4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-26 05:57:23 +08:00
2017-11-11 13:53:20 +08:00

1558 lines
39 KiB
C

/*
* File : drv_clock.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2008 - 2016, RT-Thread Development Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2015-11-19 Urey the first version
*/
#include <string.h>
#include <rthw.h>
#include <rtthread.h>
#include <rtdevice.h>
#include "board.h"
#include "drv_clock.h"
#define DEBUG 0
#if DEBUG
#define PRINT(...) rt_kprintf(__VA_ARGS__)
#else
#define PRINT(...)
#endif
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
enum {
CLK_ID_EXT = 0,
CLK_ID_EXT0,
#define CLK_NAME_EXT0 "ext0"
CLK_ID_EXT1,
#define CLK_NAME_EXT1 "ext1"
CLK_ID_OTGPHY,
#define CLK_NAME_OTGPHY "otg_phy"
CLK_ID_PLL,
CLK_ID_APLL,
#define CLK_NAME_APLL "apll"
CLK_ID_MPLL,
#define CLK_NAME_MPLL "mpll"
CLK_ID_SCLKA,
#define CLK_NAME_SCLKA "sclka"
/**********************************************************************************/
CLK_ID_CPPCR,
CLK_ID_CCLK,
#define CLK_NAME_CCLK "cclk"
CLK_ID_L2CLK,
#define CLK_NAME_L2CLK "l2clk"
CLK_ID_H0CLK,
#define CLK_NAME_H0CLK "h0clk"
CLK_ID_H2CLK,
#define CLK_NAME_H2CLK "h2clk"
CLK_ID_PCLK,
#define CLK_NAME_PCLK "pclk"
CLK_ID_MSC,
#define CLK_NAME_MSC "msc"
/**********************************************************************************/
/**********************************************************************************/
CLK_ID_CGU,
CLK_ID_CGU_PCM1,
#define CLK_NAME_CGU_PCM1 "cgu_pcm1"
CLK_ID_CGU_PCM,
#define CLK_NAME_CGU_PCM "cgu_pcm"
CLK_ID_CGU_CIM,
#define CLK_NAME_CGU_CIM "cgu_cim"
CLK_ID_CGU_SFC,
#define CLK_NAME_CGU_SFC "cgu_ssi"
CLK_ID_CGU_MSC_MUX,
#define CLK_NAME_CGU_MSC_MUX "cgu_msc_mux"
CLK_ID_CGU_USB,
#define CLK_NAME_CGU_USB "cgu_usb"
CLK_ID_CGU_MSC1,
#define CLK_NAME_CGU_MSC1 "cgu_msc1"
CLK_ID_CGU_MSC0,
#define CLK_NAME_CGU_MSC0 "cgu_msc0"
CLK_ID_CGU_LCD,
#define CLK_NAME_CGU_LCD "cgu_lcd"
CLK_ID_CGU_I2S1,
#define CLK_NAME_CGU_I2S1 "cgu_i2s1"
CLK_ID_CGU_I2S,
#define CLK_NAME_CGU_I2S "cgu_i2s"
CLK_ID_CGU_MACPHY,
#define CLK_NAME_CGU_MACPHY "cgu_macphy"
CLK_ID_CGU_DDR,
#define CLK_NAME_CGU_DDR "cgu_ddr"
/**********************************************************************************/
CLK_ID_DEVICES,
CLK_ID_DDR,
#define CLK_NAME_DDR "ddr"
CLK_ID_CPU,
#define CLK_NAME_CPU "cpu"
CLK_ID_AHB0,
#define CLK_NAME_AHB0 "ahb0"
CLK_ID_APB0,
#define CLK_NAME_APB0 "apb0"
CLK_ID_RTC,
#define CLK_NAME_RTC "rtc"
CLK_ID_PCM,
#define CLK_NAME_PCM "pcm"
CLK_ID_MAC,
#define CLK_NAME_MAC "mac"
CLK_ID_AES,
#define CLK_NAME_AES "aes"
CLK_ID_LCD,
#define CLK_NAME_LCD "lcd"
CLK_ID_CIM,
#define CLK_NAME_CIM "cim"
CLK_ID_PDMA,
#define CLK_NAME_PDMA "pdma"
CLK_ID_SYS_OST,
#define CLK_NAME_SYS_OST "sys_ost"
CLK_ID_SSI,
#define CLK_NAME_SSI "ssi0"
CLK_ID_TCU,
#define CLK_NAME_TCU "tcu"
CLK_ID_DMIC,
#define CLK_NAME_DMIC "dmic"
CLK_ID_UART2,
#define CLK_NAME_UART2 "uart2"
CLK_ID_UART1,
#define CLK_NAME_UART1 "uart1"
CLK_ID_UART0,
#define CLK_NAME_UART0 "uart0"
CLK_ID_SADC,
#define CLK_NAME_SADC "sadc"
CLK_ID_VPU,
#define CLK_NAME_VPU "vpu"
CLK_ID_AIC,
#define CLK_NAME_AIC "aic"
CLK_ID_I2C3,
#define CLK_NAME_I2C3 "i2c3"
CLK_ID_I2C2,
#define CLK_NAME_I2C2 "i2c2"
CLK_ID_I2C1,
#define CLK_NAME_I2C1 "i2c1"
CLK_ID_I2C0,
#define CLK_NAME_I2C0 "i2c0"
CLK_ID_SCC,
#define CLK_NAME_SCC "scc"
CLK_ID_MSC1,
#define CLK_NAME_MSC1 "msc1"
CLK_ID_MSC0,
#define CLK_NAME_MSC0 "msc0"
CLK_ID_OTG,
#define CLK_NAME_OTG "otg1"
CLK_ID_SFC,
#define CLK_NAME_SFC "sfc"
CLK_ID_EFUSE,
#define CLK_NAME_EFUSE "efuse"
CLK_ID_NEMC,
#define CLK_NAME_NEMC "nemc"
CLK_ID_STOP,
CLK_ID_INVALID,
};
enum {
CGU_PCM1,CGU_CIM,CGU_SFC,
CGU_USB,CGU_MSC1,CGU_MSC0,CGU_LCD,
CGU_MACPHY,CGU_DDR,
CGU_MSC_MUX
};
enum {
CDIV = 0,L2CDIV,H0DIV,H2DIV,PDIV,SCLKA,
};
enum {
CGU_AUDIO_I2S,CGU_AUDIO_I2S1,CGU_AUDIO_PCM,CGU_AUDIO_PCM1
};
/*
* 31 ... 24 GATE_ID or CPCCR_ID or CGU_ID or PLL_ID or CGU_ID.
