rt-thread-official/bsp/efm32/Libraries/emlib/src/em_aes.c

1292 lines
40 KiB
C

/***************************************************************************//**
* @file
* @brief Advanced Encryption Standard (AES) accelerator peripheral API
* @author Energy Micro AS
* @version 3.0.0
*******************************************************************************
* @section License
* <b>(C) Copyright 2012 Energy Micro AS, http://www.energymicro.com</b>
*******************************************************************************
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*
* DISCLAIMER OF WARRANTY/LIMITATION OF REMEDIES: Energy Micro AS has no
* obligation to support this Software. Energy Micro AS is providing the
* Software "AS IS", with no express or implied warranties of any kind,
* including, but not limited to, any implied warranties of merchantability
* or fitness for any particular purpose or warranties against infringement
* of any proprietary rights of a third party.
*
* Energy Micro AS will not be liable for any consequential, incidental, or
* special damages, or any other relief, or for any claim by any third party,
* arising from your use of this Software.
*
******************************************************************************/
#include "em_aes.h"
#include "em_assert.h"
#if defined(AES_COUNT) && (AES_COUNT > 0)
/***************************************************************************//**
* @addtogroup EM_Library
* @{
******************************************************************************/
/***************************************************************************//**
* @addtogroup AES
* @brief Advanced Encryption Standard Accelerator (AES) Peripheral API for
* EFM32
* @details
* This API is intended for use on EFM32 target devices, and the following
* input/output notations should be noted:
*
* @li Input/output data (plaintext, ciphertext, key etc) are treated as
* byte arrays, starting with most significant byte. Ie, 32 bytes of
* plaintext (B0...B31) is located in memory in the same order, with B0 at
* the lower address and B31 at the higher address.
*
* @li Byte arrays must always be a multiple of AES block size, ie a multiple
* of 16. Padding, if required, is done at the end of the byte array.
*
* @li Byte arrays should be word (32 bit) aligned for performance
* considerations, since the array is accessed with 32 bit access type.
* The EFM32 supports unaligned accesses, but with a performance penalty.
*
* @li It is possible to specify the same output buffer as input buffer
* as long as they point to the same address. In that case the provided input
* buffer is replaced with the encrypted/decrypted output. Notice that the
* buffers must be exactly overlapping. If partly overlapping, the
* behaviour is undefined.
*
* It is up to the user to use a cipher mode according to its requirements
* in order to not break security. Please refer to specific cipher mode
* theory for details.
*
* References:
* @li Wikipedia - Cipher modes, http://en.wikipedia.org/wiki/Cipher_modes
*
* @li Recommendation for Block Cipher Modes of Operation,
* NIST Special Publication 800-38A, 2001 Edition,
* http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
* @{
******************************************************************************/
/*******************************************************************************
******************************* DEFINES ***********************************
******************************************************************************/
/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
#define AES_BLOCKSIZE 16
/** @endcond */
/*******************************************************************************
************************** GLOBAL FUNCTIONS *******************************
******************************************************************************/
/***************************************************************************//**
* @brief
* Cipher-block chaining (CBC) cipher mode encryption/decryption, 128 bit key.
*
* @details
* Encryption:
* @verbatim
* Plaintext Plaintext
* | |
* V V
* InitVector ->XOR +-------------->XOR
* | | |
* V | V
* +--------------+ | +--------------+
* Key ->| Block cipher | | Key ->| Block cipher |
* | encryption | | | encryption |
* +--------------+ | +--------------+
* |---------+ |
* V V
* Ciphertext Ciphertext
* @endverbatim
* Decryption:
* @verbatim
* Ciphertext Ciphertext
* |----------+ |
* V | V
* +--------------+ | +--------------+
* Key ->| Block cipher | | Key ->| Block cipher |
* | decryption | | | decryption |
* +--------------+ | +--------------+
* | | |
* V | V
* InitVector ->XOR +-------------->XOR
* | |
* V V
* Plaintext Plaintext
* @endverbatim
* Please refer to general comments on layout and byte ordering of parameters.
