4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-15 22:29:52 +08:00
2021-03-29 07:11:44 +08:00

600 lines
12 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-02-08 RT-Thread the first version
*/
#include <rtthread.h>
#include <rthw.h>
#include "drv_clock.h"
int cpu_get_pll_clk(void)
{
rt_uint32_t reg;
int n, k, m, p;
reg = CCU->pll_cpu_ctrl;
if (!(reg & (0x01 << 31)))
return 0;
p = PLL_CPU_DIV_P(reg) + 1;
n = PLL_CPU_FACTOR_N(reg) + 1;
k = PLL_CPU_FACTOR_K(reg) + 1;
m = PLL_CPU_FACTOR_M(reg) + 1;
//(24MHz*n*k)/(m*p)
return (_24MHZ_ * n * k) / (m * p);
}
int audio_get_pll_clk(void)
{
rt_uint32_t reg;
unsigned char n, m;
reg = CCU->pll_audio_ctrl;
if (!(reg & (0x01 << 31)))
return 0;
n = PLL_AUDIO_FACTOR_N(reg) + 1;
m = PLL_AUDIO_PREDIV_M(reg) + 1;
//24MHz*n*2/m
return _24MHZ_ * 2 * n / m;
}
int video_get_pll_clk(void)
{
rt_uint32_t reg;
int n, m;
reg = CCU->pll_video_ctrl;
if (!(reg & (0x01 << 31)))
return 0;
if (reg & PLL_VIDEO_MODE_SEL)
{
//(24MHz*n)/m
n = PLL_VIDEO_FACTOR_N(reg) + 1;
m = PLL_VIDEO_PREDIV_M(reg) + 1;
return (_24MHZ_ * n) / m;
}
if (reg & PLL_VIDEO_FRAC_CLK_OUT)
return 270000000;
else
return 297000000;
return 0;
}
int ve_get_pll_clk(void)
{
rt_uint32_t reg;
int n, m;
reg = CCU->pll_ve_ctrl;
if (!(reg & (0x01 << 31)))
return 0;
if (reg & PLL_VE_MODE_SEL)
{
//(24MHz*n)/m
n = PLL_VE_FACTOR_N(reg) + 1;
m = PLL_VE_PREDIV_M(reg) + 1;
return (_24MHZ_ * n) / m;
}
if (reg & PLL_VE_FRAC_CLK_OUT)
return 297000000;
else
return 270000000;
return 0;
}
int ddr_get_pll_clk(void)
{
rt_uint32_t reg;
int n, k, m;
reg = CCU->pll_ddr_ctrl;
if (!(reg & (0x01 << 31)))
return 0;
n = PLL_DDR_FACTOR_N(reg) + 1;
k = PLL_DDR_FACTOR_K(reg) + 1;
m = PLL_DDR_FACTOR_M(reg) + 1;
//(24MHz*n*k)/m
return (_24MHZ_ * n * k) / m;
}
int periph_get_pll_clk(void)
{
rt_uint32_t reg;
int n, k;
reg = CCU->pll_periph_ctrl;
if (!(reg & (0x01 << 31)))
return 0;
n = PLL_PERIPH_FACTOR_N(reg) + 1;
k = PLL_PERIPH_FACTOR_K(reg) + 1;
return _24MHZ_ * n * k;
}
static int cpu_get_clk_src(void)
{
return (CCU->cpu_clk_src >> 16) & 0x3;
}
int cpu_get_clk(void)
{
rt_uint32_t reg;
int cpusrc;
reg = CCU->ahb_apb_hclkc_cfg;
cpusrc = cpu_get_clk_src();
if (cpusrc == CLK_PLL_SRC)
return (cpu_get_pll_clk() / (HCLKC_DIV(reg) + 1));
else if (cpusrc == CLK_OSC24M_SRC)
return _24MHZ_ / (HCLKC_DIV(reg) + 1);
else
return _32KHZ_ / (HCLKC_DIV(reg) + 1); //猜测 内部32KHz时钟
return 0;
}
int ahb_get_clk(void)
{
rt_uint32_t reg;
int sel, spd;
reg = CCU->ahb_apb_hclkc_cfg;
sel = AHB_SRC_SEL(reg);
if (sel == CLK_PLL_SRC)
