4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-23 01:37:18 +08:00
Wayne 0d1c709fa5
Sync upstream (#6793)
Co-authored-by: Wayne Lin <wclin@nuvoton.com>
2022-12-29 15:15:13 +08:00

1215 lines
30 KiB
C

/**************************************************************************//**
*
* @copyright (C) 2020 Nuvoton Technology Corp. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-12-12 Wayne First version
*
******************************************************************************/
#include <rtconfig.h>
#if defined(BSP_USING_UART)
#include <rthw.h>
#include "drv_uart.h"
#include "drv_sys.h"
#include "drv_common.h"
#if defined(RT_SERIAL_USING_DMA)
#include <drv_pdma.h>
#endif
#define LOG_TAG "drv.uart"
//#undef DBG_ENABLE
#define DBG_SECTION_NAME LOG_TAG
#define DBG_LEVEL LOG_LVL_INFO
#define DBG_COLOR
#include <rtdbg.h>
/* Private define ---------------------------------------------------------------*/
enum
{
UART_START = -1,
#if defined(BSP_USING_UART0)
UART0_IDX,
#endif
#if defined(BSP_USING_UART1)
UART1_IDX,
#endif
#if defined(BSP_USING_UART2)
UART2_IDX,
#endif
#if defined(BSP_USING_UART3)
UART3_IDX,
#endif
#if defined(BSP_USING_UART4)
UART4_IDX,
#endif
#if defined(BSP_USING_UART5)
UART5_IDX,
#endif
#if defined(BSP_USING_UART6)
UART6_IDX,
#endif
#if defined(BSP_USING_UART7)
UART7_IDX,
#endif
#if defined(BSP_USING_UART8)
UART8_IDX,
#endif
#if defined(BSP_USING_UART9)
UART9_IDX,
#endif
#if defined(BSP_USING_UART10)
UART10_IDX,
#endif
#if defined(BSP_USING_UART11)
UART11_IDX,
#endif
#if defined(BSP_USING_UART12)
UART12_IDX,
#endif
#if defined(BSP_USING_UART13)
UART13_IDX,
#endif
#if defined(BSP_USING_UART14)
UART14_IDX,
#endif
#if defined(BSP_USING_UART15)
UART15_IDX,
#endif
#if defined(BSP_USING_UART16)
UART16_IDX,
#endif
UART_CNT
};
struct nu_rxbuf_ctx
{
void * pvRxBuf;
uint32_t bufsize;
uint32_t wrote_offset;
uint32_t reserved;
};
typedef struct nu_rxbuf_ctx *nu_rxbuf_ctx_t;
/* Private typedef --------------------------------------------------------------*/
struct nu_uart
{
rt_serial_t dev;
char *name;
UART_T *base;
IRQn_Type irqn;
uint32_t rstidx;
#if defined(RT_SERIAL_USING_DMA)
uint32_t dma_flag;
int16_t pdma_perp_tx;
int8_t pdma_chanid_tx;
int16_t pdma_perp_rx;
int8_t pdma_chanid_rx;
nu_pdma_desc_t pdma_rx_desc;
struct nu_rxbuf_ctx dmabuf;
struct nu_rxbuf_ctx userbuf;
#endif
};
typedef struct nu_uart *nu_uart_t;
/* Private functions ------------------------------------------------------------*/
static rt_err_t nu_uart_configure(struct rt_serial_device *serial, struct serial_configure *cfg);
static rt_err_t nu_uart_control(struct rt_serial_device *serial, int cmd, void *arg);
static int nu_uart_send(struct rt_serial_device *serial, char c);
static int nu_uart_receive(struct rt_serial_device *serial);
#if defined(RT_SERIAL_USING_DMA)
static rt_size_t nu_uart_dma_transmit(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, int direction);
static void nu_pdma_uart_rx_cb(void *pvOwner, uint32_t u32Events);
static void nu_pdma_uart_tx_cb(void *pvOwner, uint32_t u32Events);