*
* @param[out] out
* Buffer to place encrypted/decrypted data. Must be at least @p len long. It
* may be set equal to @p in, in which case the input buffer is overwritten.
*
* @param[in] in
* Buffer holding data to encrypt/decrypt. Must be at least @p len long.
*
* @param[in] len
* Number of bytes to encrypt/decrypt. Must be a multiple of 16.
*
* @param[in] key
* When doing encryption, this is the 128 bit encryption key. When doing
* decryption, this is the 128 bit decryption key. The decryption key may
* be generated from the encryption key with AES_DecryptKey128().
* If this argument is null, the key will not be loaded, as it is assumed
* the key has been loaded into KEYHA previously.
*
* @param[in] iv
* 128 bit initalization vector to use.
*
* @param[in] encrypt
* Set to true to encrypt, false to decrypt.
******************************************************************************/
void AES_CBC128(uint8_t *out,
const uint8_t *in,
unsigned int len,
const uint8_t *key,
const uint8_t *iv,
bool encrypt)
{
int i;
uint32_t *_out = (uint32_t *)out;
const uint32_t *_in = (const uint32_t *)in;
const uint32_t *_iv = (const uint32_t *)iv;
/* Need to buffer one block when decrypting in case 'out' replaces 'in' */
uint32_t prev[4];
EFM_ASSERT(!(len % AES_BLOCKSIZE));
/* Number of blocks to process */
len /= AES_BLOCKSIZE;
if (key)
{
const uint32_t *_key = (const uint32_t *)key;
/* Load key into high key for key buffer usage */
for (i = 3; i >= 0; i--)
{
AES->KEYHA = __REV(_key[i]);
}
}
if (encrypt)
{
/* Enable encryption with auto start using XOR */
AES->CTRL = AES_CTRL_KEYBUFEN | AES_CTRL_XORSTART;
/* Load initialization vector, since writing to DATA, it will */
/* not trigger encryption. */
for (i = 3; i >= 0; i--)
{
AES->DATA = __REV(_iv[i]);
}
/* Encrypt data */
while (len--)
{
/* Load data and trigger encryption */
for (i = 3; i >= 0; i--)
{
AES->XORDATA = __REV(_in[i]);
}
_in += 4;
/* Wait for completion */
while (AES->STATUS & AES_STATUS_RUNNING)
;
/* Save encrypted data */
for (i = 3; i >= 0; i--)
{
_out[i] = __REV(AES->DATA);
}
_out += 4;
}
}
else
{
/* Select decryption mode */
AES->CTRL = AES_CTRL_DECRYPT | AES_CTRL_KEYBUFEN | AES_CTRL_DATASTART;
/* Copy init vector to previous buffer to avoid special handling */
for (i = 0; i < 4; i++)
{
prev[i] = _iv[i];
}
/* Decrypt data */
while (len--)
{
/* Load data and trigger decryption */
for (i = 3; i >= 0; i--)
{
AES->DATA = __REV(_in[i]);
}
/* Wait for completion */
while (AES->STATUS & AES_STATUS_RUNNING)
;
/* In order to avoid additional buffer, we use HW directly for XOR and buffer */
/* (Writing to XORDATA will not trigger encoding, triggering enabled on DATA.) */
for (i = 3; i >= 0; i--)
{
AES->XORDATA = __REV(prev[i]);
prev[i] = _in[i];
}
_in += 4;
/* Then fetch decrypted data, we have to do it in a separate loop */
/* due to internal auto-shifting of words */
for (i = 3; i >= 0; i--)
{
_out[i] = __REV(AES->DATA);
}
_out += 4;
}
}
}
/***************************************************************************//**
* @brief
* Cipher-block chaining (CBC) cipher mode encryption/decryption, 256 bit key.
