rt-thread-official/bsp/nxp/imx/imxrt/libraries/drivers/drv_spi.c

432 lines
11 KiB
C

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-03-27 Liuguang the first version.
*/
#include <rtthread.h>
#ifdef BSP_USING_SPI
#include "drv_spi.h"
#include "fsl_common.h"
#include "fsl_iomuxc.h"
#include "fsl_lpspi.h"
#include "fsl_lpspi_edma.h"
#include "fsl_dmamux.h"
#define LOG_TAG "drv.spi"
#include <drv_log.h>
#if defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL
#error "Please don't define 'FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL'!"
#endif
enum
{
#ifdef BSP_USING_SPI1
SPI1_INDEX,
#endif
#ifdef BSP_USING_SPI2
SPI2_INDEX,
#endif
#ifdef BSP_USING_SPI3
SPI3_INDEX,
#endif
#ifdef BSP_USING_SPI4
SPI4_INDEX,
#endif
};
struct imxrt_sw_spi_cs
{
rt_uint32_t pin;
};
struct dma_config
{
lpspi_master_edma_handle_t spi_edma;
edma_handle_t rx_edma;
dma_request_source_t rx_request;
rt_uint8_t rx_channel;
edma_handle_t tx_edma;
dma_request_source_t tx_request;
rt_uint8_t tx_channel;
};
struct imxrt_spi
{
char *bus_name;
LPSPI_Type *base;
struct rt_spi_bus spi_bus;
rt_sem_t xfer_sem;
lpspi_master_handle_t spi_normal;
struct dma_config *dma;
rt_uint8_t dma_flag;
rt_uint16_t masterclock;
};
static struct imxrt_spi lpspis[] =
{
#ifdef BSP_USING_SPI1
{
.bus_name = "spi1",
.base = LPSPI1,
.dma = RT_NULL,
.dma_flag = RT_FALSE,
.masterclock = 171,
},
#endif
#ifdef BSP_USING_SPI2
{
.bus_name = "spi2",
.base = LPSPI2,
.dma = RT_NULL,
.dma_flag = RT_FALSE,
.masterclock = 172,
},
#endif
#ifdef BSP_USING_SPI3
{
.bus_name = "spi3",
.base = LPSPI3,
.dma = RT_NULL,
.dma_flag = RT_FALSE,
.masterclock = 173,
},
#endif
#ifdef BSP_USING_SPI4
{
.bus_name = "spi4",
.base = LPSPI4,
.dma = RT_NULL,
.dma_flag = RT_FALSE,
.masterclock = 174,
},
#endif
};
static void spi_get_dma_config(void)
{
#ifdef BSP_SPI1_USING_DMA
static struct dma_config spi1_dma =
{
.rx_request = kDmaRequestMuxLPSPI1Rx,
.rx_channel = BSP_SPI1_RX_DMA_CHANNEL,
.tx_request = kDmaRequestMuxLPSPI1Tx,
.tx_channel = BSP_SPI1_TX_DMA_CHANNEL,
};
lpspis[SPI1_INDEX].dma = &spi1_dma;
lpspis[SPI1_INDEX].dma_flag = RT_TRUE;
#endif
#ifdef BSP_SPI2_USING_DMA
static struct dma_config spi2_dma =
{
.rx_request = kDmaRequestMuxLPSPI2Rx,
.rx_channel = BSP_SPI2_RX_DMA_CHANNEL,
.tx_request = kDmaRequestMuxLPSPI2Tx,
.tx_channel = BSP_SPI2_TX_DMA_CHANNEL,
};
lpspis[SPI2_INDEX].dma = &spi2_dma;
lpspis[SPI2_INDEX].dma_flag = RT_TRUE;
#endif
#ifdef BSP_SPI3_USING_DMA
static struct dma_config spi3_dma =
{
.rx_request = kDmaRequestMuxLPSPI3Rx,
.rx_channel = BSP_SPI3_RX_DMA_CHANNEL,
.tx_request = kDmaRequestMuxLPSPI3Tx,
.tx_channel = BSP_SPI3_TX_DMA_CHANNEL,
};
lpspis[SPI3_INDEX].dma = &spi3_dma;
lpspis[SPI3_INDEX].dma_flag = RT_TRUE;
#endif
#ifdef BSP_SPI4_USING_DMA
static struct dma_config spi4_dma =
{
.rx_request = kDmaRequestMuxLPSPI4Rx,
.rx_channel = BSP_SPI4_RX_DMA_CHANNEL,
.tx_request = kDmaRequestMuxLPSPI4Tx,
.tx_channel = BSP_SPI4_TX_DMA_CHANNEL,
};
lpspis[SPI4_INDEX].dma = &spi4_dma;
lpspis[SPI4_INDEX].dma_flag = RT_TRUE;
#endif
