_uint32_t dctrl = (blksz_bits << 4) | (0x1 << 0) | (0x1 << 14);
rt_err_t ret = -RT_ERROR;
write32(pdat->virt + PL180_DATA_TIMER, 0xffff);
write32(pdat->virt + PL180_DATA_LENGTH, dlen);
if(dat->flag & DATA_DIR_READ)
{
dctrl |= (0x1 << 1);
write32(pdat->virt + PL180_DATA_CTRL, dctrl);
ret = pl180_transfer_command(pdat, cmd);
if (ret < 0) return ret;
ret = read_bytes(pdat, (rt_uint32_t *)dat->buf, dat->blkcnt, dat->blksz);
}
else if(dat->flag & DATA_DIR_WRITE)
{
ret = pl180_transfer_command(pdat, cmd);
if (ret < 0) return ret;
write32(pdat->virt + PL180_DATA_CTRL, dctrl);
ret = write_bytes(pdat, (rt_uint32_t *)dat->buf, dat->blkcnt, dat->blksz);
}
return ret;
}
static rt_err_t sdhci_pl180_detect(struct sdhci_t * sdhci)
{
return RT_EOK;
}
static rt_err_t sdhci_pl180_setwidth(struct sdhci_t * sdhci, rt_uint32_t width)
{
return RT_EOK;
}
static rt_err_t sdhci_pl180_setclock(struct sdhci_t * sdhci, rt_uint32_t clock)
{
rt_uint32_t temp = 0;
struct sdhci_pl180_pdata_t * pdat = (struct sdhci_pl180_pdata_t *)sdhci->priv;
if(clock)
{
temp = read32(pdat->virt + PL180_CLOCK) | (0x1 << 8);
(void)temp; // skip warning
write32(pdat->virt + PL180_CLOCK, 0x100);
}
else
{
//write32(pdat->virt + PL180_CLOCK, read32(pdat->virt + PL180_CLOCK) & (~(0x1<<8)));
}
return RT_EOK;
}
static rt_err_t sdhci_pl180_transfer(struct sdhci_t * sdhci, struct sdhci_cmd_t * cmd, struct sdhci_data_t * dat)
{
struct sdhci_pl180_pdata_t * pdat = (struct sdhci_pl180_pdata_t *)sdhci->priv;
if(!dat)
return pl180_transfer_command(pdat, cmd);
return pl180_transfer_data(pdat, cmd, dat);
}
static void mmc_request_send(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
{
struct sdhci_t *sdhci = (struct sdhci_t *)host->private_data;
struct sdhci_cmd_t cmd;
struct sdhci_cmd_t stop;
struct sdhci_data_t dat;
rt_memset(&cmd, 0, sizeof(struct sdhci_cmd_t));
rt_memset(&stop, 0, sizeof(struct sdhci_cmd_t));
rt_memset(&dat, 0, sizeof(struct sdhci_data_t));
cmd.cmdidx = req->cmd->cmd_code;
cmd.cmdarg = req->cmd->arg;
if (req->cmd->flags & RESP_MASK)
{
cmd.resptype = PL180_RSP_PRESENT;
if (resp_type(req->cmd) == RESP_R2)
cmd.resptype |= PL180_RSP_136BIT;
}
else
cmd.resptype = 0;
if(req->data)
{
dat.buf = (rt_uint8_t *)req->data->buf;
dat.flag = req->data->flags;
dat.blksz = req->data->blksize;
dat.blkcnt = req->data->blks;
req->cmd->err = sdhci_pl180_transfer(sdhci, &cmd, &dat);
}
else
{
req->cmd->err = sdhci_pl180_transfer(sdhci, &cmd, RT_NULL);
}
LOG_D("cmdarg:%d", cmd.cmdarg);
LOG_D("cmdidx:%d", cmd.cmdidx);
LOG_D("[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x", cmd.response[0], cmd.response[1], cmd.response[2], cmd.response[3]);
req->cmd->resp[3] = cmd.response[3];
