rt-thread-official/bsp/lm3s/Libraries/driverlib/sysctl.c

2366 lines
83 KiB
C

//*****************************************************************************
//
// sysctl.c - Driver for the system controller.
//
// Copyright (c) 2005-2010 Texas Instruments Incorporated. All rights reserved.
// Software License Agreement
//
// Texas Instruments (TI) is supplying this software for use solely and
// exclusively on TI's microcontroller products. The software is owned by
// TI and/or its suppliers, and is protected under applicable copyright
// laws. You may not combine this software with "viral" open-source
// software in order to form a larger program.
//
// THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS.
// NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
// NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
// CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
// DAMAGES, FOR ANY REASON WHATSOEVER.
//
// This is part of revision 6459 of the Stellaris Peripheral Driver Library.
//
//*****************************************************************************
//*****************************************************************************
//
//! \addtogroup sysctl_api
//! @{
//
//*****************************************************************************
#include "inc/hw_ints.h"
#include "inc/hw_nvic.h"
#include "inc/hw_sysctl.h"
#include "inc/hw_types.h"
#include "driverlib/cpu.h"
#include "driverlib/debug.h"
#include "driverlib/interrupt.h"
#include "driverlib/sysctl.h"
//*****************************************************************************
//
// This macro extracts the array index out of the peripheral number.
//
//*****************************************************************************
#define SYSCTL_PERIPH_INDEX(a) (((a) >> 28) & 0xf)
//*****************************************************************************
//
// This macro constructs the peripheral bit mask from the peripheral number.
//
//*****************************************************************************
#define SYSCTL_PERIPH_MASK(a) (((a) & 0xffff) << (((a) & 0x001f0000) >> 16))
//*****************************************************************************
//
// An array that maps the "peripheral set" number (which is stored in the upper
// nibble of the SYSCTL_PERIPH_* defines) to the SYSCTL DC? register that
// contains the peripheral present bit for that peripheral.
//
//*****************************************************************************
static const unsigned long g_pulDCRegs[] =
{
SYSCTL_DC1,
SYSCTL_DC2,
SYSCTL_DC4,
SYSCTL_DC1
};
//*****************************************************************************
//
// An array that maps the "peripheral set" number (which is stored in the upper
// nibble of the SYSCTL_PERIPH_* defines) to the SYSCTL_SRCR? register that
// controls the software reset for that peripheral.
//
//*****************************************************************************
static const unsigned long g_pulSRCRRegs[] =
{
SYSCTL_SRCR0,
SYSCTL_SRCR1,
SYSCTL_SRCR2
};
//*****************************************************************************
//
// An array that maps the "peripheral set" number (which is stored in the upper
// nibble of the SYSCTL_PERIPH_* defines) to the SYSCTL_RCGC? register that
// controls the run-mode enable for that peripheral.
//
//*****************************************************************************
static const unsigned long g_pulRCGCRegs[] =
{
SYSCTL_RCGC0,
SYSCTL_RCGC1,
SYSCTL_RCGC2
};
//*****************************************************************************
//
// An array that maps the "peripheral set" number (which is stored in the upper
// nibble of the SYSCTL_PERIPH_* defines) to the SYSCTL_SCGC? register that
// controls the sleep-mode enable for that peripheral.
//
//*****************************************************************************
static const unsigned long g_pulSCGCRegs[] =
{
SYSCTL_SCGC0,
SYSCTL_SCGC1,
SYSCTL_SCGC2
};
//*****************************************************************************
//
// An array that maps the "peripheral set" number (which is stored in the upper
// nibble of the SYSCTL_PERIPH_* defines) to the SYSCTL_DCGC? register that
// controls the deep-sleep-mode enable for that peripheral.
//
//*****************************************************************************
static const unsigned long g_pulDCGCRegs[] =
{
SYSCTL_DCGC0,
SYSCTL_DCGC1,
SYSCTL_DCGC2
};
//*****************************************************************************
//
// An array that maps the crystal number in RCC to a frequency.
//
//*****************************************************************************
static const unsigned long g_pulXtals[] =
{
1000000,
1843200,
2000000,
2457600,
3579545,
3686400,
4000000,
4096000,
4915200,
5000000,
5120000,
6000000,
6144000,
7372800,
8000000,
8192000,
10000000,
12000000,
12288000,
13560000,
14318180,
16000000,
16384000
};
//*****************************************************************************
//
//! \internal
//! Checks a peripheral identifier.
//!
//! \param ulPeripheral is the peripheral identifier.
//!
//! This function determines if a peripheral identifier is valid.
//!
//! \return Returns \b true if the peripheral identifier is valid and \b false
//! otherwise.
//
//*****************************************************************************
#ifdef DEBUG
static tBoolean
SysCtlPeripheralValid(unsigned long ulPeripheral)
{
return((ulPeripheral == SYSCTL_PERIPH_ADC0) ||
(ulPeripheral == SYSCTL_PERIPH_ADC1) ||
(ulPeripheral == SYSCTL_PERIPH_CAN0) ||
(ulPeripheral == SYSCTL_PERIPH_CAN1) ||
(ulPeripheral == SYSCTL_PERIPH_CAN2) ||
(ulPeripheral == SYSCTL_PERIPH_COMP0) ||
(ulPeripheral == SYSCTL_PERIPH_COMP1) ||
(ulPeripheral == SYSCTL_PERIPH_COMP2) ||
(ulPeripheral == SYSCTL_PERIPH_EPI0) ||
(ulPeripheral == SYSCTL_PERIPH_ETH) ||
(ulPeripheral == SYSCTL_PERIPH_GPIOA) ||
(ulPeripheral == SYSCTL_PERIPH_GPIOB) ||
(ulPeripheral == SYSCTL_PERIPH_GPIOC) ||
(ulPeripheral == SYSCTL_PERIPH_GPIOD) ||
(ulPeripheral == SYSCTL_PERIPH_GPIOE) ||
(ulPeripheral == SYSCTL_PERIPH_GPIOF) ||
(ulPeripheral == SYSCTL_PERIPH_GPIOG) ||
(ulPeripheral == SYSCTL_PERIPH_GPIOH) ||
(ulPeripheral == SYSCTL_PERIPH_GPIOJ) ||
(ulPeripheral == SYSCTL_PERIPH_HIBERNATE) ||
(ulPeripheral == SYSCTL_PERIPH_I2C0) ||
(ulPeripheral == SYSCTL_PERIPH_I2C1) ||
(ulPeripheral == SYSCTL_PERIPH_I2S0) ||
(ulPeripheral == SYSCTL_PERIPH_IEEE1588) ||
(ulPeripheral == SYSCTL_PERIPH_MPU) ||
(ulPeripheral == SYSCTL_PERIPH_PLL) ||
(ulPeripheral == SYSCTL_PERIPH_PWM) ||
(ulPeripheral == SYSCTL_PERIPH_QEI0) ||
(ulPeripheral == SYSCTL_PERIPH_QEI1) ||
(ulPeripheral == SYSCTL_PERIPH_SSI0) ||
(ulPeripheral == SYSCTL_PERIPH_SSI1) ||
(ulPeripheral == SYSCTL_PERIPH_TEMP) ||
(ulPeripheral == SYSCTL_PERIPH_TIMER0) ||
(ulPeripheral == SYSCTL_PERIPH_TIMER1) ||
(ulPeripheral == SYSCTL_PERIPH_TIMER2) ||
(ulPeripheral == SYSCTL_PERIPH_TIMER3) ||
(ulPeripheral == SYSCTL_PERIPH_UART0) ||
(ulPeripheral == SYSCTL_PERIPH_UART1) ||
(ulPeripheral == SYSCTL_PERIPH_UART2) ||
(ulPeripheral == SYSCTL_PERIPH_UDMA) ||
(ulPeripheral == SYSCTL_PERIPH_USB0) ||
(ulPeripheral == SYSCTL_PERIPH_WDOG0) ||
(ulPeripheral == SYSCTL_PERIPH_WDOG1));
}
#endif
//*****************************************************************************
//
//! Gets the size of the SRAM.
//!
//! This function determines the size of the SRAM on the Stellaris device.
//!
//! \return The total number of bytes of SRAM.
//
//*****************************************************************************
unsigned long
SysCtlSRAMSizeGet(void)
{
//
// Compute the size of the SRAM.
//
return(((HWREG(SYSCTL_DC0) & SYSCTL_DC0_SRAMSZ_M) >> 8) + 0x100);
}
//*****************************************************************************
//
//! Gets the size of the flash.
//!
//! This function determines the size of the flash on the Stellaris device.
//!
//! \return The total number of bytes of flash.
//
//*****************************************************************************
unsigned long
SysCtlFlashSizeGet(void)
{
//
// Compute the size of the flash.
//
return(((HWREG(SYSCTL_DC0) & SYSCTL_DC0_FLASHSZ_M) << 11) + 0x800);
}
//*****************************************************************************
//
//! Determines if a pin is present.
//!
//! \param ulPin is the pin in question.
//!
//! Determines if a particular pin is present in the device. The PWM, analog
//! comparators, ADC, and timers have a varying number of pins across members
//! of the Stellaris family; this will determine which are present on this
//! device.
//!
//! The \e ulPin argument must be only one of the following values:
//! \b SYSCTL_PIN_PWM0, \b SYSCTL_PIN_PWM1, \b SYSCTL_PIN_PWM2,
//! \b SYSCTL_PIN_PWM3, \b SYSCTL_PIN_PWM4, \b SYSCTL_PIN_PWM5,
//! \b SYSCTL_PIN_C0MINUS, \b SYSCTL_PIN_C0PLUS, \b SYSCTL_PIN_C0O,
//! \b SYSCTL_PIN_C1MINUS, \b SYSCTL_PIN_C1PLUS, \b SYSCTL_PIN_C1O,
//! \b SYSCTL_PIN_C2MINUS, \b SYSCTL_PIN_C2PLUS, \b SYSCTL_PIN_C2O,
//! \b SYSCTL_PIN_ADC0, \b SYSCTL_PIN_ADC1, \b SYSCTL_PIN_ADC2,
//! \b SYSCTL_PIN_ADC3, \b SYSCTL_PIN_ADC4, \b SYSCTL_PIN_ADC5,
//! \b SYSCTL_PIN_ADC6, \b SYSCTL_PIN_ADC7, \b SYSCTL_PIN_CCP0,
//! \b SYSCTL_PIN_CCP1, \b SYSCTL_PIN_CCP2, \b SYSCTL_PIN_CCP3,
//! \b SYSCTL_PIN_CCP4, \b SYSCTL_PIN_CCP5, \b SYSCTL_PIN_CCP6,
//! \b SYSCTL_PIN_CCP7, \b SYSCTL_PIN_32KHZ, or \b SYSCTL_PIN_MC_FAULT0.