* 23 ... 16 PARENR_ID or RELATIVE_ID.
* 16 ... 0 some FLG.
*/
static struct clk clk_srcs[] = {
#define GATE(x) (((x)<<24) | CLK_FLG_GATE)
#define CPCCR(x) (((x)<<24) | CLK_FLG_CPCCR)
#define CGU(no) (((no)<<24) | CLK_FLG_CGU)
#define CGU_AUDIO(no) (((no)<<24) | CLK_FLG_CGU_AUDIO)
#define PLL(no) (((no)<<24) | CLK_FLG_PLL)
#define PARENT(P) (((CLK_ID_##P)<<16) | CLK_FLG_PARENT)
#define RELATIVE(P) (((CLK_ID_##P)<<16) | CLK_FLG_RELATIVE)
#define DEF_CLK(N,FLAG) \
[CLK_ID_##N] = { .name = CLK_NAME_##N, .flags = FLAG, }
DEF_CLK(EXT0, CLK_FLG_NOALLOC),
DEF_CLK(EXT1, CLK_FLG_NOALLOC),
DEF_CLK(OTGPHY, CLK_FLG_NOALLOC),
DEF_CLK(APLL, PLL(CPM_CPAPCR)),
DEF_CLK(MPLL, PLL(CPM_CPMPCR)),
DEF_CLK(SCLKA, CPCCR(SCLKA)),
DEF_CLK(CCLK, CPCCR(CDIV)),
DEF_CLK(L2CLK, CPCCR(L2CDIV)),
DEF_CLK(H0CLK, CPCCR(H0DIV)),
DEF_CLK(H2CLK, CPCCR(H2DIV)),
DEF_CLK(PCLK, CPCCR(PDIV)),
DEF_CLK(NEMC, GATE(0) | PARENT(H2CLK)),
DEF_CLK(EFUSE, GATE(1) | PARENT(H2CLK)),
DEF_CLK(SFC, GATE(2) | PARENT(CGU_SFC)),
DEF_CLK(OTG, GATE(3)),
DEF_CLK(MSC0, GATE(4) | PARENT(PCLK)),
DEF_CLK(MSC1, GATE(5) | PARENT(PCLK)),
DEF_CLK(SCC, GATE(6) | PARENT(PCLK)),
DEF_CLK(I2C0, GATE(7) | PARENT(PCLK)),
DEF_CLK(I2C1, GATE(8) | PARENT(PCLK)),
DEF_CLK(I2C2, GATE(9) | PARENT(PCLK)),
DEF_CLK(I2C3, GATE(10) | PARENT(PCLK)),
DEF_CLK(AIC, GATE(11)),
DEF_CLK(VPU, GATE(12) | PARENT(LCD)),
DEF_CLK(SADC, GATE(13)),
DEF_CLK(UART0, GATE(14) | PARENT(EXT1)),
DEF_CLK(UART1, GATE(15) | PARENT(EXT1)),
DEF_CLK(UART2, GATE(16) | PARENT(EXT1)),
DEF_CLK(DMIC, GATE(17)),
DEF_CLK(TCU, GATE(18)),
DEF_CLK(SSI, GATE(19)),
DEF_CLK(SYS_OST, GATE(20)),
DEF_CLK(PDMA, GATE(21)),
DEF_CLK(CIM, GATE(22) | PARENT(LCD)),
DEF_CLK(LCD, GATE(23)),
DEF_CLK(AES, GATE(24)),
DEF_CLK(MAC, GATE(25)),
DEF_CLK(PCM, GATE(26)),
DEF_CLK(RTC, GATE(27)),
DEF_CLK(APB0, GATE(28)),
DEF_CLK(AHB0, GATE(29)),
DEF_CLK(CPU, GATE(30)),
DEF_CLK(DDR, GATE(31)),
DEF_CLK(CGU_MSC_MUX, CGU(CGU_MSC_MUX)),
DEF_CLK(CGU_PCM, CGU_AUDIO(CGU_AUDIO_PCM)),
DEF_CLK(CGU_CIM, CGU(CGU_CIM)),
DEF_CLK(CGU_SFC, CGU(CGU_SFC)),
DEF_CLK(CGU_USB, CGU(CGU_USB)),
DEF_CLK(CGU_MSC1, CGU(CGU_MSC1)| PARENT(CGU_MSC_MUX)),
DEF_CLK(CGU_MSC0, CGU(CGU_MSC0)| PARENT(CGU_MSC_MUX)),
DEF_CLK(CGU_LCD, CGU(CGU_LCD)),
DEF_CLK(CGU_I2S, CGU_AUDIO(CGU_AUDIO_I2S)),
DEF_CLK(CGU_MACPHY, CGU(CGU_MACPHY)),
DEF_CLK(CGU_DDR, CGU(CGU_DDR)),
#undef GATE
#undef CPCCR
#undef CGU
#undef CGU_AUDIO
#undef PARENT
#undef DEF_CLK
#undef RELATIVE
};
int get_clk_sources_size(void)
{
return ARRAY_SIZE(clk_srcs);
}
struct clk *get_clk_from_id(int clk_id)
{
return &clk_srcs[clk_id];
}
int get_clk_id(struct clk *clk)
{
return (clk - &clk_srcs[0]);
}
/*********************************************************************************************************
** PLL
*********************************************************************************************************/
static uint32_t pll_get_rate(struct clk *clk) {
uint32_t offset;
uint32_t cpxpcr;
uint32_t m,n,od;
uint32_t rate;
if (clk->CLK_ID == CLK_ID_APLL)
offset = 8;
else if (clk->CLK_ID == CLK_ID_MPLL)
offset = 7;
else
offset = 0;
cpxpcr = cpm_inl(CLK_PLL_NO(clk->flags));
if(cpxpcr >> offset & 1)
{
clk->flags |= CLK_FLG_ENABLE;
m = ((cpxpcr >> 24) & 0x7f) + 1;
n = ((cpxpcr >> 18) & 0x1f) + 1;
od = ((cpxpcr >> 16) & 0x3);
od = 1 << od;
rate = clk->parent->rate * m / n / od;
}
else
{
clk->flags &= ~(CLK_FLG_ENABLE);
rate = 0;
}
return rate;
}
static struct clk_ops clk_pll_ops = {
.get_rate = pll_get_rate,
.set_rate = RT_NULL,
};
void init_ext_pll(struct clk *clk)
{
switch (get_clk_id(clk))
{
case CLK_ID_EXT0:
clk->rate = BOARD_RTC_CLK;
clk->flags |= CLK_FLG_ENABLE;
break;
case CLK_ID_EXT1:
clk->rate = BOARD_EXTAL_CLK;
clk->flags |= CLK_FLG_ENABLE;
break;
case CLK_ID_OTGPHY:
clk->rate = 48 * 1000 * 1000;
clk->flags |= CLK_FLG_ENABLE;
break;
default:
clk->parent = get_clk_from_id(CLK_ID_EXT1);
clk->rate = pll_get_rate(clk);