*
* @details
* Please see AES_CBC128() for CBC figure.
*
* Please refer to general comments on layout and byte ordering of parameters.
*
* @param[out] out
* Buffer to place encrypted/decrypted data. Must be at least @p len long. It
* may be set equal to @p in, in which case the input buffer is overwritten.
*
* @param[in] in
* Buffer holding data to encrypt/decrypt. Must be at least @p len long.
*
* @param[in] len
* Number of bytes to encrypt/decrypt. Must be a multiple of 16.
*
* @param[in] key
* When doing encryption, this is the 256 bit encryption key. When doing
* decryption, this is the 256 bit decryption key. The decryption key may
* be generated from the encryption key with AES_DecryptKey256().
*
* @param[in] iv
* 128 bit initalization vector to use.
*
* @param[in] encrypt
* Set to true to encrypt, false to decrypt.
******************************************************************************/
void AES_CBC256(uint8_t *out,
const uint8_t *in,
unsigned int len,
const uint8_t *key,
const uint8_t *iv,
bool encrypt)
{
int i;
int j;
uint32_t *_out = (uint32_t *)out;
const uint32_t *_in = (const uint32_t *)in;
const uint32_t *_key = (const uint32_t *)key;
const uint32_t *_iv = (const uint32_t *)iv;
/* Need to buffer one block when decrypting in case output replaces input */
uint32_t prev[4];
EFM_ASSERT(!(len % AES_BLOCKSIZE));
/* Number of blocks to process */
len /= AES_BLOCKSIZE;
if (encrypt)
{
/* Enable encryption with auto start using XOR */
AES->CTRL = AES_CTRL_AES256 | AES_CTRL_XORSTART;
/* Load initialization vector, since writing to DATA, it will */
/* not trigger encryption. */
for (i = 3; i >= 0; i--)
{
AES->DATA = __REV(_iv[i]);
}
/* Encrypt data */
while (len--)
{
/* Load key and data and trigger encryption */
for (i = 3, j = 7; i >= 0; i--, j--)
{
AES->KEYLA = __REV(_key[j]);
AES->KEYHA = __REV(_key[i]);
/* Write data last, since will trigger encryption on last iteration */
AES->XORDATA = __REV(_in[i]);
}
_in += 4;
/* Wait for completion */
while (AES->STATUS & AES_STATUS_RUNNING)
;
/* Save encrypted data */
for (i = 3; i >= 0; i--)
{
_out[i] = __REV(AES->DATA);
}
_out += 4;
}
}
else
{
/* Select decryption mode */
AES->CTRL = AES_CTRL_AES256 | AES_CTRL_DECRYPT | AES_CTRL_DATASTART;
/* Copy init vector to previous buffer to avoid special handling */
for (i = 0; i < 4; i++)
{
prev[i] = _iv[i];
}
/* Decrypt data */
while (len--)
{
/* Load key and data and trigger decryption */
for (i = 3, j = 7; i >= 0; i--, j--)
{
AES->KEYLA = __REV(_key[j]);
AES->KEYHA = __REV(_key[i]);
/* Write data last, since will trigger encryption on last iteration */
AES->DATA = __REV(_in[i]);
}
/* Wait for completion */
while (AES->STATUS & AES_STATUS_RUNNING)
;
/* In order to avoid additional buffer, we use HW directly for XOR and buffer */
for (i = 3; i >= 0; i--)
{
AES->XORDATA = __REV(prev[i]);
prev[i] = _in[i];
}
_in += 4;
/* Then fetch decrypted data, we have to do it in a separate loop */
/* due to internal auto-shifting of words */
for (i = 3; i >= 0; i--)
{
_out[i] = __REV(AES->DATA);
}
_out += 4;
}
}
}
/***************************************************************************//**
* @brief
* Cipher feedback (CFB) cipher mode encryption/decryption, 128 bit key.