static uint32_t nu_uart_flush(nu_uart_t psNuUart, uint32_t pdma_new_rxsize);
#endif
/* Private variables ------------------------------------------------------------*/
static const struct rt_uart_ops nu_uart_ops =
{
.configure = nu_uart_configure,
.control = nu_uart_control,
.putc = nu_uart_send,
.getc = nu_uart_receive,
#if defined(RT_SERIAL_USING_DMA)
.dma_transmit = nu_uart_dma_transmit
#else
.dma_transmit = RT_NULL
#endif
};
static const struct serial_configure nu_uart_default_config =
RT_SERIAL_CONFIG_DEFAULT;
static struct nu_uart nu_uart_arr [] =
{
#if defined(BSP_USING_UART0)
{
.name = "uart0",
.base = UART0,
.irqn = UART0_IRQn,
.rstidx = UART0_RST,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART0_TX_DMA)
.pdma_perp_tx = PDMA_UART0_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART0_RX_DMA)
.pdma_perp_rx = PDMA_UART0_RX,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART1)
{
.name = "uart1",
.base = UART1,
.irqn = UART1_IRQn,
.rstidx = UART1_RST,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART1_TX_DMA)
.pdma_perp_tx = PDMA_UART1_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART1_RX_DMA)
.pdma_perp_rx = PDMA_UART1_RX,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART2)
{
.name = "uart2",
.base = UART2,
.irqn = UART2_IRQn,
.rstidx = UART2_RST,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART2_TX_DMA)
.pdma_perp_tx = PDMA_UART2_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART2_RX_DMA)
.pdma_perp_rx = PDMA_UART2_RX,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART3)
{
.name = "uart3",
.base = UART3,
.irqn = UART3_IRQn,
.rstidx = UART3_RST,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART3_TX_DMA)
.pdma_perp_tx = PDMA_UART3_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART3_RX_DMA)
.pdma_perp_rx = PDMA_UART3_RX,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART4)
{
.name = "uart4",
.base = UART4,
.irqn = UART4_IRQn,
.rstidx = UART4_RST,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART4_TX_DMA)
.pdma_perp_tx = PDMA_UART4_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART4_RX_DMA)
.pdma_perp_rx = PDMA_UART4_RX,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART5)
{
.name = "uart5",
.base = UART5,
.irqn = UART5_IRQn,
.rstidx = UART5_RST,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART5_TX_DMA)
.pdma_perp_tx = PDMA_UART5_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART5_RX_DMA)
.pdma_perp_rx = PDMA_UART5_RX,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART6)
{
.name = "uart6",
.base = UART6,
.irqn = UART6_IRQn,
.rstidx = UART6_RST,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART6_TX_DMA)
.pdma_perp_tx = PDMA_UART6_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART6_RX_DMA)
.pdma_perp_rx = PDMA_UART6_RX,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART7)
{
.name = "uart7",
.base = UART7,
.irqn = UART7_IRQn,
.rstidx = UART7_RST,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART7_TX_DMA)
.pdma_perp_tx = PDMA_UART7_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART7_RX_DMA)