clk->ops = &clk_pll_ops;
break;
}
}
/*********************************************************************************************************
** CPCCR
*********************************************************************************************************/
struct cpccr_clk
{
uint16_t off,sel,ce;
};
static struct cpccr_clk cpccr_clks[] =
{
#define CPCCR_CLK(N,O,D,E) \
[N] = { .off = O, .sel = D, .ce = E}
CPCCR_CLK(CDIV, 0, 28,22),
CPCCR_CLK(L2CDIV, 4, 28,22),
CPCCR_CLK(H0DIV, 8, 26,21),
CPCCR_CLK(H2DIV, 12, 24,20),
CPCCR_CLK(PDIV, 16, 24,20),
CPCCR_CLK(SCLKA,-1, -1,30),
#undef CPCCR_CLK
};
static uint32_t cpccr_selector[4] = {0,CLK_ID_SCLKA,CLK_ID_MPLL,0};
static uint32_t cpccr_get_rate(struct clk *clk)
{
int sel;
uint32_t cpccr = cpm_inl(CPM_CPCCR);
uint32_t rate;
int v;
if (CLK_CPCCR_NO(clk->flags) == SCLKA)
{
int clka_sel[4] =
{
0, CLK_ID_EXT1, CLK_ID_APLL, 0
};
sel = cpm_inl(CPM_CPCCR) >> 30;
if (clka_sel[sel] == 0)
{
rate = 0;
clk->flags &= ~CLK_FLG_ENABLE;
}
else
{
clk->parent = get_clk_from_id(clka_sel[sel]);
rate = clk->parent->rate;
clk->flags |= CLK_FLG_ENABLE;
}
}
else
{
v = (cpccr >> cpccr_clks[CLK_CPCCR_NO(clk->flags)].off) & 0xf;
sel = (cpccr >> (cpccr_clks[CLK_CPCCR_NO(clk->flags)].sel)) & 0x3;
rate = get_clk_from_id(cpccr_selector[sel])->rate;
rate = rate / (v + 1);
}
return rate;
}
static struct clk_ops clk_cpccr_ops =
{
.get_rate = cpccr_get_rate,
.set_rate = RT_NULL,
};
void init_cpccr_clk(struct clk *clk)
{
int sel; //check
uint32_t cpccr = cpm_inl(CPM_CPCCR);
if (CLK_CPCCR_NO(clk->flags) != SCLKA)
{
sel = (cpccr >> cpccr_clks[CLK_CPCCR_NO(clk->flags)].sel) & 0x3;
if (cpccr_selector[sel] != 0)
{
clk->parent = get_clk_from_id(cpccr_selector[sel]);
clk->flags |= CLK_FLG_ENABLE;
}
else
{
clk->parent = RT_NULL;
clk->flags &= ~CLK_FLG_ENABLE;
}
}
clk->rate = cpccr_get_rate(clk);
clk->ops = &clk_cpccr_ops;
}
/*********************************************************************************************************
** CGU & CGU Aduio
*********************************************************************************************************/
struct clk_selectors
{
uint16_t route[4];
};
enum {
SELECTOR_A = 0,
SELECTOR_2,
SELECTOR_C,
SELECTOR_3,
SELECTOR_MSC_MUX,
SELECTOR_F,
SELECTOR_G,
};
const struct clk_selectors selector[] = {
#define CLK(X) CLK_ID_##X
/*
* bit31,bit30
* 0 , 0 STOP
* 0 , 1 SCLKA
* 1 , 0 MPLL
* 1 , 1 INVALID
*/
[SELECTOR_A].route = {CLK(STOP),CLK(SCLKA),CLK(MPLL),CLK(INVALID)},
/*
* bit31,bit30
* 0 , x SCLKA
* 0 , x SCLKA
* 1 , x MPLL
* 1 , x MPLL
*/
[SELECTOR_2].route = {CLK(SCLKA),CLK(SCLKA),CLK(MPLL),CLK(MPLL)},
/*
* bit31,bit30
* 0 , 0 EXT1
* 0 , 1 EXT1
* 1 , 0 SCLKA
* 1 , 1 MPLL
*/
[SELECTOR_C].route = {CLK(EXT1) ,CLK(EXT1),CLK(SCLKA),CLK(MPLL)},
/*
* bit31,bit30
* 0 , 0 SCLKA
* 0 , 1 MPLL
* 1 , 0 EXT1
* 1 , 1 INVALID
*/
[SELECTOR_3].route = {CLK(SCLKA),CLK(MPLL),CLK(EXT1),CLK(INVALID)},
/*
* bit31,bit30
* 0 , 0 MSC_MUX
* 0 , 1 MSC_MUX
* 1 , 0 MSC_MUX
* 1 , 1 MSC_MUX
*/
[SELECTOR_MSC_MUX].route = {CLK(SCLKA),CLK(SCLKA),CLK(MPLL),CLK(MPLL)},
/*
* bit31,bit30
* 0 , 0 SCLKA
* 0 , 1 MPLL
* 1 , 0 OTGPHY
* 1 , 1 INVALID
*/
[SELECTOR_F].route = {CLK(SCLKA),CLK(MPLL),CLK(OTGPHY),CLK(INVALID)},
/*
* bit31,bit30
* 0 , 0 SCLKA
* 0 , 1 EXT1
* 1 , 0 MPLL
* 1 , 1 INVALID
*/
[SELECTOR_G].route = {CLK(SCLKA),CLK(EXT1),CLK(MPLL),CLK(INVALID)},
#undef CLK
};
struct cgu_clk
{
/* off: reg offset. ce_busy_stop: CE offset + 1 is busy. coe : coe for div .div: div bit width */
/* ext: extal/pll sel bit. sels: {select} */
int off,ce_busy_stop,coe,div,sel,cache;
};
static struct cgu_clk cgu_clks[] = {
[CGU_DDR] = { CPM_DDRCDR, 27, 1, 4, SELECTOR_A},
[CGU_MACPHY] = { CPM_MACCDR, 27, 1, 8, SELECTOR_2},
[CGU_LCD] = { CPM_LPCDR, 26, 1, 8, SELECTOR_2},
[CGU_MSC_MUX]= { CPM_MSC0CDR, 27, 2, 0, SELECTOR_MSC_MUX},
[CGU_MSC0] = { CPM_MSC0CDR, 27, 2, 8, SELECTOR_MSC_MUX},