//!
//! \return Returns \b true if the specified pin is present and \b false if it
//! is not.
//
//*****************************************************************************
tBoolean
SysCtlPinPresent(unsigned long ulPin)
{
//
// Check the arguments.
//
ASSERT((ulPin == SYSCTL_PIN_PWM0) ||
(ulPin == SYSCTL_PIN_PWM1) ||
(ulPin == SYSCTL_PIN_PWM2) ||
(ulPin == SYSCTL_PIN_PWM3) ||
(ulPin == SYSCTL_PIN_PWM4) ||
(ulPin == SYSCTL_PIN_PWM5) ||
(ulPin == SYSCTL_PIN_C0MINUS) ||
(ulPin == SYSCTL_PIN_C0PLUS) ||
(ulPin == SYSCTL_PIN_C0O) ||
(ulPin == SYSCTL_PIN_C1MINUS) ||
(ulPin == SYSCTL_PIN_C1PLUS) ||
(ulPin == SYSCTL_PIN_C1O) ||
(ulPin == SYSCTL_PIN_C2MINUS) ||
(ulPin == SYSCTL_PIN_C2PLUS) ||
(ulPin == SYSCTL_PIN_C2O) ||
(ulPin == SYSCTL_PIN_MC_FAULT0) ||
(ulPin == SYSCTL_PIN_ADC0) ||
(ulPin == SYSCTL_PIN_ADC1) ||
(ulPin == SYSCTL_PIN_ADC2) ||
(ulPin == SYSCTL_PIN_ADC3) ||
(ulPin == SYSCTL_PIN_ADC4) ||
(ulPin == SYSCTL_PIN_ADC5) ||
(ulPin == SYSCTL_PIN_ADC6) ||
(ulPin == SYSCTL_PIN_ADC7) ||
(ulPin == SYSCTL_PIN_CCP0) ||
(ulPin == SYSCTL_PIN_CCP1) ||
(ulPin == SYSCTL_PIN_CCP2) ||
(ulPin == SYSCTL_PIN_CCP3) ||
(ulPin == SYSCTL_PIN_CCP4) ||
(ulPin == SYSCTL_PIN_CCP5) ||
(ulPin == SYSCTL_PIN_32KHZ));
//
// Determine if this pin is present.
//
if(HWREG(SYSCTL_DC3) & ulPin)
{
return(true);
}
else
{
return(false);
}
}
//*****************************************************************************
//
//! Determines if a peripheral is present.
//!
//! \param ulPeripheral is the peripheral in question.
//!
//! Determines if a particular peripheral is present in the device. Each
//! member of the Stellaris family has a different peripheral set; this will
//! determine which are present on this device.
//!
//! The \e ulPeripheral parameter must be only one of the following values:
//! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0,
//! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CAN2, \b SYSCTL_PERIPH_COMP0,
//! \b SYSCTL_PERIPH_COMP1, \b SYSCTL_PERIPH_COMP2, \b SYSCTL_PERIPH_EPI0,
//! \b SYSCTL_PERIPH_ETH, \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB,
//! \b SYSCTL_PERIPH_GPIOC, \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE,
//! \b SYSCTL_PERIPH_GPIOF, \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH,
//! \b SYSCTL_PERIPH_GPIOJ, \b SYSCTL_PERIPH_HIBERNATE, \b SYSCTL_PERIPH_I2C0,
//! \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2S0, \b SYSCTL_PERIPH_IEEE1588,
//! \b SYSCTL_PERIPH_MPU, \b SYSCTL_PERIPH_PLL, \b SYSCTL_PERIPH_PWM,
//! \b SYSCTL_PERIPH_QEI0, \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0,
//! \b SYSCTL_PERIPH_SSI1, \b SYSCTL_PERIPH_TIMER0, \b SYSCTL_PERIPH_TIMER1,
//! \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3, \b SYSCTL_PERIPH_TEMP,
//! \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1, \b SYSCTL_PERIPH_UART2,
//! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0, or
//! \b SYSCTL_PERIPH_WDOG1.
//!
//! \return Returns \b true if the specified peripheral is present and \b false
//! if it is not.
//
//*****************************************************************************
tBoolean
SysCtlPeripheralPresent(unsigned long ulPeripheral)
{
//
// Check the arguments.
//
ASSERT(SysCtlPeripheralValid(ulPeripheral));
//
// Read the correct DC register and determine if this peripheral exists.
//
if(ulPeripheral == SYSCTL_PERIPH_USB0)
{
//
// USB is a special case since the DC bit is missing for USB0.
//
if(HWREG(SYSCTL_DC6) & SYSCTL_DC6_USB0_M)
{
return(true);
}
else
{
return(false);
}
}
else if(HWREG(g_pulDCRegs[SYSCTL_PERIPH_INDEX(ulPeripheral)]) &
SYSCTL_PERIPH_MASK(ulPeripheral))
{
return(true);
}
else
{
return(false);
}
}
//*****************************************************************************
//
//! Performs a software reset of a peripheral.
//!
//! \param ulPeripheral is the peripheral to reset.
//!
//! This function performs a software reset of the specified peripheral. An
//! individual peripheral reset signal is asserted for a brief period and then
//! deasserted, returning the internal state of the peripheral to its reset
//! condition.
//!
//! The \e ulPeripheral parameter must be only one of the following values:
//! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0,
//! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CAN2, \b SYSCTL_PERIPH_COMP0,
//! \b SYSCTL_PERIPH_COMP1, \b SYSCTL_PERIPH_COMP2, \b SYSCTL_PERIPH_EPI0,
//! \b SYSCTL_PERIPH_ETH, \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB,
//! \b SYSCTL_PERIPH_GPIOC, \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE,
//! \b SYSCTL_PERIPH_GPIOF, \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH,
//! \b SYSCTL_PERIPH_GPIOJ, \b SYSCTL_PERIPH_HIBERNATE, \b SYSCTL_PERIPH_I2C0,
//! \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2S0, \b SYSCTL_PERIPH_PWM,
//! \b SYSCTL_PERIPH_QEI0, \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0,
//! \b SYSCTL_PERIPH_SSI1, \b SYSCTL_PERIPH_TIMER0, \b SYSCTL_PERIPH_TIMER1,
//! \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3, \b SYSCTL_PERIPH_TEMP,
//! \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1, \b SYSCTL_PERIPH_UART2,
//! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0, or
//! \b SYSCTL_PERIPH_WDOG1.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlPeripheralReset(unsigned long ulPeripheral)
{
volatile unsigned long ulDelay;
//
// Check the arguments.
//
ASSERT(SysCtlPeripheralValid(ulPeripheral));
//
// Put the peripheral into the reset state.
//
HWREG(g_pulSRCRRegs[SYSCTL_PERIPH_INDEX(ulPeripheral)]) |=
SYSCTL_PERIPH_MASK(ulPeripheral);
//
// Delay for a little bit.
//
for(ulDelay = 0; ulDelay < 16; ulDelay++)
{
}
//
// Take the peripheral out of the reset state.
//
HWREG(g_pulSRCRRegs[SYSCTL_PERIPH_INDEX(ulPeripheral)]) &=
~SYSCTL_PERIPH_MASK(ulPeripheral);
}
//*****************************************************************************
//
//! Enables a peripheral.
//!
//! \param ulPeripheral is the peripheral to enable.
//!
//! Peripherals are enabled with this function. At power-up, all peripherals
//! are disabled; they must be enabled in order to operate or respond to
//! register reads/writes.
//!
//! The \e ulPeripheral parameter must be only one of the following values:
//! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0,
//! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CAN2, \b SYSCTL_PERIPH_COMP0,
//! \b SYSCTL_PERIPH_COMP1, \b SYSCTL_PERIPH_COMP2, \b SYSCTL_PERIPH_EPI0,
//! \b SYSCTL_PERIPH_ETH, \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB,
//! \b SYSCTL_PERIPH_GPIOC, \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE,
//! \b SYSCTL_PERIPH_GPIOF, \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH,
//! \b SYSCTL_PERIPH_GPIOJ, \b SYSCTL_PERIPH_HIBERNATE, \b SYSCTL_PERIPH_I2C0,
//! \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2S0, \b SYSCTL_PERIPH_PWM,
//! \b SYSCTL_PERIPH_QEI0, \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0,
//! \b SYSCTL_PERIPH_SSI1, \b SYSCTL_PERIPH_TIMER0, \b SYSCTL_PERIPH_TIMER1,
//! \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3, \b SYSCTL_PERIPH_TEMP,
//! \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1, \b SYSCTL_PERIPH_UART2,
//! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0, or
//! \b SYSCTL_PERIPH_WDOG1.
//!
//! \note It takes five clock cycles after the write to enable a peripheral
//! before the the peripheral is actually enabled. During this time, attempts
//! to access the peripheral will result in a bus fault. Care should be taken
//! to ensure that the peripheral is not accessed during this brief time
//! period.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlPeripheralEnable(unsigned long ulPeripheral)
{
//
// Check the arguments.
//
ASSERT(SysCtlPeripheralValid(ulPeripheral));
//
// Enable this peripheral.
//
HWREG(g_pulRCGCRegs[SYSCTL_PERIPH_INDEX(ulPeripheral)]) |=
SYSCTL_PERIPH_MASK(ulPeripheral);
}
//*****************************************************************************
//
//! Disables a peripheral.
//!
//! \param ulPeripheral is the peripheral to disable.
//!
//! Peripherals are disabled with this function. Once disabled, they will not
//! operate or respond to register reads/writes.
//!
//! The \e ulPeripheral parameter must be only one of the following values:
//! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0,
//! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CAN2, \b SYSCTL_PERIPH_COMP0,
//! \b SYSCTL_PERIPH_COMP1, \b SYSCTL_PERIPH_COMP2, \b SYSCTL_PERIPH_EPI0,
//! \b SYSCTL_PERIPH_ETH, \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB,
//! \b SYSCTL_PERIPH_GPIOC, \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE,
//! \b SYSCTL_PERIPH_GPIOF, \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH,
//! \b SYSCTL_PERIPH_GPIOJ, \b SYSCTL_PERIPH_HIBERNATE, \b SYSCTL_PERIPH_I2C0,
//! \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2S0, \b SYSCTL_PERIPH_PWM,
//! \b SYSCTL_PERIPH_QEI0, \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0,
//! \b SYSCTL_PERIPH_SSI1, \b SYSCTL_PERIPH_TIMER0, \b SYSCTL_PERIPH_TIMER1,
//! \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3, \b SYSCTL_PERIPH_TEMP,
//! \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1, \b SYSCTL_PERIPH_UART2,
//! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0, or
//! \b SYSCTL_PERIPH_WDOG1.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlPeripheralDisable(unsigned long ulPeripheral)
{
//
// Check the arguments.