.pdma_perp_rx = PDMA_UART7_RX,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART8)
{
.name = "uart8",
.base = UART8,
.irqn = UART8_IRQn,
.rstidx = UART8_RST,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART8_TX_DMA)
.pdma_perp_tx = PDMA_UART8_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART8_RX_DMA)
.pdma_perp_rx = PDMA_UART8_RX,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART9)
{
.name = "uart9",
.base = UART9,
.irqn = UART9_IRQn,
.rstidx = UART9_RST,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART9_TX_DMA)
.pdma_perp_tx = PDMA_UART9_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART9_RX_DMA)
.pdma_perp_rx = PDMA_UART9_RX,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART10)
{
.name = "uart10",
.base = UART10,
.irqn = UART10_IRQn,
.rstidx = UART10_RST,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART10_TX_DMA)
.pdma_perp_tx = PDMA_UART10_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART10_RX_DMA)
.pdma_perp_rx = PDMA_UART10_RX,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART11)
{
.name = "uart11",
.base = UART11,
.irqn = UART11_IRQn,
.rstidx = UART11_RST,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART11_TX_DMA)
.pdma_perp_tx = PDMA_UART11_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART11_RX_DMA)
.pdma_perp_rx = PDMA_UART11_RX,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART12)
{
.name = "uart12",
.base = UART12,
.irqn = UART12_IRQn,
.rstidx = UART12_RST,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART12_TX_DMA)
.pdma_perp_tx = PDMA_UART12_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART12_RX_DMA)
.pdma_perp_rx = PDMA_UART12_RX,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART13)
{
.name = "uart13",
.base = UART13,
.irqn = UART13_IRQn,
.rstidx = UART13_RST,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART13_TX_DMA)
.pdma_perp_tx = PDMA_UART13_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART13_RX_DMA)
.pdma_perp_rx = PDMA_UART13_RX,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART14)
{
.name = "uart14",
.base = UART14,
.irqn = UART14_IRQn,
.rstidx = UART14_RST,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART14_TX_DMA)
.pdma_perp_tx = PDMA_UART14_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART14_RX_DMA)
.pdma_perp_rx = PDMA_UART14_RX,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART15)
{
.name = "uart15",
.base = UART15,
.irqn = UART15_IRQn,
.rstidx = UART15_RST,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART15_TX_DMA)
.pdma_perp_tx = PDMA_UART15_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART15_RX_DMA)
.pdma_perp_rx = PDMA_UART15_RX,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
#if defined(BSP_USING_UART16)
{
.name = "uart16",
.base = UART16,
.irqn = UART16_IRQn,
.rstidx = UART16_RST,
#if defined(RT_SERIAL_USING_DMA)
#if defined(BSP_USING_UART16_TX_DMA)
.pdma_perp_tx = PDMA_UART16_TX,
#else
.pdma_perp_tx = NU_PDMA_UNUSED,
#endif
#if defined(BSP_USING_UART16_RX_DMA)
.pdma_perp_rx = PDMA_UART16_RX,
#else
.pdma_perp_rx = NU_PDMA_UNUSED,
#endif