[CGU_MSC1] = { CPM_MSC1CDR, 27, 2, 8, SELECTOR_MSC_MUX},
[CGU_USB] = { CPM_USBCDR, 27, 1, 8, SELECTOR_C},
[CGU_SFC] = { CPM_SFCCDR, 27, 1, 8, SELECTOR_G},
[CGU_CIM] = { CPM_CIMCDR, 27, 1, 8, SELECTOR_2},
};
static uint32_t cgu_get_rate(struct clk *clk)
{
uint32_t x;
int no = CLK_CGU_NO(clk->flags);
if (clk->parent == get_clk_from_id(CLK_ID_EXT1))
return clk->parent->rate;
if (no == CGU_MSC_MUX)
return clk->parent->rate;
if (cgu_clks[no].div == 0)
return clk_get_rate(clk->parent);
x = cpm_inl(cgu_clks[no].off);
x &= (1 << cgu_clks[no].div) - 1;
x = (x + 1) * cgu_clks[no].coe;
return clk->parent->rate / x;
}
static int cgu_enable(struct clk *clk,int on)
{
int no = CLK_CGU_NO(clk->flags);
int reg_val;
int ce, stop, busy;
int prev_on;
uint32_t mask;
if (no == CGU_MSC_MUX)
return 0;
reg_val = cpm_inl(cgu_clks[no].off);
stop = cgu_clks[no].ce_busy_stop;
busy = stop + 1;
ce = stop + 2;
prev_on = !(reg_val & (1 << stop));
mask = (1 << cgu_clks[no].div) - 1;
if (prev_on && on)
goto cgu_enable_finish;
if ((!prev_on) && (!on))
goto cgu_enable_finish;
if (no == CGU_USB)
{
// usb phy clock enable
if (on)
reg_val &= ~(1 << 26);
else
reg_val |= (1 << 26);
}
if (on)
{
if (cgu_clks[no].cache && ((cgu_clks[no].cache & mask) != (reg_val & mask)))
{
int x = cgu_clks[no].cache;
x = (x & ~(0x1 << stop)) | (0x1 << ce);
cpm_outl(x, cgu_clks[no].off);
while (cpm_test_bit(busy, cgu_clks[no].off))
{
PRINT("wait stable.[%d][%s]\n", __LINE__, clk->name);
}
cpm_clear_bit(ce, cgu_clks[no].off);
x &= (1 << cgu_clks[no].div) - 1;
x = (x + 1) * cgu_clks[no].coe;
clk->rate = clk->parent->rate / x;
cgu_clks[no].cache = 0;
}
else
{
reg_val |= (1 << ce);
reg_val &= ~(1 << stop);
cpm_outl(reg_val, cgu_clks[no].off);
cpm_clear_bit(ce, cgu_clks[no].off);
}
}
else
{
reg_val |= (1 << ce);
reg_val |= (1 << stop);
cpm_outl(reg_val, cgu_clks[no].off);
cpm_clear_bit(ce, cgu_clks[no].off);
}
cgu_enable_finish:
return 0;
}
static int cgu_set_rate(struct clk *clk, uint32_t rate)
{
uint32_t x,tmp;
int i,no = CLK_CGU_NO(clk->flags);
int ce,stop,busy;
uint32_t reg_val,mask;
/* CLK_ID_CGU_I2S could be exten clk. */
if(no == CGU_MSC_MUX)
return -1;
mask = (1 << cgu_clks[no].div) - 1;
tmp = clk->parent->rate / cgu_clks[no].coe;
for (i = 1; i <= mask + 1; i++)
{
if ((tmp / i) <= rate)
break;
}
i--;
if (i > mask)
i = mask;
reg_val = cpm_inl(cgu_clks[no].off);
x = reg_val & ~mask;
x |= i;
stop = cgu_clks[no].ce_busy_stop;
busy = stop + 1;
ce = stop + 2;
if (x & (1 << stop))
{
cgu_clks[no].cache = x;
clk->rate = tmp / (i + 1);
}
else if ((mask & reg_val) != i)
{
x = (x & ~(0x1 << stop)) | (0x1 << ce);
cpm_outl(x, cgu_clks[no].off);
while (cpm_test_bit(busy, cgu_clks[no].off))
PRINT("wait stable.[%d][%s]\n", __LINE__, clk->name);
x &= ~(1 << ce);
cpm_outl(x, cgu_clks[no].off);
cgu_clks[no].cache = 0;
clk->rate = tmp / (i + 1);
}
return 0;
}
static struct clk* cgu_get_parent(struct clk *clk)
{
uint32_t no,cgu,idx,pidx;
no = CLK_CGU_NO(clk->flags);
cgu = cpm_inl(cgu_clks[no].off);
idx = cgu >> 30;
pidx = selector[cgu_clks[no].sel].route[idx];
if (pidx == CLK_ID_STOP || pidx == CLK_ID_INVALID)
return RT_NULL;
return get_clk_from_id(pidx);
}
static int cgu_set_parent(struct clk *clk, struct clk *parent)
{
int i,tmp;
int no = CLK_CGU_NO(clk->flags);
int ce,stop,busy;
uint32_t reg_val,cgu,mask;
stop = cgu_clks[no].ce_busy_stop;
busy = stop + 1;
ce = stop + 2;
mask = (1 << cgu_clks[no].div) - 1;
for(i = 0;i < 4;i++) {
if(selector[cgu_clks[no].sel].route[i] == get_clk_id(parent)){
break;
}
}
if(i >= 4)
return -1;
cgu = cpm_inl(cgu_clks[no].off);
reg_val = cgu;
if (cgu_clks[no].sel == SELECTOR_2)
{
if (i == 0)
cgu &= ~(1 << 31);
else
cgu |= (1 << 31);
}
else
{
cgu &= ~(3 << 30);
cgu |= ~(i << 30);
}
tmp = parent->rate / cgu_clks[no].coe;
for (i = 1; i <= mask + 1; i++)
{
if ((tmp / i) <= clk->rate)
break;
}
i--;
mask = (1 << cgu_clks[no].div) - 1;