*
* @details
* Encryption:
* @verbatim
* InitVector +----------------+
* | | |
* V | V
* +--------------+ | +--------------+
* Key ->| Block cipher | | Key ->| Block cipher |
* | encryption | | | encryption |
* +--------------+ | +--------------+
* | | |
* V | V
* Plaintext ->XOR | Plaintext ->XOR
* |---------+ |
* V V
* Ciphertext Ciphertext
* @endverbatim
* Decryption:
* @verbatim
* InitVector +----------------+
* | | |
* V | V
* +--------------+ | +--------------+
* Key ->| Block cipher | | Key ->| Block cipher |
* | encryption | | | encryption |
* +--------------+ | +--------------+
* | | |
* V | V
* XOR<- Ciphertext XOR<- Ciphertext
* | |
* V V
* Plaintext Plaintext
* @endverbatim
* Please refer to general comments on layout and byte ordering of parameters.
*
* @param[out] out
* Buffer to place encrypted/decrypted data. Must be at least @p len long. It
* may be set equal to @p in, in which case the input buffer is overwritten.
*
* @param[in] in
* Buffer holding data to encrypt/decrypt. Must be at least @p len long.
*
* @param[in] len
* Number of bytes to encrypt/decrypt. Must be a multiple of 16.
*
* @param[in] key
* 128 bit encryption key is used for both encryption and decryption modes.
*
* @param[in] iv
* 128 bit initalization vector to use.
*
* @param[in] encrypt
* Set to true to encrypt, false to decrypt.
******************************************************************************/
void AES_CFB128(uint8_t *out,
const uint8_t *in,
unsigned int len,
const uint8_t *key,
const uint8_t *iv,
bool encrypt)
{
int i;
uint32_t *_out = (uint32_t *)out;
const uint32_t *_in = (const uint32_t *)in;
const uint32_t *_key = (const uint32_t *)key;
const uint32_t *_iv = (const uint32_t *)iv;
const uint32_t *data;
uint32_t tmp[4];
EFM_ASSERT(!(len % AES_BLOCKSIZE));
/* Select encryption mode */
AES->CTRL = AES_CTRL_KEYBUFEN | AES_CTRL_DATASTART;
/* Load key into high key for key buffer usage */
for (i = 3; i >= 0; i--)
{
AES->KEYHA = __REV(_key[i]);
}
/* Encrypt/decrypt data */
data = _iv;
len /= AES_BLOCKSIZE;
while (len--)
{
/* Load data and trigger encryption */
for (i = 3; i >= 0; i--)
{
AES->DATA = __REV(data[i]);
}
/* Do some required processing before waiting for completion */
if (encrypt)
{
data = _out;
}
else
{
/* Must copy current ciphertext block since it may be overwritten */
for (i = 0; i < 4; i++)
{
tmp[i] = _in[i];
}
data = tmp;
}
/* Wait for completion */
while (AES->STATUS & AES_STATUS_RUNNING)
;
/* Save encrypted/decrypted data */
for (i = 3; i >= 0; i--)
{
_out[i] = __REV(AES->DATA) ^ _in[i];
}
_out += 4;
_in += 4;
}
}
/***************************************************************************//**
* @brief
* Cipher feedback (CFB) cipher mode encryption/decryption, 256 bit key.
*
* @details
* Please see AES_CFB128() for CFB figure.
*
* Please refer to general comments on layout and byte ordering of parameters.
*
* @param[out] out
* Buffer to place encrypted/decrypted data. Must be at least @p len long. It
* may be set equal to @p in, in which case the input buffer is overwritten.
*
* @param[in] in
* Buffer holding data to encrypt/decrypt. Must be at least @p len long.
*
* @param[in] len
* Number of bytes to encrypt/decrypt. Must be a multiple of 16.
*
* @param[in] key
* 256 bit encryption key is used for both encryption and decryption modes.
*
* @param[in] iv
* 128 bit initalization vector to use.
*
* @param[in] encrypt
* Set to true to encrypt, false to decrypt.