#endif
},
#endif
}; /* uart nu_uart */
/**
* All UART interrupt service routine
*/
static void nu_uart_isr(int vector, void *param)
{
/* Get base address of uart register */
nu_uart_t psNuUart = (nu_uart_t)param;
UART_T *base = psNuUart->base;
/* Get interrupt event */
uint32_t u32IntSts = base->INTSTS;
uint32_t u32FIFOSts = base->FIFOSTS;
#if defined(RT_SERIAL_USING_DMA)
if (u32IntSts & UART_INTSTS_PRLSIF_Msk)
{
/* Drain RX FIFO to remove remain FEF frames in FIFO. */
base->FIFO |= UART_FIFO_RXRST_Msk;
base->FIFOSTS |= (UART_FIFOSTS_BIF_Msk | UART_FIFOSTS_FEF_Msk | UART_FIFOSTS_PEF_Msk);
return;
}
if (u32IntSts & UART_INTSTS_PTOIF_Msk)
{
nu_uart_flush(psNuUart, 0);
return;
}
#endif
/* Handle RX event */
if (u32IntSts & (UART_INTSTS_RDAINT_Msk | UART_INTSTS_RXTOINT_Msk))
{
rt_hw_serial_isr(&psNuUart->dev, RT_SERIAL_EVENT_RX_IND);
}
base->INTSTS = u32IntSts;
base->FIFOSTS = u32FIFOSts;
}
/**
* Set RS-485 AUD mode
*/
void nu_uart_set_rs485aud(struct rt_serial_device *serial, rt_bool_t bRTSActiveLowLevel)
{
nu_uart_t psNuUart = (nu_uart_t)serial;
UART_T *base;
RT_ASSERT(serial);
/* Get base address of uart register */
base = ((nu_uart_t)serial)->base;
/* Set RTS as RS-485 phy direction controlling ping. */
UART_SelectRS485Mode(base, UART_ALTCTL_RS485AUD_Msk, 0);
if (bRTSActiveLowLevel)
{
/* Set direction pin as active-low. */
base->MODEM |= UART_MODEM_RTSACTLV_Msk;
}
else
{
/* Set direction pin as active-high. */
base->MODEM &= ~UART_MODEM_RTSACTLV_Msk;
}
LOG_I("Set %s to RS-485 AUD function mode. ActiveLowLevel-%s", psNuUart->name, bRTSActiveLowLevel ? "YES" : "NO");
}
/**
* Configure uart port
*/
static rt_err_t nu_uart_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
nu_uart_t psNuUart = (nu_uart_t)serial;
rt_err_t ret = RT_EOK;
uint32_t uart_word_len, uart_stop_bit, uart_parity;
RT_ASSERT(serial);
RT_ASSERT(cfg);
/* Check baudrate */
RT_ASSERT(cfg->baud_rate != 0);
uart_word_len = uart_stop_bit = uart_parity = 0;
/* Get base address of uart register */
UART_T *base = psNuUart->base;
/* Check word len */
switch (cfg->data_bits)
{
case DATA_BITS_5:
uart_word_len = UART_WORD_LEN_5;
break;
case DATA_BITS_6:
uart_word_len = UART_WORD_LEN_6;
break;
case DATA_BITS_7:
uart_word_len = UART_WORD_LEN_7;
break;
case DATA_BITS_8:
uart_word_len = UART_WORD_LEN_8;
break;
default:
LOG_E("Unsupported data length.");
ret = RT_EINVAL;
goto exit_nu_uart_configure;
}
/* Check stop bit */
switch (cfg->stop_bits)
{
case STOP_BITS_1:
uart_stop_bit = UART_STOP_BIT_1;
break;
case STOP_BITS_2:
uart_stop_bit = UART_STOP_BIT_2;
break;
default:
LOG_E("Unsupported stop bit.");
ret = RT_EINVAL;
goto exit_nu_uart_configure;
}
/* Check parity */
switch (cfg->parity)
{
case PARITY_NONE:
uart_parity = UART_PARITY_NONE;
break;
case PARITY_ODD:
uart_parity = UART_PARITY_ODD;
break;
case PARITY_EVEN:
uart_parity = UART_PARITY_EVEN;
break;
default:
LOG_E("Unsupported parity.");
ret = RT_EINVAL;
goto exit_nu_uart_configure;
}
/* Reset this module */
nu_sys_ip_reset(psNuUart->rstidx);
/* Open Uart and set UART Baudrate */
UART_Open(base, cfg->baud_rate);