//
ASSERT(SysCtlPeripheralValid(ulPeripheral));
//
// Disable this peripheral.
//
HWREG(g_pulRCGCRegs[SYSCTL_PERIPH_INDEX(ulPeripheral)]) &=
~SYSCTL_PERIPH_MASK(ulPeripheral);
}
//*****************************************************************************
//
//! Enables a peripheral in sleep mode.
//!
//! \param ulPeripheral is the peripheral to enable in sleep mode.
//!
//! This function allows a peripheral to continue operating when the processor
//! goes into sleep mode. Since the clocking configuration of the device does
//! not change, any peripheral can safely continue operating while the
//! processor is in sleep mode, and can therefore wake the processor from sleep
//! mode.
//!
//! Sleep mode clocking of peripherals must be enabled via
//! SysCtlPeripheralClockGating(); if disabled, the peripheral sleep mode
//! configuration is maintained but has no effect when sleep mode is entered.
//!
//! The \e ulPeripheral parameter must be only one of the following values:
//! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0,
//! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CAN2, \b SYSCTL_PERIPH_COMP0,
//! \b SYSCTL_PERIPH_COMP1, \b SYSCTL_PERIPH_COMP2, \b SYSCTL_PERIPH_EPI0,
//! \b SYSCTL_PERIPH_ETH, \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB,
//! \b SYSCTL_PERIPH_GPIOC, \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE,
//! \b SYSCTL_PERIPH_GPIOF, \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH,
//! \b SYSCTL_PERIPH_GPIOJ, \b SYSCTL_PERIPH_HIBERNATE, \b SYSCTL_PERIPH_I2C0,
//! \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2S0, \b SYSCTL_PERIPH_PWM,
//! \b SYSCTL_PERIPH_QEI0, \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0,
//! \b SYSCTL_PERIPH_SSI1, \b SYSCTL_PERIPH_TIMER0, \b SYSCTL_PERIPH_TIMER1,
//! \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3, \b SYSCTL_PERIPH_TEMP,
//! \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1, \b SYSCTL_PERIPH_UART2,
//! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0, or
//! \b SYSCTL_PERIPH_WDOG1.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlPeripheralSleepEnable(unsigned long ulPeripheral)
{
//
// Check the arguments.
//
ASSERT(SysCtlPeripheralValid(ulPeripheral));
//
// Enable this peripheral in sleep mode.
//
HWREG(g_pulSCGCRegs[SYSCTL_PERIPH_INDEX(ulPeripheral)]) |=
SYSCTL_PERIPH_MASK(ulPeripheral);
}
//*****************************************************************************
//
//! Disables a peripheral in sleep mode.
//!
//! \param ulPeripheral is the peripheral to disable in sleep mode.
//!
//! This function causes a peripheral to stop operating when the processor goes
//! into sleep mode. Disabling peripherals while in sleep mode helps to lower
//! the current draw of the device. If enabled (via SysCtlPeripheralEnable()),
//! the peripheral will automatically resume operation when the processor
//! leaves sleep mode, maintaining its entire state from before sleep mode was
//! entered.
//!
//! Sleep mode clocking of peripherals must be enabled via
//! SysCtlPeripheralClockGating(); if disabled, the peripheral sleep mode
//! configuration is maintained but has no effect when sleep mode is entered.
//!
//! The \e ulPeripheral parameter must be only one of the following values:
//! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0,
//! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CAN2, \b SYSCTL_PERIPH_COMP0,
//! \b SYSCTL_PERIPH_COMP1, \b SYSCTL_PERIPH_COMP2, \b SYSCTL_PERIPH_EPI0,
//! \b SYSCTL_PERIPH_ETH, \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB,
//! \b SYSCTL_PERIPH_GPIOC, \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE,
//! \b SYSCTL_PERIPH_GPIOF, \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH,
//! \b SYSCTL_PERIPH_GPIOJ, \b SYSCTL_PERIPH_HIBERNATE, \b SYSCTL_PERIPH_I2C0,
//! \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2S0, \b SYSCTL_PERIPH_PWM,
//! \b SYSCTL_PERIPH_QEI0, \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0,
//! \b SYSCTL_PERIPH_SSI1, \b SYSCTL_PERIPH_TIMER0, \b SYSCTL_PERIPH_TIMER1,
//! \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3, \b SYSCTL_PERIPH_TEMP,
//! \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1, \b SYSCTL_PERIPH_UART2,
//! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0, or
//! \b SYSCTL_PERIPH_WDOG1.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlPeripheralSleepDisable(unsigned long ulPeripheral)
{
//
// Check the arguments.
//
ASSERT(SysCtlPeripheralValid(ulPeripheral));
//
// Disable this peripheral in sleep mode.
//
HWREG(g_pulSCGCRegs[SYSCTL_PERIPH_INDEX(ulPeripheral)]) &=
~SYSCTL_PERIPH_MASK(ulPeripheral);
}
//*****************************************************************************
//
//! Enables a peripheral in deep-sleep mode.
//!
//! \param ulPeripheral is the peripheral to enable in deep-sleep mode.
//!
//! This function allows a peripheral to continue operating when the processor
//! goes into deep-sleep mode. Since the clocking configuration of the device
//! may change, not all peripherals can safely continue operating while the
//! processor is in sleep mode. Those that must run at a particular frequency
//! (such as a UART) will not work as expected if the clock changes. It is the
//! responsibility of the caller to make sensible choices.
//!
//! Deep-sleep mode clocking of peripherals must be enabled via
//! SysCtlPeripheralClockGating(); if disabled, the peripheral deep-sleep mode
//! configuration is maintained but has no effect when deep-sleep mode is
//! entered.
//!
//! The \e ulPeripheral parameter must be only one of the following values:
//! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0,
//! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CAN2, \b SYSCTL_PERIPH_COMP0,
//! \b SYSCTL_PERIPH_COMP1, \b SYSCTL_PERIPH_COMP2, \b SYSCTL_PERIPH_EPI0,
//! \b SYSCTL_PERIPH_ETH, \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB,
//! \b SYSCTL_PERIPH_GPIOC, \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE,
//! \b SYSCTL_PERIPH_GPIOF, \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH,
//! \b SYSCTL_PERIPH_GPIOJ, \b SYSCTL_PERIPH_HIBERNATE, \b SYSCTL_PERIPH_I2C0,
//! \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2S0, \b SYSCTL_PERIPH_PWM,
//! \b SYSCTL_PERIPH_QEI0, \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0,
//! \b SYSCTL_PERIPH_SSI1, \b SYSCTL_PERIPH_TIMER0, \b SYSCTL_PERIPH_TIMER1,
//! \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3, \b SYSCTL_PERIPH_TEMP,
//! \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1, \b SYSCTL_PERIPH_UART2,
//! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0, or
//! \b SYSCTL_PERIPH_WDOG1.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlPeripheralDeepSleepEnable(unsigned long ulPeripheral)
{
//
// Check the arguments.
//
ASSERT(SysCtlPeripheralValid(ulPeripheral));
//
// Enable this peripheral in deep-sleep mode.
//
HWREG(g_pulDCGCRegs[SYSCTL_PERIPH_INDEX(ulPeripheral)]) |=
SYSCTL_PERIPH_MASK(ulPeripheral);
}
//*****************************************************************************
//
//! Disables a peripheral in deep-sleep mode.
//!
//! \param ulPeripheral is the peripheral to disable in deep-sleep mode.
//!
//! This function causes a peripheral to stop operating when the processor goes
//! into deep-sleep mode. Disabling peripherals while in deep-sleep mode helps
//! to lower the current draw of the device, and can keep peripherals that
//! require a particular clock frequency from operating when the clock changes
//! as a result of entering deep-sleep mode. If enabled (via
//! SysCtlPeripheralEnable()), the peripheral will automatically resume
//! operation when the processor leaves deep-sleep mode, maintaining its entire
//! state from before deep-sleep mode was entered.
//!
//! Deep-sleep mode clocking of peripherals must be enabled via
//! SysCtlPeripheralClockGating(); if disabled, the peripheral deep-sleep mode
//! configuration is maintained but has no effect when deep-sleep mode is
//! entered.
//!
//! The \e ulPeripheral parameter must be only one of the following values:
//! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0,
//! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CAN2, \b SYSCTL_PERIPH_COMP0,
//! \b SYSCTL_PERIPH_COMP1, \b SYSCTL_PERIPH_COMP2, \b SYSCTL_PERIPH_EPI0,
//! \b SYSCTL_PERIPH_ETH, \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB,
//! \b SYSCTL_PERIPH_GPIOC, \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE,
//! \b SYSCTL_PERIPH_GPIOF, \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH,
//! \b SYSCTL_PERIPH_GPIOJ, \b SYSCTL_PERIPH_HIBERNATE, \b SYSCTL_PERIPH_I2C0,
//! \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2S0, \b SYSCTL_PERIPH_PWM,
//! \b SYSCTL_PERIPH_QEI0, \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0,
//! \b SYSCTL_PERIPH_SSI1, \b SYSCTL_PERIPH_TIMER0, \b SYSCTL_PERIPH_TIMER1,
//! \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3, \b SYSCTL_PERIPH_TEMP,
//! \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1, \b SYSCTL_PERIPH_UART2,
//! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0, or
//! \b SYSCTL_PERIPH_WDOG1.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlPeripheralDeepSleepDisable(unsigned long ulPeripheral)
{
//
// Check the arguments.
//
ASSERT(SysCtlPeripheralValid(ulPeripheral));
//
// Disable this peripheral in deep-sleep mode.
//
HWREG(g_pulDCGCRegs[SYSCTL_PERIPH_INDEX(ulPeripheral)]) &=
~SYSCTL_PERIPH_MASK(ulPeripheral);
}
//*****************************************************************************
//
//! Controls peripheral clock gating in sleep and deep-sleep mode.
//!
//! \param bEnable is a boolean that is \b true if the sleep and deep-sleep
//! peripheral configuration should be used and \b false if not.
//!