******************************************************************************/
void AES_CFB256(uint8_t *out,
const uint8_t *in,
unsigned int len,
const uint8_t *key,
const uint8_t *iv,
bool encrypt)
{
int i;
int j;
uint32_t *_out = (uint32_t *)out;
const uint32_t *_in = (const uint32_t *)in;
const uint32_t *_key = (const uint32_t *)key;
const uint32_t *_iv = (const uint32_t *)iv;
const uint32_t *data;
uint32_t tmp[4];
EFM_ASSERT(!(len % AES_BLOCKSIZE));
/* Select encryption mode */
AES->CTRL = AES_CTRL_AES256 | AES_CTRL_DATASTART;
/* Encrypt/decrypt data */
data = _iv;
len /= AES_BLOCKSIZE;
while (len--)
{
/* Load key and block to be encrypted/decrypted */
for (i = 3, j = 7; i >= 0; i--, j--)
{
AES->KEYLA = __REV(_key[j]);
AES->KEYHA = __REV(_key[i]);
/* Write data last, since will trigger encryption on last iteration */
AES->DATA = __REV(data[i]);
}
/* Do some required processing before waiting for completion */
if (encrypt)
{
data = _out;
}
else
{
/* Must copy current ciphertext block since it may be overwritten */
for (i = 0; i < 4; i++)
{
tmp[i] = _in[i];
}
data = tmp;
}
while (AES->STATUS & AES_STATUS_RUNNING)
;
/* Save encrypted/decrypted data */
for (i = 3; i >= 0; i--)
{
_out[i] = __REV(AES->DATA) ^ _in[i];
}
_out += 4;
_in += 4;
}
}
/***************************************************************************//**
* @brief
* Counter (CTR) cipher mode encryption/decryption, 128 bit key.
*
* @details
* Encryption:
* @verbatim
* Counter Counter
* | |
* V V
* +--------------+ +--------------+
* Key ->| Block cipher | Key ->| Block cipher |
* | encryption | | encryption |
* +--------------+ +--------------+
* | |
* Plaintext ->XOR Plaintext ->XOR
* | |
* V V
* Ciphertext Ciphertext
* @endverbatim
* Decryption:
* @verbatim
* Counter Counter
* | |
* V V
* +--------------+ +--------------+
* Key ->| Block cipher | Key ->| Block cipher |
* | encryption | | encryption |
* +--------------+ +--------------+
* | |
* Ciphertext ->XOR Ciphertext ->XOR
* | |
* V V
* Plaintext Plaintext
* @endverbatim
* Please refer to general comments on layout and byte ordering of parameters.
*
* @param[out] out
* Buffer to place encrypted/decrypted data. Must be at least @p len long. It
* may be set equal to @p in, in which case the input buffer is overwritten.
*
* @param[in] in
* Buffer holding data to encrypt/decrypt. Must be at least @p len long.
*
* @param[in] len
* Number of bytes to encrypt/decrypt. Must be a multiple of 16.
*
* @param[in] key
* 128 bit encryption key.
* If this argument is null, the key will not be loaded, as it is assumed
* the key has been loaded into KEYHA previously.
*
* @param[in,out] ctr
* 128 bit initial counter value. The counter is updated after each AES
* block encoding through use of @p ctrFunc.
*
* @param[in] ctrFunc
* Function used to update counter value.