/* Set line configuration. */
UART_SetLineConfig(base, 0, uart_word_len, uart_parity, uart_stop_bit);
/* Enable interrupt. */
rt_hw_interrupt_umask(psNuUart->irqn);
exit_nu_uart_configure:
if (ret != RT_EOK)
UART_Close(base);
return -(ret);
}
#if defined(RT_SERIAL_USING_DMA)
static uint32_t nu_uart_flush_sync(
uint8_t *dst_buf_start,
uint8_t *dst_buf_put,
uint8_t *src_buf_start,
uint8_t *src_buf_put,
uint32_t bufsize,
uint32_t sync_len)
{
uint32_t count = 0;
/* Copy bytes in Source's ring-buffer to Destination's ring-buffer. */
while ( count < sync_len )
{
if ( dst_buf_put >= (dst_buf_start + bufsize) )
{
dst_buf_put = dst_buf_start;
}
if ( src_buf_put >= (src_buf_start + bufsize) )
{
src_buf_put = src_buf_start;
}
*dst_buf_put = *src_buf_put;
src_buf_put++;
dst_buf_put++;
count++;
}
return count;
}
static uint32_t nu_uart_flush(nu_uart_t psNuUart, uint32_t pdma_new_rxsize)
{
uint32_t recv_len;
UART_T *base = psNuUart->base;
uint8_t tempbuf[64];
/* Disable Receive Line interrupt first. */
UART_DISABLE_INT(base, UART_INTEN_RXPDMAEN_Msk);
/* Pick up RX bytes in PDMA RX BUFFER. */
if ( pdma_new_rxsize > 0 )
{
nu_pdma_desc_t psDesc = nu_pdma_get_channel_desc(psNuUart->pdma_chanid_rx);
#if !defined(USE_MA35D1_SUBM)
uint8_t *pu8DmaBuf_noncache = (uint8_t *)(psDesc->DA + UNCACHEABLE);
#else
uint8_t *pu8DmaBuf_noncache = (uint8_t *)(psDesc->DA);
#endif
/* Update wrote offset of user buffer. */
psNuUart->userbuf.wrote_offset += nu_uart_flush_sync( psNuUart->userbuf.pvRxBuf,
(uint8_t *)psNuUart->userbuf.pvRxBuf + psNuUart->userbuf.wrote_offset,
pu8DmaBuf_noncache,
pu8DmaBuf_noncache + psNuUart->dmabuf.wrote_offset,
psNuUart->userbuf.bufsize,
pdma_new_rxsize );
psNuUart->userbuf.wrote_offset %= psNuUart->userbuf.bufsize;
}
/* Pick up RX bytes in UART FIFO. */
recv_len = 0;
while (!UART_GET_RX_EMPTY(base))
{
tempbuf[recv_len] = UART_READ(base);
recv_len++;
RT_ASSERT( recv_len < sizeof(tempbuf) );
}
if ( recv_len > 0 )
{
/* Update wrote offset of user buffer. */
psNuUart->userbuf.wrote_offset += nu_uart_flush_sync( psNuUart->userbuf.pvRxBuf,
psNuUart->userbuf.pvRxBuf + psNuUart->userbuf.wrote_offset,
tempbuf,
tempbuf,
psNuUart->userbuf.bufsize,
recv_len );
psNuUart->userbuf.wrote_offset %= psNuUart->userbuf.bufsize;
}
/* Report received bytes = UART_FIFO_RXSIZE + PDMA_NEW_RXSIZE */
recv_len += pdma_new_rxsize;
if (recv_len > 0)
{
LOG_D("%d(Received) = %d(PDMA) + %d(FIFO)",
recv_len - pdma_new_rxsize,
pdma_new_rxsize,
recv_len);
LOG_D("User: [%08x] bufsize=%d, wrote_offset=%d",
psNuUart->userbuf.pvRxBuf,
psNuUart->userbuf.bufsize,
psNuUart->userbuf.wrote_offset);
LOG_D("DMA: [%08x] bufsize=%d, put=%d",
psNuUart->dmabuf.pvRxBuf,
psNuUart->dmabuf.bufsize,
psNuUart->dmabuf.wrote_offset);
rt_hw_serial_isr(&psNuUart->dev, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
}
/* Enable Receive Line interrupt first. */
UART_ENABLE_INT(base, UART_INTEN_RXPDMAEN_Msk);
return recv_len;
}
static void nu_pdma_uart_rxbuf_free(nu_uart_t psNuUart)
{
psNuUart->userbuf.pvRxBuf = RT_NULL;
psNuUart->userbuf.bufsize = 0;