}
void normal_xfer_callback(LPSPI_Type *base, lpspi_master_handle_t *handle, status_t status, void *userData)
{
/* xfer complete callback */
struct imxrt_spi *spi = (struct imxrt_spi *)userData;
rt_sem_release(spi->xfer_sem);
}
void edma_xfer_callback(LPSPI_Type *base, lpspi_master_edma_handle_t *handle, status_t status, void *userData)
{
/* xfer complete callback */
struct imxrt_spi *spi = (struct imxrt_spi *)userData;
rt_sem_release(spi->xfer_sem);
}
rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, rt_uint32_t pin)
{
rt_err_t ret = RT_EOK;
struct rt_spi_device *spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
RT_ASSERT(spi_device != RT_NULL);
struct imxrt_sw_spi_cs *cs_pin = (struct imxrt_sw_spi_cs *)rt_malloc(sizeof(struct imxrt_sw_spi_cs));
RT_ASSERT(cs_pin != RT_NULL);
cs_pin->pin = pin;
rt_pin_mode(pin, PIN_MODE_OUTPUT);
rt_pin_write(pin, PIN_HIGH);
ret = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
return ret;
}
static uint32_t imxrt_get_lpspi_freq(void)
{
uint32_t freq = 0;
/* CLOCK_GetMux(kCLOCK_LpspiMux):
00b: derive clock from PLL3 PFD1 720M
01b: derive clock from PLL3 PFD0 720M
10b: derive clock from PLL2 528M
11b: derive clock from PLL2 PFD2 396M
*/
switch(CLOCK_GetMux(kCLOCK_LpspiMux))
{
case 0:
freq = CLOCK_GetFreq(kCLOCK_Usb1PllPfd1Clk);
break;
case 1:
freq = CLOCK_GetFreq(kCLOCK_Usb1PllPfd0Clk);
break;
case 2:
freq = CLOCK_GetFreq(kCLOCK_SysPllClk);
break;
case 3:
freq = CLOCK_GetFreq(kCLOCK_SysPllPfd2Clk);
break;
}
freq /= (CLOCK_GetDiv(kCLOCK_LpspiDiv) + 1U);
return freq;
}
static void lpspi_normal_config(struct imxrt_spi *spi)
{
RT_ASSERT(spi != RT_NULL);
LPSPI_MasterTransferCreateHandle(spi->base,
&spi->spi_normal,
normal_xfer_callback,
spi);
LOG_D(LOG_TAG" %s normal config done\n", spi->bus_name);
}
static void lpspi_dma_config(struct imxrt_spi *spi)
{
#ifdef BSP_USING_DMA
RT_ASSERT(spi != RT_NULL);
DMAMUX_SetSource(DMAMUX, spi->dma->rx_channel, spi->dma->rx_request);
DMAMUX_EnableChannel(DMAMUX, spi->dma->rx_channel);
EDMA_CreateHandle(&spi->dma->rx_edma, DMA0, spi->dma->rx_channel);
DMAMUX_SetSource(DMAMUX, spi->dma->tx_channel, spi->dma->tx_request);
DMAMUX_EnableChannel(DMAMUX, spi->dma->tx_channel);
EDMA_CreateHandle(&spi->dma->tx_edma, DMA0, spi->dma->tx_channel);
LPSPI_MasterTransferCreateHandleEDMA(spi->base,
&spi->dma->spi_edma,
edma_xfer_callback,
spi,
&spi->dma->rx_edma,
&spi->dma->tx_edma);
LOG_D("%s dma config done\n", spi->bus_name);
#endif
}
static rt_err_t spi_configure(struct rt_spi_device *device, struct rt_spi_configuration *cfg)
{
lpspi_master_config_t masterConfig;
struct imxrt_spi *spi = RT_NULL;
RT_ASSERT(cfg != RT_NULL);
RT_ASSERT(device != RT_NULL);
spi = (struct imxrt_spi *)(device->bus->parent.user_data);
RT_ASSERT(spi != RT_NULL);
if(cfg->data_width != 8 && cfg->data_width != 16 && cfg->data_width != 32)
{
return -RT_EINVAL;
}
LPSPI_MasterGetDefaultConfig(&masterConfig);
if(cfg->max_hz > 40*1000*1000)
{
cfg->max_hz = 40*1000*1000;
}
masterConfig.baudRate = cfg->max_hz;