//! This function controls how peripherals are clocked when the processor goes
//! into sleep or deep-sleep mode. By default, the peripherals are clocked the
//! same as in run mode; if peripheral clock gating is enabled they are clocked
//! according to the configuration set by SysCtlPeripheralSleepEnable(),
//! SysCtlPeripheralSleepDisable(), SysCtlPeripheralDeepSleepEnable(), and
//! SysCtlPeripheralDeepSleepDisable().
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlPeripheralClockGating(tBoolean bEnable)
{
//
// Enable peripheral clock gating as requested.
//
if(bEnable)
{
HWREG(SYSCTL_RCC) |= SYSCTL_RCC_ACG;
}
else
{
HWREG(SYSCTL_RCC) &= ~(SYSCTL_RCC_ACG);
}
}
//*****************************************************************************
//
//! Registers an interrupt handler for the system control interrupt.
//!
//! \param pfnHandler is a pointer to the function to be called when the system
//! control interrupt occurs.
//!
//! This sets the handler to be called when a system control interrupt occurs.
//! This will enable the global interrupt in the interrupt controller; specific
//! system control interrupts must be enabled via SysCtlIntEnable(). It is the
//! interrupt handler's responsibility to clear the interrupt source via
//! SysCtlIntClear().
//!
//! System control can generate interrupts when the PLL achieves lock, if the
//! internal LDO current limit is exceeded, if the internal oscillator fails,
//! if the main oscillator fails, if the internal LDO output voltage droops too
//! much, if the external voltage droops too much, or if the PLL fails.
//!
//! \sa IntRegister() for important information about registering interrupt
//! handlers.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlIntRegister(void (*pfnHandler)(void))
{
//
// Register the interrupt handler, returning an error if an error occurs.
//
IntRegister(INT_SYSCTL, pfnHandler);
//
// Enable the system control interrupt.
//
IntEnable(INT_SYSCTL);
}
//*****************************************************************************
//
//! Unregisters the interrupt handler for the system control interrupt.
//!
//! This function will clear the handler to be called when a system control
//! interrupt occurs. This will also mask off the interrupt in the interrupt
//! controller so that the interrupt handler no longer is called.
//!
//! \sa IntRegister() for important information about registering interrupt
//! handlers.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlIntUnregister(void)
{
//
// Disable the interrupt.
//
IntDisable(INT_SYSCTL);
//
// Unregister the interrupt handler.
//
IntUnregister(INT_SYSCTL);
}
//*****************************************************************************
//
//! Enables individual system control interrupt sources.
//!
//! \param ulInts is a bit mask of the interrupt sources to be enabled. Must
//! be a logical OR of \b SYSCTL_INT_PLL_LOCK, \b SYSCTL_INT_CUR_LIMIT,
//! \b SYSCTL_INT_IOSC_FAIL, \b SYSCTL_INT_MOSC_FAIL, \b SYSCTL_INT_POR,
//! \b SYSCTL_INT_BOR, and/or \b SYSCTL_INT_PLL_FAIL.
//!
//! Enables the indicated system control interrupt sources. Only the sources
//! that are enabled can be reflected to the processor interrupt; disabled
//! sources have no effect on the processor.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlIntEnable(unsigned long ulInts)
{
//
// Enable the specified interrupts.
//
HWREG(SYSCTL_IMC) |= ulInts;
}
//*****************************************************************************
//
//! Disables individual system control interrupt sources.
//!
//! \param ulInts is a bit mask of the interrupt sources to be disabled. Must
//! be a logical OR of \b SYSCTL_INT_PLL_LOCK, \b SYSCTL_INT_CUR_LIMIT,
//! \b SYSCTL_INT_IOSC_FAIL, \b SYSCTL_INT_MOSC_FAIL, \b SYSCTL_INT_POR,
//! \b SYSCTL_INT_BOR, and/or \b SYSCTL_INT_PLL_FAIL.
//!
//! Disables the indicated system control interrupt sources. Only the sources
//! that are enabled can be reflected to the processor interrupt; disabled
//! sources have no effect on the processor.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlIntDisable(unsigned long ulInts)
{
//
// Disable the specified interrupts.
//
HWREG(SYSCTL_IMC) &= ~(ulInts);
}
//*****************************************************************************
//
//! Clears system control interrupt sources.
//!
//! \param ulInts is a bit mask of the interrupt sources to be cleared. Must
//! be a logical OR of \b SYSCTL_INT_PLL_LOCK, \b SYSCTL_INT_CUR_LIMIT,
//! \b SYSCTL_INT_IOSC_FAIL, \b SYSCTL_INT_MOSC_FAIL, \b SYSCTL_INT_POR,
//! \b SYSCTL_INT_BOR, and/or \b SYSCTL_INT_PLL_FAIL.
//!
//! The specified system control interrupt sources are cleared, so that they no
//! longer assert. This must be done in the interrupt handler to keep it from
//! being called again immediately upon exit.
//!
//! \note Since there is a write buffer in the Cortex-M3 processor, it may take
//! several clock cycles before the interrupt source is actually cleared.
//! Therefore, it is recommended that the interrupt source be cleared early in
//! the interrupt handler (as opposed to the very last action) to avoid
//! returning from the interrupt handler before the interrupt source is
//! actually cleared. Failure to do so may result in the interrupt handler
//! being immediately reentered (since NVIC still sees the interrupt source
//! asserted).
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlIntClear(unsigned long ulInts)
{
//
// Clear the requested interrupt sources.
//
HWREG(SYSCTL_MISC) = ulInts;
}
//*****************************************************************************
//
//! Gets the current interrupt status.
//!
//! \param bMasked is false if the raw interrupt status is required and true if
//! the masked interrupt status is required.
//!
//! This returns the interrupt status for the system controller. Either the
//! raw interrupt status or the status of interrupts that are allowed to
//! reflect to the processor can be returned.
//!
//! \return The current interrupt status, enumerated as a bit field of
//! \b SYSCTL_INT_PLL_LOCK, \b SYSCTL_INT_CUR_LIMIT, \b SYSCTL_INT_IOSC_FAIL,
//! \b SYSCTL_INT_MOSC_FAIL, \b SYSCTL_INT_POR, \b SYSCTL_INT_BOR, and
//! \b SYSCTL_INT_PLL_FAIL.
//
//*****************************************************************************
unsigned long
SysCtlIntStatus(tBoolean bMasked)
{
//
// Return either the interrupt status or the raw interrupt status as
// requested.
//
if(bMasked)
{
return(HWREG(SYSCTL_MISC));
}
else
{
return(HWREG(SYSCTL_RIS));
}
}
//*****************************************************************************
//
//! Sets the output voltage of the LDO.
//!
//! \param ulVoltage is the required output voltage from the LDO. Must be one
//! of \b SYSCTL_LDO_2_25V, \b SYSCTL_LDO_2_30V, \b SYSCTL_LDO_2_35V,
//! \b SYSCTL_LDO_2_40V, \b SYSCTL_LDO_2_45V, \b SYSCTL_LDO_2_50V,
//! \b SYSCTL_LDO_2_55V, \b SYSCTL_LDO_2_60V, \b SYSCTL_LDO_2_65V,
//! \b SYSCTL_LDO_2_70V, or \b SYSCTL_LDO_2_75V.
//!
//! This function sets the output voltage of the LDO. The default voltage is
//! 2.5 V; it can be adjusted +/- 10%.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlLDOSet(unsigned long ulVoltage)
{
//
// Check the arguments.
//
ASSERT((ulVoltage == SYSCTL_LDO_2_25V) ||
(ulVoltage == SYSCTL_LDO_2_30V) ||
(ulVoltage == SYSCTL_LDO_2_35V) ||
(ulVoltage == SYSCTL_LDO_2_40V) ||
(ulVoltage == SYSCTL_LDO_2_45V) ||
(ulVoltage == SYSCTL_LDO_2_50V) ||
(ulVoltage == SYSCTL_LDO_2_55V) ||
(ulVoltage == SYSCTL_LDO_2_60V) ||
(ulVoltage == SYSCTL_LDO_2_65V) ||
(ulVoltage == SYSCTL_LDO_2_70V) ||
(ulVoltage == SYSCTL_LDO_2_75V));
//
// Set the LDO voltage to the requested value.
//
HWREG(SYSCTL_LDOPCTL) = ulVoltage;
}
//*****************************************************************************
//
//! Gets the output voltage of the LDO.
//!
//! This function determines the output voltage of the LDO, as specified by the
//! control register.
//!
//! \return Returns the current voltage of the LDO; will be one of
//! \b SYSCTL_LDO_2_25V, \b SYSCTL_LDO_2_30V, \b SYSCTL_LDO_2_35V,
//! \b SYSCTL_LDO_2_40V, \b SYSCTL_LDO_2_45V, \b SYSCTL_LDO_2_50V,
//! \b SYSCTL_LDO_2_55V, \b SYSCTL_LDO_2_60V, \b SYSCTL_LDO_2_65V,
//! \b SYSCTL_LDO_2_70V, or \b SYSCTL_LDO_2_75V.
//
//*****************************************************************************
unsigned long
SysCtlLDOGet(void)
{
//
// Return the LDO voltage setting.
//
return(HWREG(SYSCTL_LDOPCTL));
}
//*****************************************************************************
//
//! Configures the LDO failure control.
//!
//! \param ulConfig is the required LDO failure control setting; can be either
//! \b SYSCTL_LDOCFG_ARST or \b SYSCTL_LDOCFG_NORST.
//!
//! This function allows the LDO to be configured to cause a processor reset
//! when the output voltage becomes unregulated.
//!
//! The LDO failure control is only available on Sandstorm-class devices.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlLDOConfigSet(unsigned long ulConfig)
{
//
// Check the arguments.
//
ASSERT((ulConfig == SYSCTL_LDOCFG_ARST) ||
(ulConfig == SYSCTL_LDOCFG_NORST));
//
// Set the reset control as requested.
//
HWREG(SYSCTL_LDOARST) = ulConfig;
}
//*****************************************************************************
//
//! Resets the device.
//!
//! This function will perform a software reset of the entire device. The
//! processor and all peripherals will be reset and all device registers will
//! return to their default values (with the exception of the reset cause
//! register, which will maintain its current value but have the software reset
//! bit set as well).
//!
//! \return This function does not return.
//
//*****************************************************************************
void
SysCtlReset(void)
{
//
// Perform a software reset request. This will cause the device to reset,
// no further code will be executed.