psNuUart->userbuf.wrote_offset = 0;
if (psNuUart->dmabuf.pvRxBuf)
rt_free_align(psNuUart->dmabuf.pvRxBuf);
psNuUart->dmabuf.pvRxBuf = RT_NULL;
psNuUart->dmabuf.bufsize = 0;
psNuUart->dmabuf.wrote_offset = 0;
}
static rt_err_t nu_pdma_uart_rx_config(nu_uart_t psNuUart, uint8_t *pu8Buf, int32_t i32TriggerLen)
{
rt_err_t result = RT_EOK;
struct nu_pdma_chn_cb sChnCB;
/* Get base address of uart register */
UART_T *base = psNuUart->base;
/* Register ISR callback function */
sChnCB.m_eCBType = eCBType_Event;
sChnCB.m_pfnCBHandler = nu_pdma_uart_rx_cb;
sChnCB.m_pvUserData = (void *)psNuUart;
nu_pdma_filtering_set(psNuUart->pdma_chanid_rx, NU_PDMA_EVENT_TRANSFER_DONE | NU_PDMA_EVENT_TIMEOUT);
result = nu_pdma_callback_register(psNuUart->pdma_chanid_rx, &sChnCB);
if (result != RT_EOK)
{
goto exit_nu_pdma_uart_rx_config;
}
/* Store user buffer context */
psNuUart->userbuf.pvRxBuf = pu8Buf;
psNuUart->userbuf.bufsize = i32TriggerLen;
psNuUart->userbuf.wrote_offset = 0;
psNuUart->dmabuf.pvRxBuf = rt_malloc_align(i32TriggerLen, 64);
psNuUart->dmabuf.bufsize = 0;
if (psNuUart->dmabuf.pvRxBuf == RT_NULL)
{
LOG_E("Failed to allocate dma memory %d.", i32TriggerLen);
goto exit_nu_pdma_uart_rx_config;
}
psNuUart->dmabuf.bufsize = i32TriggerLen;
psNuUart->dmabuf.wrote_offset = 0;
/* Disable Receive Line interrupt & Start DMA RX transfer. */
UART_DISABLE_INT(base, UART_INTEN_RLSIEN_Msk | UART_INTEN_RXPDMAEN_Msk | UART_INTEN_RXTOIEN_Msk);
/* For Serial RX FIFO - Single buffer recycle SG trigger */
result = nu_pdma_desc_setup(psNuUart->pdma_chanid_rx,
psNuUart->pdma_rx_desc,
8,
(uint32_t)base,
(uint32_t)psNuUart->dmabuf.pvRxBuf,
psNuUart->dmabuf.bufsize,
psNuUart->pdma_rx_desc,
0);
if (result != RT_EOK)
{
goto exit_nu_pdma_uart_rx_config;
}
/* Assign head descriptor & go */
result = nu_pdma_sg_transfer(psNuUart->pdma_chanid_rx, psNuUart->pdma_rx_desc, 500);
if (result != RT_EOK)
{
goto exit_nu_pdma_uart_rx_config;
}
UART_SetTimeoutCnt(base, 255);
/* Enable Receive Line interrupt & Start DMA RX transfer. */
UART_ENABLE_INT(base, UART_INTEN_RLSIEN_Msk | UART_INTEN_RXPDMAEN_Msk | UART_INTEN_RXTOIEN_Msk);
exit_nu_pdma_uart_rx_config:
return result;
}
static void nu_pdma_uart_rx_cb(void *pvOwner, uint32_t u32Events)
{
nu_uart_t psNuUart = (nu_uart_t)pvOwner;
RT_ASSERT(psNuUart);
if (u32Events & (NU_PDMA_EVENT_TRANSFER_DONE | NU_PDMA_EVENT_TIMEOUT))
{
rt_size_t pdma_rxsize = 0;
if (u32Events & NU_PDMA_EVENT_TRANSFER_DONE)
{
pdma_rxsize = psNuUart->dmabuf.bufsize;
}
else
{
pdma_rxsize = nu_pdma_transferred_byte_get(psNuUart->pdma_chanid_rx, psNuUart->dmabuf.bufsize);
}
nu_uart_flush(psNuUart, pdma_rxsize - psNuUart->dmabuf.wrote_offset);
/* Update rxdma buffer wrote index */
psNuUart->dmabuf.wrote_offset = (psNuUart->dmabuf.wrote_offset + pdma_rxsize) % psNuUart->dmabuf.bufsize;
}
}
static rt_err_t nu_pdma_uart_tx_config(nu_uart_t psNuUart)
{
struct nu_pdma_chn_cb sChnCB;
RT_ASSERT(psNuUart);
/* Register ISR callback function */
sChnCB.m_eCBType = eCBType_Event;
sChnCB.m_pfnCBHandler = nu_pdma_uart_tx_cb;
sChnCB.m_pvUserData = (void *)psNuUart;