******************************************************************************/
void AES_CTR128(uint8_t *out,
const uint8_t *in,
unsigned int len,
const uint8_t *key,
uint8_t *ctr,
AES_CtrFuncPtr_TypeDef ctrFunc)
{
int i;
uint32_t *_out = (uint32_t *)out;
const uint32_t *_in = (const uint32_t *)in;
uint32_t *_ctr = (uint32_t *)ctr;
EFM_ASSERT(!(len % AES_BLOCKSIZE));
EFM_ASSERT(ctrFunc);
/* Select encryption mode, with auto trigger */
AES->CTRL = AES_CTRL_KEYBUFEN | AES_CTRL_DATASTART;
if (key)
{
const uint32_t *_key = (const uint32_t *)key;
/* Load key into high key for key buffer usage */
for (i = 3; i >= 0; i--)
{
AES->KEYHA = __REV(_key[i]);
}
}
/* Encrypt/decrypt data */
len /= AES_BLOCKSIZE;
while (len--)
{
/* Load ctr to be encrypted/decrypted */
for (i = 3; i >= 0; i--)
{
AES->DATA = __REV(_ctr[i]);
}
/* Increment ctr for next use */
ctrFunc(ctr);
/* Wait for completion */
while (AES->STATUS & AES_STATUS_RUNNING)
;
/* Save encrypted/decrypted data */
for (i = 3; i >= 0; i--)
{
_out[i] = __REV(AES->DATA) ^ _in[i];
}
_out += 4;
_in += 4;
}
}
/***************************************************************************//**
* @brief
* Counter (CTR) cipher mode encryption/decryption, 256 bit key.
*
* @details
* Please see AES_CTR128() for CTR figure.
*
* Please refer to general comments on layout and byte ordering of parameters.
*
* @param[out] out
* Buffer to place encrypted/decrypted data. Must be at least @p len long. It
* may be set equal to @p in, in which case the input buffer is overwritten.
*
* @param[in] in
* Buffer holding data to encrypt/decrypt. Must be at least @p len long.
*
* @param[in] len
* Number of bytes to encrypt/decrypt. Must be a multiple of 16.
*
* @param[in] key
* 256 bit encryption key.
*
* @param[in,out] ctr
* 128 bit initial counter value. The counter is updated after each AES
* block encoding through use of @p ctrFunc.
*
* @param[in] ctrFunc
* Function used to update counter value.
******************************************************************************/
void AES_CTR256(uint8_t *out,
const uint8_t *in,
unsigned int len,
const uint8_t *key,
uint8_t *ctr,
AES_CtrFuncPtr_TypeDef ctrFunc)
{
int i;
int j;
uint32_t *_out = (uint32_t *)out;
const uint32_t *_in = (const uint32_t *)in;
const uint32_t *_key = (const uint32_t *)key;
uint32_t *_ctr = (uint32_t *)ctr;
EFM_ASSERT(!(len % AES_BLOCKSIZE));
EFM_ASSERT(ctrFunc);
/* Select encryption mode, with auto trigger */
AES->CTRL = AES_CTRL_AES256 | AES_CTRL_DATASTART;
/* Encrypt/decrypt data */
len /= AES_BLOCKSIZE;
while (len--)
{
/* Load key and block to be encrypted/decrypted */
for (i = 3, j = 7; i >= 0; i--, j--)
{
AES->KEYLA = __REV(_key[j]);
AES->KEYHA = __REV(_key[i]);
/* Write data last, since will trigger encryption on last iteration */
AES->DATA = __REV(_ctr[i]);
}
/* Increment ctr for next use */
ctrFunc(ctr);
/* Wait for completion */
while (AES->STATUS & AES_STATUS_RUNNING)
;
/* Save encrypted/decrypted data */
for (i = 3; i >= 0; i--)
{
_out[i] = __REV(AES->DATA) ^ _in[i];
}
_out += 4;
_in += 4;
}
}
/***************************************************************************//**
* @brief
* Update last 32 bits of 128 bit counter, by incrementing with 1.
*
* @details
* Notice that no special consideration is given to possible wrap around. If
* 32 least significant bits are 0xFFFFFFFF, they will be updated to 0x00000000,
* ignoring overflow.
*
* Please refer to general comments on layout and byte ordering of parameters.
*
* @param[in,out] ctr
* Buffer holding 128 bit counter to be updated.