//
HWREG(NVIC_APINT) = NVIC_APINT_VECTKEY | NVIC_APINT_SYSRESETREQ;
//
// The device should have reset, so this should never be reached. Just in
// case, loop forever.
//
while(1)
{
}
}
//*****************************************************************************
//
//! Puts the processor into sleep mode.
//!
//! This function places the processor into sleep mode; it will not return
//! until the processor returns to run mode. The peripherals that are enabled
//! via SysCtlPeripheralSleepEnable() continue to operate and can wake up the
//! processor (if automatic clock gating is enabled with
//! SysCtlPeripheralClockGating(), otherwise all peripherals continue to
//! operate).
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlSleep(void)
{
//
// Wait for an interrupt.
//
CPUwfi();
}
//*****************************************************************************
//
//! Puts the processor into deep-sleep mode.
//!
//! This function places the processor into deep-sleep mode; it will not return
//! until the processor returns to run mode. The peripherals that are enabled
//! via SysCtlPeripheralDeepSleepEnable() continue to operate and can wake up
//! the processor (if automatic clock gating is enabled with
//! SysCtlPeripheralClockGating(), otherwise all peripherals continue to
//! operate).
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlDeepSleep(void)
{
//
// Enable deep-sleep.
//
HWREG(NVIC_SYS_CTRL) |= NVIC_SYS_CTRL_SLEEPDEEP;
//
// Wait for an interrupt.
//
CPUwfi();
//
// Disable deep-sleep so that a future sleep will work correctly.
//
HWREG(NVIC_SYS_CTRL) &= ~(NVIC_SYS_CTRL_SLEEPDEEP);
}
//*****************************************************************************
//
//! Gets the reason for a reset.
//!
//! This function will return the reason(s) for a reset. Since the reset
//! reasons are sticky until either cleared by software or an external reset,
//! multiple reset reasons may be returned if multiple resets have occurred.
//! The reset reason will be a logical OR of \b SYSCTL_CAUSE_LDO,
//! \b SYSCTL_CAUSE_SW, \b SYSCTL_CAUSE_WDOG, \b SYSCTL_CAUSE_BOR,
//! \b SYSCTL_CAUSE_POR, and/or \b SYSCTL_CAUSE_EXT.
//!
//! \return Returns the reason(s) for a reset.
//
//*****************************************************************************
unsigned long
SysCtlResetCauseGet(void)
{
//
// Return the reset reasons.
//
return(HWREG(SYSCTL_RESC));
}
//*****************************************************************************
//
//! Clears reset reasons.
//!
//! \param ulCauses are the reset causes to be cleared; must be a logical OR of
//! \b SYSCTL_CAUSE_LDO, \b SYSCTL_CAUSE_SW, \b SYSCTL_CAUSE_WDOG,
//! \b SYSCTL_CAUSE_BOR, \b SYSCTL_CAUSE_POR, and/or \b SYSCTL_CAUSE_EXT.
//!
//! This function clears the specified sticky reset reasons. Once cleared,
//! another reset for the same reason can be detected, and a reset for a
//! different reason can be distinguished (instead of having two reset causes
//! set). If the reset reason is used by an application, all reset causes
//! should be cleared after they are retrieved with SysCtlResetCauseGet().
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlResetCauseClear(unsigned long ulCauses)
{
//
// Clear the given reset reasons.
//
HWREG(SYSCTL_RESC) &= ~(ulCauses);
}
//*****************************************************************************
//
//! Configures the brown-out control.
//!
//! \param ulConfig is the desired configuration of the brown-out control.
//! Must be the logical OR of \b SYSCTL_BOR_RESET and/or
//! \b SYSCTL_BOR_RESAMPLE.
//! \param ulDelay is the number of internal oscillator cycles to wait before
//! resampling an asserted brown-out signal. This value only has meaning when
//! \b SYSCTL_BOR_RESAMPLE is set and must be less than 8192.
//!
//! This function configures how the brown-out control operates. It can detect
//! a brown-out by looking at only the brown-out output, or it can wait for it
//! to be active for two consecutive samples separated by a configurable time.
//! When it detects a brown-out condition, it can either reset the device or
//! generate a processor interrupt.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlBrownOutConfigSet(unsigned long ulConfig, unsigned long ulDelay)
{
//
// Check the arguments.
//
ASSERT(!(ulConfig & ~(SYSCTL_BOR_RESET | SYSCTL_BOR_RESAMPLE)));
ASSERT(ulDelay < 8192);
//
// Configure the brown-out reset control.
//
HWREG(SYSCTL_PBORCTL) = (ulDelay << SYSCTL_PBORCTL_BORTIM_S) | ulConfig;
}
//*****************************************************************************
//
//! Provides a small delay.
//!
//! \param ulCount is the number of delay loop iterations to perform.
//!
//! This function provides a means of generating a constant length delay. It
//! is written in assembly to keep the delay consistent across tool chains,
//! avoiding the need to tune the delay based on the tool chain in use.
//!
//! The loop takes 3 cycles/loop.
//!
//! \return None.
//
//*****************************************************************************
#if defined(ewarm) || defined(DOXYGEN)
void
SysCtlDelay(unsigned long ulCount)
{
__asm(" subs r0, #1\n"
" bne.n SysCtlDelay\n"
" bx lr");
}
#endif
#if defined(codered) || defined(gcc) || defined(sourcerygxx)
void __attribute__((naked))
SysCtlDelay(unsigned long ulCount)
{
__asm(" subs r0, #1\n"
" bne SysCtlDelay\n"
" bx lr");
}
#endif
#if defined(rvmdk) || defined(__ARMCC_VERSION)
__asm void
SysCtlDelay(unsigned long ulCount)
{
subs r0, #1;
bne SysCtlDelay;
bx lr;
}
#endif
#if defined(ccs)
volatile unsigned long g_ulInlineCCSWorkaround;
void
SysCtlDelay(unsigned long ulCount)
{
__asm("delay?: subs r0, #1\n"
" bne.n delay?\n"
" bx lr\n");
//
// This is needed to keep TI compiler from optimizing away this code.
//
g_ulInlineCCSWorkaround += ulCount;
}
#endif
//*****************************************************************************
//
//! Sets the clocking of the device.
//!
//! \param ulConfig is the required configuration of the device clocking.
//!
//! This function configures the clocking of the device. The input crystal
//! frequency, oscillator to be used, use of the PLL, and the system clock
//! divider are all configured with this function.
//!
//! The \e ulConfig parameter is the logical OR of several different values,
//! many of which are grouped into sets where only one can be chosen.
//!
//! The system clock divider is chosen with one of the following values:
//! \b SYSCTL_SYSDIV_1, \b SYSCTL_SYSDIV_2, \b SYSCTL_SYSDIV_3, ...
//! \b SYSCTL_SYSDIV_64. Only \b SYSCTL_SYSDIV_1 through \b SYSCTL_SYSDIV_16
//! are valid on Sandstorm-class devices.
//!
//! The use of the PLL is chosen with either \b SYSCTL_USE_PLL or
//! \b SYSCTL_USE_OSC.
//!
//! The external crystal frequency is chosen with one of the following values:
//! \b SYSCTL_XTAL_1MHZ, \b SYSCTL_XTAL_1_84MHZ, \b SYSCTL_XTAL_2MHZ,
//! \b SYSCTL_XTAL_2_45MHZ, \b SYSCTL_XTAL_3_57MHZ, \b SYSCTL_XTAL_3_68MHZ,
//! \b SYSCTL_XTAL_4MHZ, \b SYSCTL_XTAL_4_09MHZ, \b SYSCTL_XTAL_4_91MHZ,
//! \b SYSCTL_XTAL_5MHZ, \b SYSCTL_XTAL_5_12MHZ, \b SYSCTL_XTAL_6MHZ,
//! \b SYSCTL_XTAL_6_14MHZ, \b SYSCTL_XTAL_7_37MHZ, \b SYSCTL_XTAL_8MHZ,
//! \b SYSCTL_XTAL_8_19MHZ, \b SYSCTL_XTAL_10MHZ, \b SYSCTL_XTAL_12MHZ,
//! \b SYSCTL_XTAL_12_2MHZ, \b SYSCTL_XTAL_13_5MHZ, \b SYSCTL_XTAL_14_3MHZ,
//! \b SYSCTL_XTAL_16MHZ, or \b SYSCTL_XTAL_16_3MHZ. Values below
//! \b SYSCTL_XTAL_3_57MHZ are not valid when the PLL is in operation. On
//! Sandstorm- and Fury-class devices, values above \b SYSCTL_XTAL_8_19MHZ are
//! not valid.
//!
//! The oscillator source is chosen with one of the following values:
//! \b SYSCTL_OSC_MAIN, \b SYSCTL_OSC_INT, \b SYSCTL_OSC_INT4,
//! \b SYSCTL_OSC_INT30, or \b SYSCTL_OSC_EXT32. On Sandstorm-class devices,
//! \b SYSCTL_OSC_INT30 and \b SYSCTL_OSC_EXT32 are not valid.
//! \b SYSCTL_OSC_EXT32 is only available on devices with the hibernate module,
//! and then only when the hibernate module has been enabled.
//!
//! The internal and main oscillators are disabled with the
//! \b SYSCTL_INT_OSC_DIS and \b SYSCTL_MAIN_OSC_DIS flags, respectively.
//! The external oscillator must be enabled in order to use an external clock
//! source. Note that attempts to disable the oscillator used to clock the
//! device will be prevented by the hardware.
//!
//! To clock the system from an external source (such as an external crystal
//! oscillator), use \b SYSCTL_USE_OSC \b | \b SYSCTL_OSC_MAIN. To clock the
//! system from the main oscillator, use \b SYSCTL_USE_OSC \b |
//! \b SYSCTL_OSC_MAIN. To clock the system from the PLL, use
//! \b SYSCTL_USE_PLL \b | \b SYSCTL_OSC_MAIN, and select the appropriate
//! crystal with one of the \b SYSCTL_XTAL_xxx values.
//!
//! \note If selecting the PLL as the system clock source (that is, via
//! \b SYSCTL_USE_PLL), this function will poll the PLL lock interrupt to
//! determine when the PLL has locked. If an interrupt handler for the
//! system control interrupt is in place, and it responds to and clears the
//! PLL lock interrupt, this function will delay until its timeout has occurred
//! instead of completing as soon as PLL lock is achieved.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlClockSet(unsigned long ulConfig)
{
unsigned long ulDelay, ulRCC, ulRCC2;
//
// See if this is a Sandstorm-class device and clocking features from newer
// devices were requested.