cgu = (cgu & ~(0x1 << stop)) | (0x1 << ce);
cgu = cgu & ~mask;
cgu |= i;
if (reg_val & (1 << stop))
cgu_clks[no].cache = cgu;
else if ((mask & reg_val) != i)
{
cpm_outl(cgu, cgu_clks[no].off);
while (cpm_test_bit(busy, cgu_clks[no].off))
PRINT("wait stable.[%d][%s]\n", __LINE__, clk->name);
cgu &= ~(1 << ce);
cpm_outl(cgu, cgu_clks[no].off);
cgu_clks[no].cache = 0;
}
return 0;
}
static int cgu_is_enabled(struct clk *clk)
{
int no = CLK_CGU_NO(clk->flags);
int stop;
stop = cgu_clks[no].ce_busy_stop;
return !(cpm_inl(cgu_clks[no].off) & (1 << stop));
}
static struct clk_ops clk_cgu_ops =
{
.enable = cgu_enable,
.get_rate = cgu_get_rate,
.set_rate = cgu_set_rate,
.get_parent = cgu_get_parent,
.set_parent = cgu_set_parent,
};
void init_cgu_clk(struct clk *clk)
{
int no;
int id;
if (clk->flags & CLK_FLG_PARENT)
{
id = CLK_PARENT(clk->flags);
clk->parent = get_clk_from_id(id);
}
else
{
clk->parent = cgu_get_parent(clk);
}
no = CLK_CGU_NO(clk->flags);
cgu_clks[no].cache = 0;
clk->rate = cgu_get_rate(clk);
if (cgu_is_enabled(clk))
{
clk->flags |= CLK_FLG_ENABLE;
}
if (no == CGU_MSC_MUX)
clk->ops = RT_NULL;
else if(no == CGU_DDR)
{
// if(ddr_readl(DDRP_PIR) & DDRP_PIR_DLLBYP)
// {
///**
// * DDR request cpm to stop clk (0x9 << 28) DDR_CLKSTP_CFG (0x13012068)
// * CPM response ddr stop clk request (1 << 26) (0x1000002c)
// */
// cpm_set_bit(26,CPM_DDRCDR);
// REG32(0xb3012068) |= 0x9 << 28;
// }
// REG32(0xb3012088) |= 4 << 16;
}
else
clk->ops = &clk_cgu_ops;
}
/*********************************************************************************************************
** CGU_AUDIO
*********************************************************************************************************/
enum
{
SELECTOR_AUDIO = 0,
};
const struct clk_selectors audio_selector[] =
{
#define CLK(X) CLK_ID_##X
/*
* bit31,bit30
* 0 , 0 EXT1
* 0 , 1 APLL
* 1 , 0 EXT1
* 1 , 1 MPLL
*/
[SELECTOR_AUDIO].route = {CLK(EXT1),CLK(SCLKA),CLK(EXT1),CLK(MPLL)},
#undef CLK
};
static int audio_div_apll[64] =
{
8000 , 1 , 126000 ,
11025 , 2 , 182857 ,
12000 , 1 , 84000 ,
16000 , 1 , 63000 ,
22050 , 4 , 182857 ,
24000 , 1 , 42000 ,
32000 , 1 , 31500 ,
44100 , 7 , 160000 ,
48000 , 1 , 21000 ,
88200 , 21 , 240000 ,
96000 , 1 , 10500 ,
176400 , 42 , 240000 ,
192000 , 1 , 5250 ,
0
};
static int audio_div_mpll[64] =
{
8000 , 1 , 75000 ,
11025 , 4 , 217687 ,
12000 , 1 , 50000 ,
16000 , 1 , 37500 ,
22050 , 8 , 217687 ,
24000 , 1 , 25000 ,
32000 , 1 , 18750 ,
44100 , 16 , 217687 ,
48000 , 1 , 12500 ,
88200 , 25 , 170068 ,
96000 , 1 , 6250 ,
176400 , 75 , 255102 ,
192000 , 1 , 3125 ,
0
};
struct cgu_audio_clk
{
int off,en,maskm,bitm,maskn,bitn,maskd,bitd,sel,cache;
};
static struct cgu_audio_clk cgu_audio_clks[] =
{
[CGU_AUDIO_I2S] = { CPM_I2SCDR, 1<<29, 0x1f << 13, 13, 0x1fff, 0, SELECTOR_AUDIO},
[CGU_AUDIO_I2S1] = { CPM_I2SCDR1, -1, -1, -1, -1, -1, -1},
[CGU_AUDIO_PCM] = { CPM_PCMCDR, 1<<29, 0x1f << 13, 13, 0x1fff, 0, SELECTOR_AUDIO},
[CGU_AUDIO_PCM1] = { CPM_PCMCDR1, -1, -1, -1, -1, -1, -1},
};
static uint32_t cgu_audio_get_rate(struct clk *clk)
{
uint32_t m, n, d;
int no = CLK_CGU_AUDIO_NO(clk->flags);
if (clk->parent == get_clk_from_id(CLK_ID_EXT1))
return clk->parent->rate;
m = cpm_inl(cgu_audio_clks[no].off);
n = m & cgu_audio_clks[no].maskn;
m &= cgu_audio_clks[no].maskm;
if (no == CGU_AUDIO_I2S)
{
d = readl(I2S_PRI_DIV);
return (clk->parent->rate * m) / (n * ((d & 0x3f) + 1) * (64));
}
else if (no == CGU_AUDIO_PCM)
{
d = readl(PCM_PRI_DIV);
return (clk->parent->rate * m) / (n * (((d & 0x1f << 6) >> 6) + 1) * 8);
}
return 0;
}
static int cgu_audio_enable(struct clk *clk, int on)
{
int no = CLK_CGU_AUDIO_NO(clk->flags);
int reg_val;
if (on)
{
reg_val = cpm_inl(cgu_audio_clks[no].off);
if (reg_val & (cgu_audio_clks[no].en))
goto cgu_enable_finish;
if (!cgu_audio_clks[no].cache)
PRINT("must set rate before enable\n");
cpm_outl(cgu_audio_clks[no].cache, cgu_audio_clks[no].off);