req->cmd->resp[2] = cmd.response[2];
req->cmd->resp[1] = cmd.response[1];
req->cmd->resp[0] = cmd.response[0];
if (req->stop)
{
stop.cmdidx = req->stop->cmd_code;
stop.cmdarg = req->stop->arg;
if (req->stop->flags & RESP_MASK)
{
stop.resptype = PL180_RSP_PRESENT;
if (resp_type(req->stop) == RESP_R2)
stop.resptype |= PL180_RSP_136BIT;
}
else
stop.resptype = 0;
req->stop->err = sdhci_pl180_transfer(sdhci, &stop, RT_NULL);
}
mmcsd_req_complete(host);
}
static void mmc_set_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
{
struct sdhci_t * sdhci = (struct sdhci_t *)host->private_data;
sdhci_pl180_setclock(sdhci, io_cfg->clock);
sdhci_pl180_setwidth(sdhci, io_cfg->bus_width);
LOG_D("clock:%d bus_width:%d", io_cfg->clock, io_cfg->bus_width);
}
static const struct rt_mmcsd_host_ops ops =
{
mmc_request_send,
mmc_set_iocfg,
RT_NULL,
RT_NULL,
};
int pl180_init(void)
{
rt_uint32_t virt;
rt_uint32_t id;
struct rt_mmcsd_host * host = RT_NULL;
struct sdhci_pl180_pdata_t * pdat = RT_NULL;
struct sdhci_t * sdhci = RT_NULL;
host = mmcsd_alloc_host();
if (!host)
{
LOG_E("alloc host failed");
goto err;
}
sdhci = rt_malloc(sizeof(struct sdhci_t));
if (!sdhci)
{
LOG_E("alloc sdhci failed");
goto err;
}
rt_memset(sdhci, 0, sizeof(struct sdhci_t));
#ifdef RT_USING_SMART
virt = (rt_uint32_t)rt_ioremap((void*)MMC_BASE_ADDR, 0x1000);
#else
virt = MMC_BASE_ADDR;
#endif
id = (((read32((virt + 0xfec)) & 0xff) << 24) |
((read32((virt + 0xfe8)) & 0xff) << 16) |
((read32((virt + 0xfe4)) & 0xff) << 8) |
((read32((virt + 0xfe0)) & 0xff) << 0));
LOG_D("id=0x%08x", id);
if(((id >> 12) & 0xff) != 0x41 || (id & 0xfff) != 0x181)
{
LOG_E("check id failed");
goto err;
}
pdat = (struct sdhci_pl180_pdata_t *)rt_malloc(sizeof(struct sdhci_pl180_pdata_t));
RT_ASSERT(pdat != RT_NULL);
pdat->virt = (uint32_t)virt;
sdhci->name = "sd0";
sdhci->voltages = VDD_33_34;
sdhci->width = MMCSD_BUSWIDTH_4;
sdhci->clock = 26 * 1000 * 1000;
sdhci->removeable = RT_TRUE;
sdhci->detect = sdhci_pl180_detect;
sdhci->setwidth = sdhci_pl180_setwidth;
sdhci->setclock = sdhci_pl180_setclock;
sdhci->transfer = sdhci_pl180_transfer;
sdhci->priv = pdat;
write32(pdat->virt + PL180_POWER, 0xbf);
host->ops = &ops;
host->freq_min = 400000;
host->freq_max = 50000000;
host->valid_ocr = VDD_32_33 | VDD_33_34;
host->flags = MMCSD_MUTBLKWRITE | MMCSD_SUP_HIGHSPEED | MMCSD_SUP_SDIO_IRQ | MMCSD_BUSWIDTH_4;
host->max_seg_size = 2048;
host->max_dma_segs = 10;
host->max_blk_size = 512;
host->max_blk_count = 4096;
host->private_data = sdhci;
mmcsd_change(host);
return RT_EOK;
err:
if(host) rt_free(host);
if(sdhci) rt_free(sdhci);
return -RT_EIO;
}
INIT_DEVICE_EXPORT(pl180_init);
#endif