{
spd = cpu_get_clk();
return spd / (1 << AHB_CLK_DIV(reg));
}
else if (sel == PRE_DIV_SRC)
{
spd = periph_get_pll_clk();
return spd / (AHB_PRE_DIV(reg) + 1) / (1 << AHB_CLK_DIV(reg));
}
else if (sel == CLK_OSC24M_SRC)
return _24MHZ_ / (1 << AHB_CLK_DIV(reg));
else
return _32KHZ_ / (1 << AHB_CLK_DIV(reg));
}
int apb_get_clk(void)
{
rt_uint32_t reg;
int spd;
reg = CCU->ahb_apb_hclkc_cfg;
spd = ahb_get_clk();
// 0x:/2 10:/4 11:/8
if (!(APH_CLK_PATIO(reg) & 0x1))
return spd / 2;
else
return spd / (1 << APH_CLK_PATIO(reg));
}
static rt_err_t wait_pll_stable(rt_uint32_t base)
{
rt_uint32_t rval = 0;
volatile int time = 0xfff;
do
{
rval = *((volatile rt_uint32_t *)base);
time--;
}
while (time && !(rval & (1 << 28)));
return !time;
}
rt_err_t cpu_set_pll_clk(int clk)
{
rt_uint32_t cpu_src;
int p = 0, k = 1, m = 1, n = 0;
if (clk == 0)
return RT_EINVAL;
if (clk > 1152000000)
{
k = 2;
}
else if (clk > 768000000)
{
k = 3;
m = 2;
}
n = clk / (_24MHZ_ * k / m) - 1;
cpu_src = (CCU->cpu_clk_src >> 16) & 0x3;
CCU->cpu_clk_src = CLK_OSC24M_SRC << 16;
CCU->pll_cpu_ctrl &= ~(0x1 << 31);
//PLL1 rate = ((24000000 * n * k) >> 0) / m (p is ignored)
CCU->pll_cpu_ctrl = (0x1 << 31) | (m << 0) | (k << 4) | (n << 8) | (p << 16);
if (wait_pll_stable((rt_uint32_t)(&CCU->pll_cpu_ctrl)))
return RT_ERROR;
CCU->cpu_clk_src = cpu_src << 16;
return RT_EOK;
}
rt_err_t audio_set_pll_clk(int clk)
{
int n = 0, m = 0;
int n_temp = clk;
int m_temp = _24MHZ_ * 2;
if ((clk > 200000000) || (clk < 20000000))
return RT_EINVAL;
if (clk == 0)
{
CCU->pll_audio_ctrl &= ~(0x1 << 31);
return RT_EOK;
}
while (n_temp != m_temp)
{
if (n_temp > m_temp)
{
n_temp = n_temp - m_temp;
}
else if (m_temp > n_temp)
{
m_temp = m_temp - n_temp;
}
}
n = clk / n_temp;
m = _24MHZ_ * 2 / m_temp;
if ((n > 128) || (m > 32) || (clk != (_24MHZ_ * n * 2) / m))
return RT_ERROR;
CCU->pll_audio_ctrl &= ~(0x1 << 31);
n = (n - 1) & 0x7f;
m = (m - 1) & 0x1f;
//clk = (24 * n * 2) / m
CCU->pll_audio_ctrl = (0x1 << 31) | (0x0 << 24) | (n << 8) | m;
if (wait_pll_stable((rt_uint32_t)(&CCU->pll_audio_ctrl)))
return RT_ERROR;
else
return RT_EOK;
}
rt_err_t video_set_pll_clk(int clk)
{
int n = 0, m = 0;
int n_temp = clk;
int m_temp = _24MHZ_;
if ((clk > 600000000) || (clk < 30000000))
return RT_EINVAL;
if (clk == 0)
{
CCU->pll_video_ctrl &= ~(0x1 << 31);
return RT_EOK;
}
while (n_temp != m_temp)
{
if (n_temp > m_temp)
{
n_temp = n_temp - m_temp;
}
else if (m_temp > n_temp)
{
m_temp = m_temp - n_temp;
}
}
n = clk / n_temp;
m = _24MHZ_ / m_temp;