cpm_outl(cgu_audio_clks[no].cache | cgu_audio_clks[no].en, cgu_audio_clks[no].off);
cgu_audio_clks[no].cache = 0;
}
else
{
reg_val = cpm_inl(cgu_audio_clks[no].off);
reg_val &= ~cgu_audio_clks[no].en;
cpm_outl(reg_val, cgu_audio_clks[no].off);
}
cgu_enable_finish:
return 0;
}
static int get_div_val(int max1,int max2,int machval, int* res1, int* res2)
{
int tmp1 = 0, tmp2 = 0;
for (tmp1 = 1; tmp1 < max1; tmp1++)
for (tmp2 = 1; tmp2 < max2; tmp2++)
if (tmp1 * tmp2 == machval)
break;
if (tmp1 * tmp2 != machval)
{
PRINT("can't find mach wal\n");
return -1;
}
*res1 = tmp1;
*res2 = tmp2;
return 0;
}
static int cgu_audio_calculate_set_rate(struct clk* clk, uint32_t rate, uint32_t pid)
{
int i,m,n,d,sync,tmp_val,d_max,sync_max;
int no = CLK_CGU_AUDIO_NO(clk->flags);
int n_max = cgu_audio_clks[no].maskn >> cgu_audio_clks[no].bitn;
int *audio_div;
if(pid == CLK_ID_MPLL)
{
audio_div = (int*)audio_div_mpll;
}
else if(pid == CLK_ID_SCLKA)
audio_div = (int*)audio_div_apll;
else
return 0;
for (i = 0; i < 50; i += 3)
{
if (audio_div[i] == rate)
break;
}
if(i >= 50)
{
PRINT("cgu aduio set rate err!\n");
return -1;
}
else
{
m = audio_div[i+1];
if(no == CGU_AUDIO_I2S)
{
#ifdef CONFIG_SND_ASOC_JZ_AIC_SPDIF_V13
m*=2;
#endif
d_max = 0x1ff;
tmp_val = audio_div[i + 2] / 64;
if (tmp_val > n_max)
{
if (get_div_val(n_max, d_max, tmp_val, &n, &d))
goto calculate_err;
}
else
{
n = tmp_val / 4;
d = 4;
}
tmp_val = cpm_inl(cgu_audio_clks[no].off)&(~(cgu_audio_clks[no].maskm|cgu_audio_clks[no].maskn));
tmp_val |= (m<<cgu_audio_clks[no].bitm)|(n<<cgu_audio_clks[no].bitn);
if (tmp_val & cgu_audio_clks[no].en)
{
cpm_outl(tmp_val, cgu_audio_clks[no].off);
}
else
{
cgu_audio_clks[no].cache = tmp_val;
}
cpm_outl(0,CPM_I2SCDR1);
writel(d - 1,I2S_PRI_DIV);
}
else if (no == CGU_AUDIO_PCM)
{
tmp_val = audio_div[i+2]/(8);
d_max = 0x7f;
if (tmp_val > n_max)
{
if (get_div_val(n_max, d_max, tmp_val, &n, &d))
goto calculate_err;
if (d > 0x3f)
{
tmp_val = d;
d_max = 0x3f, sync_max = 0x1f;
if (get_div_val(d_max, sync_max, tmp_val, &d, &sync))
goto calculate_err;
}
else
{
sync = 1;
}
}
else
{
n = tmp_val;
d = 1;
sync = 1;
}
tmp_val = cpm_inl(cgu_audio_clks[no].off)&(~(cgu_audio_clks[no].maskm|cgu_audio_clks[no].maskn));
tmp_val |= (m<<cgu_audio_clks[no].bitm)|(n<<cgu_audio_clks[no].bitn);
if (tmp_val & cgu_audio_clks[no].en)
{
cpm_outl(tmp_val, cgu_audio_clks[no].off);
}
else
{
cgu_audio_clks[no].cache = tmp_val;
}
writel(((d-1)|(sync-1)<<6),PCM_PRI_DIV);
}
}
clk->rate = rate;
return 0;
calculate_err:
PRINT("audio div Calculate err!\n");
return -1;
}
static struct clk* cgu_audio_get_parent(struct clk *clk)
{
uint32_t no,cgu,idx,pidx;
struct clk* pclk;
no = CLK_CGU_AUDIO_NO(clk->flags);
cgu = cpm_inl(cgu_audio_clks[no].off);
idx = cgu >> 30;
pidx = audio_selector[cgu_audio_clks[no].sel].route[idx];
if (pidx == CLK_ID_STOP || pidx == CLK_ID_INVALID)
{
return RT_NULL;
}
pclk = get_clk_from_id(pidx);
return pclk;
}
static int cgu_audio_set_parent(struct clk *clk, struct clk *parent)
{
int tmp_val,i;
int no = CLK_CGU_AUDIO_NO(clk->flags);
for(i = 0;i < 4;i++) {
if(audio_selector[cgu_audio_clks[no].sel].route[i] == get_clk_id(parent)){
break;
}
}
if(i >= 4)
return -1;
if (get_clk_id(parent) != CLK_ID_EXT1)
{
tmp_val = cpm_inl(cgu_audio_clks[no].off) & (~(3 << 30));
tmp_val |= i << 30;
cpm_outl(tmp_val, cgu_audio_clks[no].off);
}
else
{
tmp_val = cpm_inl(cgu_audio_clks[no].off) & (~(3 << 30 | 0x3fffff));
tmp_val |= i << 30 | 1 << 13 | 1;
cpm_outl(tmp_val, cgu_audio_clks[no].off);
}
return 0;
}
static int cgu_audio_set_rate(struct clk *clk, uint32_t rate)
{
int tmp_val;
int no = CLK_CGU_AUDIO_NO(clk->flags);
if (rate == 24000000)
{
cgu_audio_set_parent(clk, get_clk_from_id(CLK_ID_EXT1));
clk->parent = get_clk_from_id(CLK_ID_EXT1);
clk->rate = rate;
tmp_val = cpm_inl(cgu_audio_clks[no].off);
tmp_val &= ~0x3fffff;