nu_pdma_filtering_set(psNuUart->pdma_chanid_tx, NU_PDMA_EVENT_TRANSFER_DONE);
return nu_pdma_callback_register(psNuUart->pdma_chanid_tx, &sChnCB);
}
static void nu_pdma_uart_tx_cb(void *pvOwner, uint32_t u32Events)
{
nu_uart_t psNuUart = (nu_uart_t)pvOwner;
RT_ASSERT(psNuUart);
UART_DISABLE_INT(psNuUart->base, UART_INTEN_TXPDMAEN_Msk);// Stop DMA TX transfer
if (u32Events & NU_PDMA_EVENT_TRANSFER_DONE)
{
rt_hw_serial_isr(&psNuUart->dev, RT_SERIAL_EVENT_TX_DMADONE);
}
}
/**
* Uart DMA transfer
*/
static rt_size_t nu_uart_dma_transmit(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, int direction)
{
rt_err_t result = RT_EOK;
nu_uart_t psNuUart = (nu_uart_t)serial;
RT_ASSERT(serial);
RT_ASSERT(buf);
/* Get base address of uart register */
UART_T *base = psNuUart->base;
if (direction == RT_SERIAL_DMA_TX)
{
UART_DISABLE_INT(base, UART_INTEN_TXPDMAEN_Msk);
/* <16 PDMA TX case. */
if (size < 16)
{
int i = 0;
UART_T *base = psNuUart->base;
while (i < size)
{
/* Waiting if TX-FIFO is full. */
while (UART_IS_TX_FULL(base));
/* Put char into TX-FIFO */
UART_WRITE(base, buf[i]);
i++;
}
rt_hw_serial_isr(&psNuUart->dev, RT_SERIAL_EVENT_TX_DMADONE);
}
else
{
result = nu_pdma_transfer(psNuUart->pdma_chanid_tx,
8,
(uint32_t)buf,
(uint32_t)base,
size,
0); // wait-forever
// Start DMA TX transfer
UART_ENABLE_INT(base, UART_INTEN_TXPDMAEN_Msk);
}
}
else if (direction == RT_SERIAL_DMA_RX)
{
UART_DISABLE_INT(base, UART_INTEN_RLSIEN_Msk | UART_INTEN_RXPDMAEN_Msk | UART_INTEN_TOCNTEN_Msk);
// If config.bufsz = 0, serial will trigger once.
result = nu_pdma_uart_rx_config(psNuUart, buf, size);
}
else
{
result = RT_ERROR;
}
return result;
}
static int nu_hw_uart_dma_allocate(nu_uart_t psNuUart)
{
RT_ASSERT(psNuUart);
/* Allocate UART_TX nu_dma channel */
if (psNuUart->pdma_perp_tx != NU_PDMA_UNUSED)
{
psNuUart->pdma_chanid_tx = nu_pdma_channel_allocate(psNuUart->pdma_perp_tx);
if (psNuUart->pdma_chanid_tx >= 0)
{
psNuUart->dma_flag |= RT_DEVICE_FLAG_DMA_TX;
}
}
/* Allocate UART_RX nu_dma channel */
if (psNuUart->pdma_perp_rx != NU_PDMA_UNUSED)
{
psNuUart->pdma_chanid_rx = nu_pdma_channel_allocate(psNuUart->pdma_perp_rx);
if (psNuUart->pdma_chanid_rx >= 0)
{
rt_err_t ret = RT_EOK;
psNuUart->dma_flag |= RT_DEVICE_FLAG_DMA_RX;
ret = nu_pdma_sgtbls_allocate(&psNuUart->pdma_rx_desc, 1);
RT_ASSERT(ret == RT_EOK);
}
}
return RT_EOK;
}
#endif
/**
* Uart interrupt control
*/
static rt_err_t nu_uart_control(struct rt_serial_device *serial, int cmd, void *arg)
{
nu_uart_t psNuUart = (nu_uart_t)serial;
rt_err_t result = RT_EOK;
rt_ubase_t ctrl_arg = (rt_ubase_t)arg;
RT_ASSERT(serial);
/* Get base address of uart register */
UART_T *base = psNuUart->base;
switch (cmd)
{
case RT_DEVICE_CTRL_CLR_INT:
if (ctrl_arg == RT_DEVICE_FLAG_INT_RX) /* Disable INT-RX */
{
UART_DISABLE_INT(base, UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk | UART_INTEN_TOCNTEN_Msk);
}
else if (ctrl_arg == RT_DEVICE_FLAG_DMA_RX) /* Disable DMA-RX */
{
/* Disable Receive Line interrupt & Stop DMA RX transfer. */
#if defined(RT_SERIAL_USING_DMA)
if (psNuUart->dma_flag & RT_DEVICE_FLAG_DMA_RX)