//
if(CLASS_IS_SANDSTORM && (ulConfig & SYSCTL_RCC2_USERCC2))
{
//
// Return without changing the clocking since the requested
// configuration can not be achieved.
//
return;
}
//
// Get the current value of the RCC and RCC2 registers. If using a
// Sandstorm-class device, the RCC2 register will read back as zero and the
// writes to it from within this function will be ignored.
//
ulRCC = HWREG(SYSCTL_RCC);
ulRCC2 = HWREG(SYSCTL_RCC2);
//
// Bypass the PLL and system clock dividers for now.
//
ulRCC |= SYSCTL_RCC_BYPASS;
ulRCC &= ~(SYSCTL_RCC_USESYSDIV);
ulRCC2 |= SYSCTL_RCC2_BYPASS2;
//
// Write the new RCC value.
//
HWREG(SYSCTL_RCC) = ulRCC;
HWREG(SYSCTL_RCC2) = ulRCC2;
//
// See if either oscillator needs to be enabled.
//
if(((ulRCC & SYSCTL_RCC_IOSCDIS) && !(ulConfig & SYSCTL_RCC_IOSCDIS)) ||
((ulRCC & SYSCTL_RCC_MOSCDIS) && !(ulConfig & SYSCTL_RCC_MOSCDIS)))
{
//
// Make sure that the required oscillators are enabled. For now, the
// previously enabled oscillators must be enabled along with the newly
// requested oscillators.
//
ulRCC &= (~(SYSCTL_RCC_IOSCDIS | SYSCTL_RCC_MOSCDIS) |
(ulConfig & (SYSCTL_RCC_IOSCDIS | SYSCTL_RCC_MOSCDIS)));
//
// Write the new RCC value.
//
HWREG(SYSCTL_RCC) = ulRCC;
//
// Wait for a bit, giving the oscillator time to stabilize. The number
// of iterations is adjusted based on the current clock source; a
// smaller number of iterations is required for slower clock rates.
//
if(((ulRCC2 & SYSCTL_RCC2_USERCC2) &&
(((ulRCC2 & SYSCTL_RCC2_OSCSRC2_M) == SYSCTL_RCC2_OSCSRC2_30) ||
((ulRCC2 & SYSCTL_RCC2_OSCSRC2_M) == SYSCTL_RCC2_OSCSRC2_32))) ||
(!(ulRCC2 & SYSCTL_RCC2_USERCC2) &&
((ulRCC & SYSCTL_RCC_OSCSRC_M) == SYSCTL_RCC_OSCSRC_30)))
{
//
// Delay for 4096 iterations.
//
SysCtlDelay(4096);
}
else
{
//
// Delay for 524,288 iterations.
//
SysCtlDelay(524288);
}
}
//
// Set the new crystal value, oscillator source, and PLL configuration.
// Since the OSCSRC2 field in RCC2 overlaps the XTAL field in RCC, the
// OSCSRC field has a special encoding within ulConfig to avoid the
// overlap.
//
ulRCC &= ~(SYSCTL_RCC_XTAL_M | SYSCTL_RCC_OSCSRC_M |
SYSCTL_RCC_PWRDN | SYSCTL_RCC_OEN);
ulRCC |= ulConfig & (SYSCTL_RCC_XTAL_M | SYSCTL_RCC_OSCSRC_M |
SYSCTL_RCC_PWRDN | SYSCTL_RCC_OEN);
ulRCC2 &= ~(SYSCTL_RCC2_USERCC2 | SYSCTL_RCC2_OSCSRC2_M |
SYSCTL_RCC2_PWRDN2);
ulRCC2 |= ulConfig & (SYSCTL_RCC2_USERCC2 | SYSCTL_RCC_OSCSRC_M |
SYSCTL_RCC2_PWRDN2);
ulRCC2 |= (ulConfig & 0x00000008) << 3;
//
// Clear the PLL lock interrupt.
//
HWREG(SYSCTL_MISC) = SYSCTL_INT_PLL_LOCK;
//
// Write the new RCC value.
//
if(ulRCC2 & SYSCTL_RCC2_USERCC2)
{
HWREG(SYSCTL_RCC2) = ulRCC2;
HWREG(SYSCTL_RCC) = ulRCC;
}
else
{
HWREG(SYSCTL_RCC) = ulRCC;
HWREG(SYSCTL_RCC2) = ulRCC2;
}
//
// Wait for a bit so that new crystal value and oscillator source can take
// effect.
//
SysCtlDelay(16);
//
// Set the requested system divider and disable the appropriate
// oscillators. This will not get written immediately.
//
ulRCC &= ~(SYSCTL_RCC_SYSDIV_M | SYSCTL_RCC_USESYSDIV |
SYSCTL_RCC_IOSCDIS | SYSCTL_RCC_MOSCDIS);
ulRCC |= ulConfig & (SYSCTL_RCC_SYSDIV_M | SYSCTL_RCC_USESYSDIV |
SYSCTL_RCC_IOSCDIS | SYSCTL_RCC_MOSCDIS);
ulRCC2 &= ~(SYSCTL_RCC2_SYSDIV2_M);
ulRCC2 |= ulConfig & SYSCTL_RCC2_SYSDIV2_M;
if(ulConfig & SYSCTL_RCC2_DIV400)
{
ulRCC |= SYSCTL_RCC_USESYSDIV;
ulRCC2 &= ~(SYSCTL_RCC_USESYSDIV);
ulRCC2 |= ulConfig & (SYSCTL_RCC2_DIV400 | SYSCTL_RCC2_SYSDIV2LSB);
}
else
{
ulRCC2 &= ~(SYSCTL_RCC2_DIV400);
}
//
// See if the PLL output is being used to clock the system.
//
if(!(ulConfig & SYSCTL_RCC_BYPASS))
{
//
// Wait until the PLL has locked.
//
for(ulDelay = 32768; ulDelay > 0; ulDelay--)
{
if(HWREG(SYSCTL_RIS) & SYSCTL_INT_PLL_LOCK)
{
break;
}
}
//
// Enable use of the PLL.
//
ulRCC &= ~(SYSCTL_RCC_BYPASS);
ulRCC2 &= ~(SYSCTL_RCC2_BYPASS2);
}
//
// Write the final RCC value.
//
HWREG(SYSCTL_RCC) = ulRCC;
HWREG(SYSCTL_RCC2) = ulRCC2;
//
// Delay for a little bit so that the system divider takes effect.
//
SysCtlDelay(16);
}
//*****************************************************************************
//
//! Gets the processor clock rate.
//!
//! This function determines the clock rate of the processor clock. This is
//! also the clock rate of all the peripheral modules (with the exception of
//! PWM, which has its own clock divider).
//!
//! \note This will not return accurate results if SysCtlClockSet() has not
//! been called to configure the clocking of the device, or if the device is
//! directly clocked from a crystal (or a clock source) that is not one of the
//! supported crystal frequencies. In the later case, this function should be
//! modified to directly return the correct system clock rate.
//!
//! \return The processor clock rate.
//
//*****************************************************************************
unsigned long
SysCtlClockGet(void)
{
unsigned long ulRCC, ulRCC2, ulPLL, ulClk;
//
// Read RCC and RCC2. For Sandstorm-class devices (which do not have
// RCC2), the RCC2 read will return 0, which indicates that RCC2 is
// disabled (since the SYSCTL_RCC2_USERCC2 bit is clear).
//
ulRCC = HWREG(SYSCTL_RCC);
ulRCC2 = HWREG(SYSCTL_RCC2);
//
// Get the base clock rate.
//
switch((ulRCC2 & SYSCTL_RCC2_USERCC2) ?
(ulRCC2 & SYSCTL_RCC2_OSCSRC2_M) :
(ulRCC & SYSCTL_RCC_OSCSRC_M))
{
//
// The main oscillator is the clock source. Determine its rate from
// the crystal setting field.
//
case SYSCTL_RCC_OSCSRC_MAIN:
{
ulClk = g_pulXtals[(ulRCC & SYSCTL_RCC_XTAL_M) >>
SYSCTL_RCC_XTAL_S];
break;
}
//
// The internal oscillator is the source clock.
//
case SYSCTL_RCC_OSCSRC_INT:
{
//
// See if this is a Sandstorm-class or Fury-class device.
//
if(CLASS_IS_SANDSTORM)
{
//
// The internal oscillator on a Sandstorm-class device is
// 15 MHz +/- 50%.
//
ulClk = 15000000;
}
else if((CLASS_IS_FURY && REVISION_IS_A2) ||
(CLASS_IS_DUSTDEVIL && REVISION_IS_A0))
{
//
// The internal oscillator on a rev A2 Fury-class device and a
// rev A0 Dustdevil-class device is 12 MHz +/- 30%.
//
ulClk = 12000000;
}
else
{
//
// The internal oscillator on all other devices is 16 MHz.
//
ulClk = 16000000;
}
break;
}
//
// The internal oscillator divided by four is the source clock.
//
case SYSCTL_RCC_OSCSRC_INT4:
{
//
// See if this is a Sandstorm-class or Fury-class device.
//
if(CLASS_IS_SANDSTORM)
{
//
// The internal oscillator on a Sandstorm-class device is
// 15 MHz +/- 50%.
//
ulClk = 15000000 / 4;
}
else if((CLASS_IS_FURY && REVISION_IS_A2) ||
(CLASS_IS_DUSTDEVIL && REVISION_IS_A0))
{
//
// The internal oscillator on a rev A2 Fury-class device and a
// rev A0 Dustdevil-class device is 12 MHz +/- 30%.
//
ulClk = 12000000 / 4;
}
else
{
//
// The internal oscillator on a Tempest-class device is 16 MHz.
//
ulClk = 16000000 / 4;
}
break;
}
//
// The internal 30 KHz oscillator is the source clock.
//
case SYSCTL_RCC_OSCSRC_30:
{
//
// The internal 30 KHz oscillator has an accuracy of +/- 30%.
//
ulClk = 30000;
break;
}
//
// The 4.19 MHz clock from the hibernate module is the clock source.
//
case SYSCTL_RCC2_OSCSRC2_419:
{
ulClk = 4194304;
break;
}
//
// The 32 KHz clock from the hibernate module is the source clock.
//
case SYSCTL_RCC2_OSCSRC2_32:
{
ulClk = 32768;
break;
}
//
// An unknown setting, so return a zero clock (that is, an unknown
// clock rate).
//
default:
{
return(0);
}
}
//
// See if the PLL is being used.