if ((n > 128) || (m > 16) || (clk != (_24MHZ_ * n) / m))
return RT_ERROR;
CCU->pll_video_ctrl &= ~(0x1 << 31);
n = (n - 1) & 0x7f;
m = (m - 1) & 0xf;
//speed = (24*n)/m
CCU->pll_video_ctrl = (0x1 << 31) | (0x0 << 30) | (0x1 << 24) | (n << 8) | m;
if (wait_pll_stable((rt_uint32_t)(&CCU->pll_video_ctrl)))
return RT_ERROR;
else
return RT_EOK;
}
rt_err_t ve_set_pll_clk(int clk)
{
int n = 0, m = 0;
int n_temp = clk;
int m_temp = _24MHZ_;
if ((clk > 600000000) || (clk < 30000000))
return RT_EINVAL;
if (clk == 0)
{
CCU->pll_ve_ctrl &= ~(0x1 << 31);
return RT_EOK;
}
while (n_temp != m_temp)
{
if (n_temp > m_temp)
{
n_temp = n_temp - m_temp;
}
else if (m_temp > n_temp)
{
m_temp = m_temp - n_temp;
}
}
n = clk / n_temp;
m = _24MHZ_ / m_temp;
if ((n > 128) || (m > 16) || (clk != (_24MHZ_ * n) / m))
return RT_ERROR;
CCU->pll_ve_ctrl &= ~(0x1 << 31);
n = (n - 1) & 0x7f;
m = (m - 1) & 0xf;
//clk = (24 * n) / m
CCU->pll_ve_ctrl = (0x1 << 31) | (0x1 << 24) | (n << 8) | m;
if (wait_pll_stable((rt_uint32_t)(&CCU->pll_ve_ctrl)))
return RT_ERROR;
else
return RT_EOK;
}
rt_err_t periph_set_pll_clk(int clk)
{
rt_uint32_t clk_src;
rt_uint32_t temp_data;
int n = 0, k = 0;
if ((clk > 1800000000) || (clk < 200000000) || (clk == 0) || (clk % _24MHZ_ != 0))
return RT_EINVAL;
n = clk / _24MHZ_;
for (k = 2; ((n > 32) || (k < 5)); k++)
{
if ((n % k) != 0)
n /= k;
}
if ((n > 32) || (k > 4) || (clk != (_24MHZ_ * n * k)))
return RT_ERROR;
temp_data = CCU->ahb_apb_hclkc_cfg;
clk_src = (temp_data >> 12) & 0x3;
temp_data &= ~(0x3 << 12);
temp_data |= (CLK_PLL_SRC << 12);
CCU->ahb_apb_hclkc_cfg = temp_data;
CCU->pll_periph_ctrl &= ~(0x1 << 31);
n = (n - 1) & 0x1f;
k = (k - 1) & 0x3;
//clk = 24 * n *k
CCU->pll_periph_ctrl = (0x1 << 31) | (0x1 << 18) | (n << 8) | (k << 4) || (0x1);
if (wait_pll_stable((rt_uint32_t)(&CCU->pll_periph_ctrl)))
return RT_ERROR;
temp_data = CCU->ahb_apb_hclkc_cfg;
temp_data &= ~(0x3 << 12);
temp_data |= (clk_src << 12);
CCU->ahb_apb_hclkc_cfg = temp_data;
return RT_EOK;
}
rt_err_t cpu_set_clk(int clk)
{
if (clk < _24MHZ_)
return RT_EINVAL;
if (clk == cpu_get_clk())
return RT_EOK;
CCU->cpu_clk_src = CLK_OSC24M_SRC << 16;
if (clk == _24MHZ_)
return RT_EOK;
if (cpu_set_pll_clk(clk))
return RT_ERROR;
CCU->ahb_apb_hclkc_cfg &= ~(0x3 << 16);
CCU->cpu_clk_src = CLK_PLL_SRC << 16;
return RT_EOK;
}
rt_err_t bus_gate_clk_enalbe(enum bus_gate bus)
{
rt_uint32_t offset;
rt_uint32_t gate_reg;
offset = bus & 0xfff;
gate_reg = bus >> BUS_GATE_OFFSET_BIT;
if (gate_reg == 0x00)
CCU->bus_clk_gating0 |= (0x1 << offset);