masterConfig.bitsPerFrame = cfg->data_width;
if(cfg->mode & RT_SPI_MSB)
{
masterConfig.direction = kLPSPI_MsbFirst;
}
else
{
masterConfig.direction = kLPSPI_LsbFirst;
}
if(cfg->mode & RT_SPI_CPHA)
{
masterConfig.cpha = kLPSPI_ClockPhaseSecondEdge;
}
else
{
masterConfig.cpha = kLPSPI_ClockPhaseFirstEdge;
}
if(cfg->mode & RT_SPI_CPOL)
{
masterConfig.cpol = kLPSPI_ClockPolarityActiveLow;
}
else
{
masterConfig.cpol = kLPSPI_ClockPolarityActiveHigh;
}
masterConfig.whichPcs = kLPSPI_Pcs0;
#if defined(SOC_IMXRT1170_SERIES)
freq = CLOCK_GetFreqFromObs(spi->masterclock, 2);
LPSPI_MasterInit(spi->base, &masterConfig, freq);
#else
masterConfig.pinCfg = kLPSPI_SdiInSdoOut;
masterConfig.pcsToSckDelayInNanoSec = 1000000000 / masterConfig.baudRate;
masterConfig.lastSckToPcsDelayInNanoSec = 1000000000 / masterConfig.baudRate;
masterConfig.betweenTransferDelayInNanoSec = 1000000000 / masterConfig.baudRate;
LPSPI_MasterInit(spi->base, &masterConfig, imxrt_get_lpspi_freq());
spi->base->CFGR1 |= LPSPI_CFGR1_PCSCFG_MASK;
#endif
return RT_EOK;
}
static rt_uint32_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
lpspi_transfer_t transfer;
status_t status;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
RT_ASSERT(device->bus->parent.user_data != RT_NULL);
struct imxrt_spi *spi = (struct imxrt_spi *)(device->bus->parent.user_data);
struct imxrt_sw_spi_cs *cs = device->parent.user_data;
if(message->cs_take)
{
rt_pin_write(cs->pin, PIN_LOW);
}
transfer.dataSize = message->length;
transfer.rxData = (uint8_t *)(message->recv_buf);
transfer.txData = (uint8_t *)(message->send_buf);
transfer.configFlags =
kLPSPI_MasterPcs0 | kLPSPI_MasterByteSwap | kLPSPI_MasterPcsContinuous;
if(RT_FALSE == spi->dma_flag)
{
#ifdef BSP_USING_BLOCKING_SPI
status = LPSPI_MasterTransferBlocking(spi->base, &transfer);
rt_sem_release(spi->xfer_sem);
#else
status = LPSPI_MasterTransferNonBlocking(spi->base, &spi->spi_normal, &transfer);
#endif
}
else
{
#ifdef BSP_USING_DMA
status = LPSPI_MasterTransferEDMA(spi->base,&spi->dma->spi_edma,&transfer);
#endif
}
rt_sem_take(spi->xfer_sem, RT_WAITING_FOREVER);
if(message->cs_release)
{
rt_pin_write(cs->pin, PIN_HIGH);
}
if (status != kStatus_Success)
{
LOG_E("%s transfer error : %d", spi->bus_name,status);
message->length = 0;
}
return message->length;
}
static struct rt_spi_ops imxrt_spi_ops =
{
.configure = spi_configure,
.xfer = spixfer
};
int rt_hw_spi_bus_init(void)
{
int i;
rt_err_t ret = RT_EOK;
spi_get_dma_config();
for (i = 0; i < sizeof(lpspis) / sizeof(lpspis[0]); i++)
{
lpspis[i].spi_bus.parent.user_data = &lpspis[i];
ret = rt_spi_bus_register(&lpspis[i].spi_bus, lpspis[i].bus_name, &imxrt_spi_ops);
#ifndef BSP_USING_BLOCKING_SPI
if(RT_TRUE == lpspis[i].dma_flag)
{
lpspi_dma_config(&lpspis[i]);
}
else
{
lpspi_normal_config(&lpspis[i]);
}
#endif
char sem_name[RT_NAME_MAX];
rt_sprintf(sem_name, "%s_s", lpspis[i].bus_name);
lpspis[i].xfer_sem = rt_sem_create(sem_name, 0, RT_IPC_FLAG_PRIO);
}
return ret;
}
INIT_BOARD_EXPORT(rt_hw_spi_bus_init);
#endif /* BSP_USING_SPI */