//
if(((ulRCC2 & SYSCTL_RCC2_USERCC2) && !(ulRCC2 & SYSCTL_RCC2_BYPASS2)) ||
(!(ulRCC2 & SYSCTL_RCC2_USERCC2) && !(ulRCC & SYSCTL_RCC_BYPASS)))
{
//
// Get the PLL configuration.
//
ulPLL = HWREG(SYSCTL_PLLCFG);
//
// See if this is a Sandstorm-class or Fury-class device.
//
if(CLASS_IS_SANDSTORM)
{
//
// Compute the PLL output frequency based on its input frequency.
// The formula for a Sandstorm-class devices is
// "(xtal * (f + 2)) / (r + 2)".
//
ulClk = ((ulClk * (((ulPLL & SYSCTL_PLLCFG_F_M) >>
SYSCTL_PLLCFG_F_S) + 2)) /
(((ulPLL & SYSCTL_PLLCFG_R_M) >>
SYSCTL_PLLCFG_R_S) + 2));
}
else
{
//
// Compute the PLL output frequency based on its input frequency.
// The formula for a Fury-class device is
// "(xtal * f) / ((r + 1) * 2)".
//
ulClk = ((ulClk * ((ulPLL & SYSCTL_PLLCFG_F_M) >>
SYSCTL_PLLCFG_F_S)) /
((((ulPLL & SYSCTL_PLLCFG_R_M) >>
SYSCTL_PLLCFG_R_S) + 1) * 2));
}
//
// See if the optional output divide by 2 is being used.
//
if(ulPLL & SYSCTL_PLLCFG_OD_2)
{
ulClk /= 2;
}
//
// See if the optional output divide by 4 is being used.
//
if(ulPLL & SYSCTL_PLLCFG_OD_4)
{
ulClk /= 4;
}
//
// Force the system divider to be enabled. It is always used when
// using the PLL, but in some cases it will not read as being enabled.
//
ulRCC |= SYSCTL_RCC_USESYSDIV;
}
//
// See if the system divider is being used.
//
if(ulRCC & SYSCTL_RCC_USESYSDIV)
{
//
// Adjust the clock rate by the system clock divider.
//
if(ulRCC2 & SYSCTL_RCC2_USERCC2)
{
if((ulRCC2 & SYSCTL_RCC2_DIV400) &&
(((ulRCC2 & SYSCTL_RCC2_USERCC2) &&
!(ulRCC2 & SYSCTL_RCC2_BYPASS2)) ||
(!(ulRCC2 & SYSCTL_RCC2_USERCC2) &&
!(ulRCC & SYSCTL_RCC_BYPASS))))
{
ulClk = ((ulClk * 2) / (((ulRCC2 & (SYSCTL_RCC2_SYSDIV2_M |
SYSCTL_RCC2_SYSDIV2LSB)) >>
(SYSCTL_RCC2_SYSDIV2_S - 1)) + 1));
}
else
{
ulClk /= (((ulRCC2 & SYSCTL_RCC2_SYSDIV2_M) >>
SYSCTL_RCC2_SYSDIV2_S) + 1);
}
}
else
{
ulClk /= (((ulRCC & SYSCTL_RCC_SYSDIV_M) >> SYSCTL_RCC_SYSDIV_S) +
1);
}
}
//
// Return the computed clock rate.
//
return(ulClk);
}
//*****************************************************************************
//
//! Sets the PWM clock configuration.
//!
//! \param ulConfig is the configuration for the PWM clock; it must be one of
//! \b SYSCTL_PWMDIV_1, \b SYSCTL_PWMDIV_2, \b SYSCTL_PWMDIV_4,
//! \b SYSCTL_PWMDIV_8, \b SYSCTL_PWMDIV_16, \b SYSCTL_PWMDIV_32, or
//! \b SYSCTL_PWMDIV_64.
//!
//! This function sets the rate of the clock provided to the PWM module as a
//! ratio of the processor clock. This clock is used by the PWM module to
//! generate PWM signals; its rate forms the basis for all PWM signals.
//!
//! \note The clocking of the PWM is dependent upon the system clock rate as
//! configured by SysCtlClockSet().
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlPWMClockSet(unsigned long ulConfig)
{
//
// Check the arguments.
//
ASSERT((ulConfig == SYSCTL_PWMDIV_1) ||
(ulConfig == SYSCTL_PWMDIV_2) ||
(ulConfig == SYSCTL_PWMDIV_4) ||
(ulConfig == SYSCTL_PWMDIV_8) ||
(ulConfig == SYSCTL_PWMDIV_16) ||
(ulConfig == SYSCTL_PWMDIV_32) ||
(ulConfig == SYSCTL_PWMDIV_64));
//
// Check that there is a PWM block on this part.
//
ASSERT(HWREG(SYSCTL_DC1) & SYSCTL_DC1_PWM);
//
// Set the PWM clock configuration into the run-mode clock configuration
// register.
//
HWREG(SYSCTL_RCC) = ((HWREG(SYSCTL_RCC) &
~(SYSCTL_RCC_USEPWMDIV | SYSCTL_RCC_PWMDIV_M)) |
ulConfig);
}
//*****************************************************************************
//
//! Gets the current PWM clock configuration.
//!
//! This function returns the current PWM clock configuration.
//!
//! \return Returns the current PWM clock configuration; will be one of
//! \b SYSCTL_PWMDIV_1, \b SYSCTL_PWMDIV_2, \b SYSCTL_PWMDIV_4,
//! \b SYSCTL_PWMDIV_8, \b SYSCTL_PWMDIV_16, \b SYSCTL_PWMDIV_32, or
//! \b SYSCTL_PWMDIV_64.
//
//*****************************************************************************
unsigned long
SysCtlPWMClockGet(void)
{
//
// Check that there is a PWM block on this part.
//
ASSERT(HWREG(SYSCTL_DC1) & SYSCTL_DC1_PWM);
//
// Return the current PWM clock configuration. Make sure that
// SYSCTL_PWMDIV_1 is returned in all cases where the divider is disabled.
//
if(!(HWREG(SYSCTL_RCC) & SYSCTL_RCC_USEPWMDIV))
{
//
// The divider is not active so reflect this in the value we return.
//
return(SYSCTL_PWMDIV_1);
}
else
{
//
// The divider is active so directly return the masked register value.
//
return(HWREG(SYSCTL_RCC) &
(SYSCTL_RCC_USEPWMDIV | SYSCTL_RCC_PWMDIV_M));
}
}
//*****************************************************************************
//
//! Sets the sample rate of the ADC.
//!
//! \param ulSpeed is the desired sample rate of the ADC; must be one of
//! \b SYSCTL_ADCSPEED_1MSPS, \b SYSCTL_ADCSPEED_500KSPS,
//! \b SYSCTL_ADCSPEED_250KSPS, or \b SYSCTL_ADCSPEED_125KSPS.
//!
//! This function sets the rate at which the ADC samples are captured by the
//! ADC block. The sampling speed may be limited by the hardware, so the
//! sample rate may end up being slower than requested. SysCtlADCSpeedGet()
//! will return the actual speed in use.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlADCSpeedSet(unsigned long ulSpeed)
{
//
// Check the arguments.
//
ASSERT((ulSpeed == SYSCTL_ADCSPEED_1MSPS) ||
(ulSpeed == SYSCTL_ADCSPEED_500KSPS) ||
(ulSpeed == SYSCTL_ADCSPEED_250KSPS) ||
(ulSpeed == SYSCTL_ADCSPEED_125KSPS));
//
// Check that there is an ADC block on this part.
//
ASSERT(HWREG(SYSCTL_DC1) & SYSCTL_DC1_ADC0);
//
// Set the ADC speed in run, sleep, and deep-sleep mode.
//
HWREG(SYSCTL_RCGC0) = ((HWREG(SYSCTL_RCGC0) & ~(SYSCTL_RCGC0_ADCSPD_M)) |
ulSpeed);
HWREG(SYSCTL_SCGC0) = ((HWREG(SYSCTL_SCGC0) & ~(SYSCTL_SCGC0_ADCSPD_M)) |
ulSpeed);
}
//*****************************************************************************
//
//! Gets the sample rate of the ADC.
//!
//! This function gets the current sample rate of the ADC.
//!
//! \return Returns the current ADC sample rate; will be one of
//! \b SYSCTL_ADCSPEED_1MSPS, \b SYSCTL_ADCSPEED_500KSPS,
//! \b SYSCTL_ADCSPEED_250KSPS, or \b SYSCTL_ADCSPEED_125KSPS.
//
//*****************************************************************************
unsigned long
SysCtlADCSpeedGet(void)
{
//
// Check that there is an ADC block on this part.
//
ASSERT(HWREG(SYSCTL_DC1) & SYSCTL_DC1_ADC0);
//
// Return the current ADC speed.
//
return(HWREG(SYSCTL_RCGC0) & SYSCTL_RCGC0_ADCSPD_M);
}
//*****************************************************************************
//
//! Configures the internal oscillator verification timer.
//!
//! \param bEnable is a boolean that is \b true if the internal oscillator
//! verification timer should be enabled.
//!
//! This function allows the internal oscillator verification timer to be
//! enabled or disabled. When enabled, an interrupt will be generated if the
//! internal oscillator ceases to operate.
//!
//! The internal oscillator verification timer is only available on
//! Sandstorm-class devices.
//!
//! \note Both oscillators (main and internal) must be enabled for this
//! verification timer to operate as the main oscillator will verify the
//! internal oscillator.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlIOSCVerificationSet(tBoolean bEnable)
{
//
// Enable or disable the internal oscillator verification timer as
// requested.
//
if(bEnable)
{
HWREG(SYSCTL_RCC) |= SYSCTL_RCC_IOSCVER;
}
else
{
HWREG(SYSCTL_RCC) &= ~(SYSCTL_RCC_IOSCVER);
}
}
//*****************************************************************************
//
//! Configures the main oscillator verification timer.
//!
//! \param bEnable is a boolean that is \b true if the main oscillator
//! verification timer should be enabled.
//!
//! This function allows the main oscillator verification timer to be enabled
//! or disabled. When enabled, an interrupt will be generated if the main
//! oscillator ceases to operate.
//!
//! The main oscillator verification timer is only available on
//! Sandstorm-class devices.
//!
//! \note Both oscillators (main and internal) must be enabled for this
//! verification timer to operate as the internal oscillator will verify the
//! main oscillator.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlMOSCVerificationSet(tBoolean bEnable)
{
//
// Enable or disable the main oscillator verification timer as requested.