{
nu_pdma_channel_terminate(psNuUart->pdma_chanid_rx);
nu_pdma_uart_rxbuf_free(psNuUart);
}
UART_DISABLE_INT(base, UART_INTEN_RLSIEN_Msk | UART_INTEN_RXPDMAEN_Msk | UART_INTEN_TOCNTEN_Msk);
#endif
}
break;
case RT_DEVICE_CTRL_SET_INT:
if (ctrl_arg == RT_DEVICE_FLAG_INT_RX) /* Enable INT-RX */
{
UART_ENABLE_INT(base, UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk);
}
break;
#if defined(RT_SERIAL_USING_DMA)
case RT_DEVICE_CTRL_CONFIG:
if (ctrl_arg == RT_DEVICE_FLAG_DMA_RX) /* Configure and trigger DMA-RX */
{
struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
result = nu_pdma_uart_rx_config(psNuUart, &rx_fifo->buffer[0], serial->config.bufsz); // Config & trigger
}
else if (ctrl_arg == RT_DEVICE_FLAG_DMA_TX) /* Configure DMA-TX */
{
result = nu_pdma_uart_tx_config(psNuUart);
}
break;
#endif
case RT_DEVICE_CTRL_CLOSE:
/* Disable interrupt. */
rt_hw_interrupt_mask(psNuUart->irqn);
#if defined(RT_SERIAL_USING_DMA)
UART_DISABLE_INT(base, UART_INTEN_RLSIEN_Msk | UART_INTEN_RXPDMAEN_Msk | UART_INTEN_TOCNTEN_Msk);
UART_DISABLE_INT(base, UART_INTEN_TXPDMAEN_Msk);
if (psNuUart->dma_flag != 0)
{
nu_pdma_channel_terminate(psNuUart->pdma_chanid_tx);
nu_pdma_channel_terminate(psNuUart->pdma_chanid_rx);
nu_pdma_uart_rxbuf_free(psNuUart);
}
#endif
/* Close UART port */
UART_Close(base);
break;
default:
result = -RT_EINVAL;
break;
}
return result;
}
/**
* Uart put char
*/
static int nu_uart_send(struct rt_serial_device *serial, char c)
{
nu_uart_t psNuUart = (nu_uart_t)serial;
RT_ASSERT(serial);
/* Get base address of uart register */
UART_T *base = psNuUart->base;
/* Waiting if TX-FIFO is full. */
while (UART_IS_TX_FULL(base));
/* Put char into TX-FIFO */
UART_WRITE(base, c);
return 1;
}
/**
* Uart get char
*/
static int nu_uart_receive(struct rt_serial_device *serial)
{
nu_uart_t psNuUart = (nu_uart_t)serial;
RT_ASSERT(serial);
/* Get base address of uart register */
UART_T *base = psNuUart->base;
/* Return failure if RX-FIFO is empty. */
if (UART_GET_RX_EMPTY(base))
{
return -1;
}
/* Get char from RX-FIFO */
return UART_READ(base);
}
void nu_uart_set_loopback(struct rt_serial_device *serial, rt_bool_t bOn)
{
nu_uart_t psNuUart = (nu_uart_t)serial;
RT_ASSERT(serial);
/* Get base address of uart register */
UART_T *base = psNuUart->base;
bOn ? (base->MODEM |= 0x10) : (base->MODEM &= ~0x10);
}
/**
* Hardware UART Initialization
*/
rt_err_t rt_hw_uart_init(void)
{
int i;
rt_uint32_t flag;
rt_err_t ret = RT_EOK;
for (i = (UART_START + 1); i < UART_CNT; i++)
{
flag = RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX;
nu_uart_arr[i].dev.ops = &nu_uart_ops;
nu_uart_arr[i].dev.config = nu_uart_default_config;
#if defined(RT_SERIAL_USING_DMA)
nu_uart_arr[i].dma_flag = 0;
nu_hw_uart_dma_allocate(&nu_uart_arr[i]);
flag |= nu_uart_arr[i].dma_flag;
#endif
rt_hw_interrupt_install(nu_uart_arr[i].irqn, nu_uart_isr, &nu_uart_arr[i], nu_uart_arr[i].name);
ret = rt_hw_serial_register(&nu_uart_arr[i].dev, nu_uart_arr[i].name, flag, NULL);
RT_ASSERT(ret == RT_EOK);
}
return ret;
}
#endif //#if defined(BSP_USING_UART)