******************************************************************************/
void AES_CTRUpdate32Bit(uint8_t *ctr)
{
uint32_t *_ctr = (uint32_t *)ctr;
_ctr[3] = __REV(__REV(_ctr[3]) + 1);
}
/***************************************************************************//**
* @brief
* Generate 128 bit decryption key from 128 bit encryption key. The decryption
* key is used for some cipher modes when decrypting.
*
* @details
* Please refer to general comments on layout and byte ordering of parameters.
*
* @param[out] out
* Buffer to place 128 bit decryption key. Must be at least 16 bytes long. It
* may be set equal to @p in, in which case the input buffer is overwritten.
*
* @param[in] in
* Buffer holding 128 bit encryption key. Must be at least 16 bytes long.
******************************************************************************/
void AES_DecryptKey128(uint8_t *out, const uint8_t *in)
{
int i;
uint32_t *_out = (uint32_t *)out;
const uint32_t *_in = (const uint32_t *)in;
/* Load key */
for (i = 3; i >= 0; i--)
{
AES->KEYLA = __REV(_in[i]);
}
/* Do dummy encryption to generate decrypt key */
AES->CTRL = 0;
AES_IntClear(AES_IF_DONE);
AES->CMD = AES_CMD_START;
/* Wait for completion */
while (AES->STATUS & AES_STATUS_RUNNING)
;
/* Save decryption key */
for (i = 3; i >= 0; i--)
{
_out[i] = __REV(AES->KEYLA);
}
}
/***************************************************************************//**
* @brief
* Generate 256 bit decryption key from 256 bit encryption key. The decryption
* key is used for some cipher modes when decrypting.
*
* @details
* Please refer to general comments on layout and byte ordering of parameters.
*
* @param[out] out
* Buffer to place 256 bit decryption key. Must be at least 32 bytes long. It
* may be set equal to @p in, in which case the input buffer is overwritten.
*
* @param[in] in
* Buffer holding 256 bit encryption key. Must be at least 32 bytes long.
******************************************************************************/
void AES_DecryptKey256(uint8_t *out, const uint8_t *in)
{
int i;
int j;
uint32_t *_out = (uint32_t *)out;
const uint32_t *_in = (const uint32_t *)in;
/* Load key */
for (i = 3, j = 7; i >= 0; i--, j--)
{
AES->KEYLA = __REV(_in[j]);
AES->KEYHA = __REV(_in[i]);
}
/* Do dummy encryption to generate decrypt key */
AES->CTRL = AES_CTRL_AES256;
AES->CMD = AES_CMD_START;
/* Wait for completion */
while (AES->STATUS & AES_STATUS_RUNNING)
;
/* Save decryption key */
for (i = 3, j = 7; i >= 0; i--, j--)
{
_out[j] = __REV(AES->KEYLA);
_out[i] = __REV(AES->KEYHA);
}
}
/***************************************************************************//**
* @brief
* Electronic Codebook (ECB) cipher mode encryption/decryption, 128 bit key.
*
* @details
* Encryption:
* @verbatim
* Plaintext Plaintext
* | |
* V V
* +--------------+ +--------------+
* Key ->| Block cipher | Key ->| Block cipher |
* | encryption | | encryption |
* +--------------+ +--------------+
* | |
* V V
* Ciphertext Ciphertext
* @endverbatim
* Decryption:
* @verbatim
* Ciphertext Ciphertext
* | |
* V V
* +--------------+ +--------------+
* Key ->| Block cipher | Key ->| Block cipher |
* | decryption | | decryption |
* +--------------+ +--------------+
* | |
* V V
* Plaintext Plaintext
* @endverbatim
* Please refer to general comments on layout and byte ordering of parameters.
*
* @param[out] out
* Buffer to place encrypted/decrypted data. Must be at least @p len long. It
* may be set equal to @p in, in which case the input buffer is overwritten.
*
* @param[in] in
* Buffer holding data to encrypt/decrypt. Must be at least @p len long.