else if (gate_reg == 0x01)
CCU->bus_clk_gating1 |= (0x1 << offset);
else if (gate_reg == 0x02)
CCU->bus_clk_gating2 |= (0x1 << offset);
else
return RT_EINVAL;
return RT_EOK;
}
rt_err_t bus_gate_clk_disalbe(enum bus_gate bus)
{
rt_uint32_t offset;
rt_uint32_t gate_reg;
offset = bus & 0xfff;
gate_reg = bus >> BUS_GATE_OFFSET_BIT;
if (gate_reg == 0x00)
CCU->bus_clk_gating0 &= ~(0x1 << offset);
else if (gate_reg == 0x01)
CCU->bus_clk_gating1 &= ~(0x1 << offset);
else if (gate_reg == 0x02)
CCU->bus_clk_gating2 &= ~(0x1 << offset);
else
return RT_EINVAL;
return RT_EOK;
}
rt_err_t bus_software_reset_disalbe(enum bus_gate bus)
{
rt_uint32_t offset;
rt_uint32_t gate_reg;
offset = bus & 0xfff;
gate_reg = bus >> BUS_GATE_OFFSET_BIT;
if (gate_reg == 0x00)
CCU->bus_soft_rst0 |= (0x1 << offset);
else if (gate_reg == 0x01)
CCU->bus_soft_rst1 |= (0x1 << offset);
else if (gate_reg == 0x02)
CCU->bus_soft_rst2 |= (0x1 << offset);
else
return RT_EINVAL;
return RT_EOK;
}
rt_err_t bus_software_reset_enalbe(enum bus_gate bus)
{
rt_uint32_t offset;
rt_uint32_t gate_reg;
offset = bus & 0xfff;
gate_reg = bus >> BUS_GATE_OFFSET_BIT;
if (gate_reg == 0x00)
CCU->bus_soft_rst0 &= ~(0x1 << offset);
else if (gate_reg == 0x01)
CCU->bus_soft_rst1 &= ~(0x1 << offset);
else if (gate_reg == 0x02)
CCU->bus_soft_rst2 &= ~(0x1 << offset);
else
return RT_EINVAL;
return RT_EOK;
}
rt_err_t mmc_set_clk(enum mmc_clk_id clk_id, int hz)
{
unsigned int pll, pll_hz, div, n, oclk_dly, sclk_dly;
volatile rt_uint32_t *mmc_clk = (clk_id == SDMMC0) ? \
(&CCU->sdmmc0_clk) : (&CCU->sdmmc1_clk);
if (hz < 0)
{
return RT_EINVAL;
}
if (hz == 0)
{
*mmc_clk &= ~(0x1 << 31);
return RT_EOK;
}
if (hz <= 24000000)
{
pll = (0x0 << 24);
pll_hz = 24000000;
}
else
{
pll = (0x1 << 24);
pll_hz = periph_get_pll_clk();
}
div = pll_hz / hz;
if (pll_hz % hz)
{
div++;
}
n = 0;
while (div > 16)
{
n++;
div = (div + 1) / 2;
}
if (n > 3)
{
return -1;
}
/* determine delays */
if (hz <= 400000)
{
oclk_dly = 0;
sclk_dly = 0;
}
else if (hz <= 25000000)
{
oclk_dly = 0;
sclk_dly = 5;
}
else if (hz <= 50000000)
{
oclk_dly = 3;
sclk_dly = 4;
}
else
{
/* hz > 50000000 */
oclk_dly = 1;
sclk_dly = 4;
}
*mmc_clk = (0x1 << 31) | pll | (sclk_dly << 20) | \
(n << 16) | (oclk_dly << 8) | (div - 1);
return RT_EOK;
}
rt_err_t dram_gate_clk_enable(enum dram_gate dram_gate)
{
CCU->dram_gating |= (0x01 << dram_gate);
return RT_EOK;
}
rt_err_t dram_gate_clk_disable(enum dram_gate dram_gate)
{
CCU->dram_gating &= ~(0x01 << dram_gate);
return RT_EOK;
}