tmp_val |= 1<<13|1;
if(tmp_val&cgu_audio_clks[no].en)
cpm_outl(tmp_val,cgu_audio_clks[no].off);
else
cgu_audio_clks[no].cache = tmp_val;
return 0;
}
else
{
if(get_clk_id(clk->parent) == CLK_ID_EXT1)
cgu_audio_set_parent(clk,get_clk_from_id(CLK_ID_SCLKA));
cgu_audio_calculate_set_rate(clk,rate,CLK_ID_SCLKA);
clk->parent = get_clk_from_id(CLK_ID_SCLKA);
}
return 0;
}
static int cgu_audio_is_enabled(struct clk *clk) {
int no,state;
no = CLK_CGU_AUDIO_NO(clk->flags);
state = (cpm_inl(cgu_audio_clks[no].off) & cgu_audio_clks[no].en);
return state;
}
static struct clk_ops clk_cgu_audio_ops =
{
.enable = cgu_audio_enable,
.get_rate = cgu_audio_get_rate,
.set_rate = cgu_audio_set_rate,
.get_parent = cgu_audio_get_parent,
.set_parent = cgu_audio_set_parent,
};
void init_cgu_audio_clk(struct clk *clk)
{
int no,id,tmp_val;
if (clk->flags & CLK_FLG_PARENT)
{
id = CLK_PARENT(clk->flags);
clk->parent = get_clk_from_id(id);
}
else
{
clk->parent = cgu_audio_get_parent(clk);
}
no = CLK_CGU_AUDIO_NO(clk->flags);
cgu_audio_clks[no].cache = 0;
if (cgu_audio_is_enabled(clk))
{
clk->flags |= CLK_FLG_ENABLE;
}
clk->rate = cgu_audio_get_rate(clk);
tmp_val = cpm_inl(cgu_audio_clks[no].off);
tmp_val &= ~0x3fffff;
tmp_val |= 1<<13|1;
if((tmp_val&cgu_audio_clks[no].en)&&(clk->rate == 24000000))
cpm_outl(tmp_val,cgu_audio_clks[no].off);
else
cgu_audio_clks[no].cache = tmp_val;
clk->ops = &clk_cgu_audio_ops;
}
/*********************************************************************************************************
** GATE
*********************************************************************************************************/
static int cpm_gate_enable(struct clk *clk,int on)
{
int bit = CLK_GATE_BIT(clk->flags);
uint32_t clkgr[2] = {CPM_CLKGR};
if (on)
{
cpm_clear_bit(bit % 32, clkgr[bit / 32]);
}
else
{
cpm_set_bit(bit % 32, clkgr[bit / 32]);
}
return 0;
}
static struct clk_ops clk_gate_ops =
{
.enable = cpm_gate_enable,
};
void init_gate_clk(struct clk *clk)
{
int id = 0;
static uint32_t clkgr[2]={0};
static int clkgr_init = 0;
int bit = CLK_GATE_BIT(clk->flags);
if (clkgr_init == 0)
{
clkgr[0] = cpm_inl(CPM_CLKGR);
clkgr_init = 1;
}
if (clk->flags & CLK_FLG_PARENT)
{
id = CLK_PARENT(clk->flags);
clk->parent = get_clk_from_id(id);
}
else
clk->parent = get_clk_from_id(CLK_ID_EXT1);
clk->rate = clk_get_rate(clk->parent);
if (clkgr[bit / 32] & (1 << (bit % 32)))
{
clk->flags &= ~(CLK_FLG_ENABLE);
//cpm_gate_enable(clk,0);
}
else
{
clk->flags |= CLK_FLG_ENABLE;
//cpm_gate_enable(clk,1);
}
clk->ops = &clk_gate_ops;
}
/*********************************************************************************************************
** CLK function
*********************************************************************************************************/
static void init_clk_parent(struct clk *p)
{
int init = 0;
if (!p)
return;
if (p->init_state)
{
p->count = 1;
p->init_state = 0;
init = 1;
}
if (p->count == 0)
{
PRINT("%s clk should be opened!\n", p->name);
p->count = 1;
}
if (!init)
p->count ++;
}
struct clk *clk_get(const char *id)
{
int i;
struct clk *retval = RT_NULL;
struct clk *clk_srcs = get_clk_from_id(0);
struct clk *parent_clk = RT_NULL;
for (i = 0; i < get_clk_sources_size(); i++)
{
if (id && clk_srcs[i].name && !rt_strcmp(id, clk_srcs[i].name))
{
if (clk_srcs[i].flags & CLK_FLG_NOALLOC)
return &clk_srcs[i];
retval = rt_malloc(sizeof(struct clk));
if (!retval)
return (RT_NULL);
rt_memcpy(retval, &clk_srcs[i], sizeof(struct clk));
retval->flags = 0;
retval->source = &clk_srcs[i];
if (CLK_FLG_RELATIVE & clk_srcs[i].flags)
{
parent_clk = get_clk_from_id(CLK_RELATIVE(clk_srcs[i].flags));
parent_clk->child = RT_NULL;
}
retval->count = 0;
return retval;
}
}
return RT_NULL;
}
int clk_enable(struct clk *clk)
{
int count;
if (!clk)
return -RT_EIO;
/**
* if it has parent clk,first it will control itself,then it will control parent.