//
if(bEnable)
{
HWREG(SYSCTL_RCC) |= SYSCTL_RCC_MOSCVER;
}
else
{
HWREG(SYSCTL_RCC) &= ~(SYSCTL_RCC_MOSCVER);
}
}
//*****************************************************************************
//
//! Configures the PLL verification timer.
//!
//! \param bEnable is a boolean that is \b true if the PLL verification timer
//! should be enabled.
//!
//! This function allows the PLL verification timer to be enabled or disabled.
//! When enabled, an interrupt will be generated if the PLL ceases to operate.
//!
//! The PLL verification timer is only available on Sandstorm-class devices.
//!
//! \note The main oscillator must be enabled for this verification timer to
//! operate as it is used to check the PLL. Also, the verification timer
//! should be disabled while the PLL is being reconfigured via
//! SysCtlClockSet().
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlPLLVerificationSet(tBoolean bEnable)
{
//
// Enable or disable the PLL verification timer as requested.
//
if(bEnable)
{
HWREG(SYSCTL_RCC) |= SYSCTL_RCC_PLLVER;
}
else
{
HWREG(SYSCTL_RCC) &= ~(SYSCTL_RCC_PLLVER);
}
}
//*****************************************************************************
//
//! Clears the clock verification status.
//!
//! This function clears the status of the clock verification timers, allowing
//! them to assert another failure if detected.
//!
//! The clock verification timers are only available on Sandstorm-class
//! devices.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlClkVerificationClear(void)
{
//
// Clear the clock verification.
//
HWREG(SYSCTL_CLKVCLR) = SYSCTL_CLKVCLR_VERCLR;
//
// The bit does not self-reset, so clear it.
//
HWREG(SYSCTL_CLKVCLR) = 0;
}
//*****************************************************************************
//
//! Enables a GPIO peripheral for access from the AHB.
//!
//! \param ulGPIOPeripheral is the GPIO peripheral to enable.
//!
//! This function is used to enable the specified GPIO peripheral to be
//! accessed from the Advanced Host Bus (AHB) instead of the legacy Advanced
//! Peripheral Bus (APB). When a GPIO peripheral is enabled for AHB access,
//! the \b _AHB_BASE form of the base address should be used for GPIO
//! functions. For example, instead of using \b GPIO_PORTA_BASE as the base
//! address for GPIO functions, use \b GPIO_PORTA_AHB_BASE instead.
//!
//! The \e ulGPIOPeripheral argument must be only one of the following values:
//! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC,
//! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF,
//! \b SYSCTL_PERIPH_GPIOG, or \b SYSCTL_PERIPH_GPIOH.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlGPIOAHBEnable(unsigned long ulGPIOPeripheral)
{
//
// Check the arguments.
//
ASSERT((ulGPIOPeripheral == SYSCTL_PERIPH_GPIOA) ||
(ulGPIOPeripheral == SYSCTL_PERIPH_GPIOB) ||
(ulGPIOPeripheral == SYSCTL_PERIPH_GPIOC) ||
(ulGPIOPeripheral == SYSCTL_PERIPH_GPIOD) ||
(ulGPIOPeripheral == SYSCTL_PERIPH_GPIOE) ||
(ulGPIOPeripheral == SYSCTL_PERIPH_GPIOF) ||
(ulGPIOPeripheral == SYSCTL_PERIPH_GPIOG) ||
(ulGPIOPeripheral == SYSCTL_PERIPH_GPIOH) ||
(ulGPIOPeripheral == SYSCTL_PERIPH_GPIOJ));
//
// Enable this GPIO for AHB access.
//
HWREG(SYSCTL_GPIOHSCTL) |= ulGPIOPeripheral & 0xFFFF;
}
//*****************************************************************************
//
//! Disables a GPIO peripheral for access from the AHB.
//!
//! \param ulGPIOPeripheral is the GPIO peripheral to disable.
//!
//! This function disables the specified GPIO peripheral for access from the
//! Advanced Host Bus (AHB). Once disabled, the GPIO peripheral is accessed
//! from the legacy Advanced Peripheral Bus (AHB).
//!
//! The \b ulGPIOPeripheral argument must be only one of the following values:
//! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC,
//! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF,
//! \b SYSCTL_PERIPH_GPIOG, or \b SYSCTL_PERIPH_GPIOH.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlGPIOAHBDisable(unsigned long ulGPIOPeripheral)
{
//
// Check the arguments.
//
ASSERT((ulGPIOPeripheral == SYSCTL_PERIPH_GPIOA) ||
(ulGPIOPeripheral == SYSCTL_PERIPH_GPIOB) ||
(ulGPIOPeripheral == SYSCTL_PERIPH_GPIOC) ||
(ulGPIOPeripheral == SYSCTL_PERIPH_GPIOD) ||
(ulGPIOPeripheral == SYSCTL_PERIPH_GPIOE) ||
(ulGPIOPeripheral == SYSCTL_PERIPH_GPIOF) ||
(ulGPIOPeripheral == SYSCTL_PERIPH_GPIOG) ||
(ulGPIOPeripheral == SYSCTL_PERIPH_GPIOH) ||
(ulGPIOPeripheral == SYSCTL_PERIPH_GPIOJ));
//
// Disable this GPIO for AHB access.
//
HWREG(SYSCTL_GPIOHSCTL) &= ~(ulGPIOPeripheral & 0xFFFF);
}
//*****************************************************************************
//
//! Powers up the USB PLL.
//!
//! This function will enable the USB controller's PLL which is used by it's
//! physical layer. This call is necessary before connecting to any external
//! devices.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlUSBPLLEnable(void)
{
//
// Turn on the USB PLL.
//
HWREG(SYSCTL_RCC2) &= ~SYSCTL_RCC2_USBPWRDN;
}
//*****************************************************************************
//
//! Powers down the USB PLL.
//!
//! This function will disable the USB controller's PLL which is used by it's
//! physical layer. The USB registers are still accessible, but the physical
//! layer will no longer function.
//!
//! \return None.
//
//*****************************************************************************
void
SysCtlUSBPLLDisable(void)
{
//
// Turn of USB PLL.
//
HWREG(SYSCTL_RCC2) |= SYSCTL_RCC2_USBPWRDN;
}
//*****************************************************************************
//
//! Sets the MCLK frequency provided to the I2S module.
//!
//! \param ulInputClock is the input clock to the MCLK divider. If this is
//! zero, the value is computed from the current PLL configuration.
//! \param ulMClk is the desired MCLK frequency. If this is zero, MCLK output
//! is disabled.
//!
//! This function sets the dividers to provide MCLK to the I2S module. A MCLK
//! divider will be chosen that produces the MCLK frequency that is the closest
//! possible to the requested frequency, which may be above or below the
//! requested frequency.
//!
//! The actual MCLK frequency will be returned. It is the responsibility of
//! the application to determine if the selected MCLK is acceptable; in general
//! the human ear can not discern the frequency difference if it is within 0.3%
//! of the desired frequency (though there is a very small percentage of the
//! population that can discern lower frequency deviations).
//!
//! \return Returns the actual MCLK frequency.
//
//*****************************************************************************
unsigned long
SysCtlI2SMClkSet(unsigned long ulInputClock, unsigned long ulMClk)
{
unsigned long ulDivInt, ulDivFrac, ulPLL;
//
// See if the I2S MCLK should be disabled.
//
if(ulMClk == 0)
{
//
// Disable the I2S MCLK and return.
//
HWREG(SYSCTL_I2SMCLKCFG) = 0;
return(0);
}
//
// See if the input clock was specified.
//
if(ulInputClock == 0)
{
//
// The input clock was not specified, so compute the output frequency
// of the PLL. Get the current PLL configuration.
//
ulPLL = HWREG(SYSCTL_PLLCFG);
//
// Get the frequency of the crystal in use.
//
ulInputClock = g_pulXtals[(HWREG(SYSCTL_RCC) & SYSCTL_RCC_XTAL_M) >>
SYSCTL_RCC_XTAL_S];
//
// Calculate the PLL output frequency.
//
ulInputClock = ((ulInputClock * ((ulPLL & SYSCTL_PLLCFG_F_M) >>
SYSCTL_PLLCFG_F_S)) /
((((ulPLL & SYSCTL_PLLCFG_R_M) >>
SYSCTL_PLLCFG_R_S) + 1)));
//
// See if the optional output divide by 2 is being used.
//
if(ulPLL & SYSCTL_PLLCFG_OD_2)
{
ulInputClock /= 2;
}
//
// See if the optional output divide by 4 is being used.
//
if(ulPLL & SYSCTL_PLLCFG_OD_4)
{
ulInputClock /= 4;
}
}
//
// Verify that the requested MCLK frequency is attainable.
//
ASSERT(ulMClk < ulInputClock);
//
// Add a rounding factor to the input clock, so that the MCLK frequency
// that is closest to the desire value is selected.
//
ulInputClock += (ulMClk / 32) - 1;
//
// Compute the integer portion of the MCLK divider.
//
ulDivInt = ulInputClock / ulMClk;
//
// If the divisor is too large, then simply use the maximum divisor.
//
if(CLASS_IS_TEMPEST && REVISION_IS_B1 && (ulDivInt > 255))
{
ulDivInt = 255;
ulDivFrac = 15;
}
else if(ulDivInt > 1023)
{
ulDivInt = 1023;
ulDivFrac = 15;
}
else
{
//
// Compute the fractional portion of the MCLK divider.
//
ulDivFrac = ((ulInputClock - (ulDivInt * ulMClk)) * 16) / ulMClk;
}
//
// Set the divisor for the Tx and Rx MCLK generators and enable the clocks.
//
HWREG(SYSCTL_I2SMCLKCFG) = (SYSCTL_I2SMCLKCFG_RXEN |
(ulDivInt << SYSCTL_I2SMCLKCFG_RXI_S) |
(ulDivFrac << SYSCTL_I2SMCLKCFG_RXF_S) |
SYSCTL_I2SMCLKCFG_TXEN |
(ulDivInt << SYSCTL_I2SMCLKCFG_TXI_S) |
(ulDivFrac << SYSCTL_I2SMCLKCFG_TXF_S));
//
// Return the actual MCLK frequency.
//
ulInputClock -= (ulMClk / 32) - 1;
ulDivInt = (ulDivInt * 16) + ulDivFrac;
ulMClk = (ulInputClock / ulDivInt) * 16;
ulMClk += ((ulInputClock - ((ulMClk / 16) * ulDivInt)) * 16) / ulDivInt;
return(ulMClk);
}
//*****************************************************************************
//
// Close the Doxygen group.
//! @}
//
//*****************************************************************************