* if it hasn't parent clk,it will control itself.
*/
if(clk->source)
{
count = ++clk->count;
if (count != 1)
return 0;
clk->flags |= CLK_FLG_ENABLE;
clk = clk->source;
if (clk->init_state)
{
clk->count = 1;
clk->init_state = 0;
return 0;
}
}
count = ++clk->count;
if(count == 1)
{
if(clk->parent)
{
clk_enable(clk->parent);
}
if(clk->ops && clk->ops->enable)
{
clk->ops->enable(clk,1);
}
clk->flags |= CLK_FLG_ENABLE;
}
return 0;
}
int clk_is_enabled(struct clk *clk)
{
/* if(clk->source) */
/* clk = clk->source; */
return !!(clk->flags & CLK_FLG_ENABLE);
}
void clk_disable(struct clk *clk)
{
int count;
if (!clk)
return;
/**
* if it has parent clk,first it will control itself,then it will control parent.
* if it hasn't parent clk,it will control itself.
*/
if (clk->source)
{
count = --clk->count;
if (count != 0)
{
if (count < 0)
{
clk->count = 0;
PRINT("%s isn't enabled!\n", clk->name);
return;
}
}
clk->flags &= ~CLK_FLG_ENABLE;
clk = clk->source;
}
count = --clk->count;
if (count < 0)
{
clk->count++;
return;
}
if(count == 0)
{
if(clk->ops && clk->ops->enable)
clk->ops->enable(clk,0);
clk->flags &= ~CLK_FLG_ENABLE;
if(clk->parent)
clk_disable(clk->parent);
}
}
uint32_t clk_get_rate(struct clk *clk)
{
if (!clk)
return 0;
if (clk->source)
clk = clk->source;
return clk ? clk->rate : 0;
}
void clk_put(struct clk *clk)
{
struct clk *parent_clk;
if (clk && !(clk->flags & CLK_FLG_NOALLOC))
{
if (clk->source && clk->count && clk->source->count > 0)
{
if (--(clk->source->count) == 0)
clk->source->init_state = 1;
}
if (CLK_FLG_RELATIVE & clk->source->flags)
{
parent_clk = get_clk_from_id(CLK_RELATIVE(clk->source->flags));
parent_clk->child = clk->source;
}
rt_free(clk);
}
}
int clk_set_rate(struct clk *clk, uint32_t rate)
{
int ret = 0;
if (!clk)
return -1;
if (clk->source)
clk = clk->source;
if (!clk->ops || !clk->ops->set_rate)
return -1;
if (clk->rate != rate)
ret = clk->ops->set_rate(clk, rate);
return ret;
}
int init_all_clk(void)
{
int i;
struct clk *clk_srcs = get_clk_from_id(0);
int clk_srcs_size = get_clk_sources_size();
PRINT("Init all clock ...\n");
for (i = 0; i < clk_srcs_size; i++)
{
clk_srcs[i].CLK_ID = i;
if (clk_srcs[i].flags & CLK_FLG_CPCCR)
{
init_cpccr_clk(&clk_srcs[i]);
}
if (clk_srcs[i].flags & CLK_FLG_CGU)
{
init_cgu_clk(&clk_srcs[i]);
}
if (clk_srcs[i].flags & CLK_FLG_CGU_AUDIO)
{
init_cgu_audio_clk(&clk_srcs[i]);
}
if (clk_srcs[i].flags & CLK_FLG_PLL)
{
init_ext_pll(&clk_srcs[i]);
}
if (clk_srcs[i].flags & CLK_FLG_NOALLOC)
{
init_ext_pll(&clk_srcs[i]);
}
if (clk_srcs[i].flags & CLK_FLG_GATE)
{
init_gate_clk(&clk_srcs[i]);
}
if (clk_srcs[i].flags & CLK_FLG_ENABLE)
clk_srcs[i].init_state = 1;
}
for (i = 0; i < clk_srcs_size; i++)
{
if (clk_srcs[i].parent && clk_srcs[i].init_state)
init_clk_parent(clk_srcs[i].parent);
}
PRINT("CCLK:%luMHz L2CLK:%luMhz H0CLK:%luMHz H2CLK:%luMhz PCLK:%luMhz\n",
clk_srcs[CLK_ID_CCLK].rate/1000/1000,
clk_srcs[CLK_ID_L2CLK].rate/1000/1000,
clk_srcs[CLK_ID_H0CLK].rate/1000/1000,
clk_srcs[CLK_ID_H2CLK].rate/1000/1000,
clk_srcs[CLK_ID_PCLK].rate/1000/1000);
return 0;
}
INIT_BOARD_EXPORT(init_all_clk);
#ifdef RT_USING_FINSH
#include <finsh.h>
#endif
int clk_dump(int argc, char** argv)
{
// dump = 1;
rt_kprintf("CCLK:%luMHz L2CLK:%luMhz H0CLK:%luMHz H2CLK:%luMhz PCLK:%luMhz\n",
clk_srcs[CLK_ID_CCLK].rate/1000/1000,
clk_srcs[CLK_ID_L2CLK].rate/1000/1000,
clk_srcs[CLK_ID_H0CLK].rate/1000/1000,
clk_srcs[CLK_ID_H2CLK].rate/1000/1000,
clk_srcs[CLK_ID_PCLK].rate/1000/1000);
return 0;
}
MSH_CMD_EXPORT(clk_dump, dump clock debug log);
int clk(int argc, char**argv)
{
uint32_t value;
value = cpm_inl(CPM_CLKGR);
rt_kprintf("CLKGR = 0x%08x\n", value);
value &= ~(1 << 14);
cpm_outl(value, CPM_CLKGR);
value = cpm_inl(CPM_CLKGR);
rt_kprintf("CLKGR = 0x%08x\n", value);
return 0;
}
MSH_CMD_EXPORT(clk, clock information dump);
int uart0_clk(void)
{
uint32_t value;
value = cpm_inl(CPM_CLKGR);
value &= ~(1 << 14);
cpm_outl(value, CPM_CLKGR);
return 0;
}
int uart1_clk(void)
{
uint32_t value;
value = cpm_inl(CPM_CLKGR);
value &= ~(1 << 15);
cpm_outl(value, CPM_CLKGR);
return 0;
}