*
* @param[in] len
* Number of bytes to encrypt/decrypt. Must be a multiple of 16.
*
* @param[in] key
* When doing encryption, this is the 128 bit encryption key. When doing
* decryption, this is the 128 bit decryption key. The decryption key may
* be generated from the encryption key with AES_DecryptKey128().
*
* @param[in] encrypt
* Set to true to encrypt, false to decrypt.
******************************************************************************/
void AES_ECB128(uint8_t *out,
const uint8_t *in,
unsigned int len,
const uint8_t *key,
bool encrypt)
{
int i;
uint32_t *_out = (uint32_t *)out;
const uint32_t *_in = (const uint32_t *)in;
const uint32_t *_key = (const uint32_t *)key;
EFM_ASSERT(!(len % AES_BLOCKSIZE));
/* Load key into high key for key buffer usage */
for (i = 3; i >= 0; i--)
{
AES->KEYHA = __REV(_key[i]);
}
if (encrypt)
{
/* Select encryption mode */
AES->CTRL = AES_CTRL_KEYBUFEN | AES_CTRL_DATASTART;
}
else
{
/* Select decryption mode */
AES->CTRL = AES_CTRL_DECRYPT | AES_CTRL_KEYBUFEN | AES_CTRL_DATASTART;
}
/* Encrypt/decrypt data */
len /= AES_BLOCKSIZE;
while (len--)
{
/* Load block to be encrypted/decrypted */
for (i = 3; i >= 0; i--)
{
AES->DATA = __REV(_in[i]);
}
_in += 4;
/* Wait for completion */
while (AES->STATUS & AES_STATUS_RUNNING)
;
/* Save encrypted/decrypted data */
for (i = 3; i >= 0; i--)
{
_out[i] = __REV(AES->DATA);
}
_out += 4;
}
}
/***************************************************************************//**
* @brief
* Electronic Codebook (ECB) cipher mode encryption/decryption, 256 bit key.
*
* @details
* Please see AES_ECB128() for ECB figure.
*
* Please refer to general comments on layout and byte ordering of parameters.
*
* @param[out] out
* Buffer to place encrypted/decrypted data. Must be at least @p len long. It
* may be set equal to @p in, in which case the input buffer is overwritten.
*
* @param[in] in
* Buffer holding data to encrypt/decrypt. Must be at least @p len long.
*
* @param[in] len
* Number of bytes to encrypt/decrypt. Must be a multiple of 16.
*
* @param[in] key
* When doing encryption, this is the 256 bit encryption key. When doing
* decryption, this is the 256 bit decryption key. The decryption key may
* be generated from the encryption key with AES_DecryptKey256().
*
* @param[in] encrypt
* Set to true to encrypt, false to decrypt.
******************************************************************************/
void AES_ECB256(uint8_t *out,
const uint8_t *in,
unsigned int len,
const uint8_t *key,
bool encrypt)
{
int i;
int j;
uint32_t *_out = (uint32_t *)out;
const uint32_t *_in = (const uint32_t *)in;
const uint32_t *_key = (const uint32_t *)key;
EFM_ASSERT(!(len % AES_BLOCKSIZE));
if (encrypt)
{
/* Select encryption mode */
AES->CTRL = AES_CTRL_AES256 | AES_CTRL_DATASTART;
}
else
{
/* Select decryption mode */
AES->CTRL = AES_CTRL_DECRYPT | AES_CTRL_AES256 | AES_CTRL_DATASTART;
}
/* Encrypt/decrypt data */
len /= AES_BLOCKSIZE;
while (len--)
{
/* Load key and block to be encrypted/decrypted */
for (i = 3, j = 7; i >= 0; i--, j--)
{
AES->KEYLA = __REV(_key[j]);
AES->KEYHA = __REV(_key[i]);
/* Write data last, since will trigger encryption on last iteration */
AES->DATA = __REV(_in[i]);
}
_in += 4;
/* Wait for completion */
while (AES->STATUS & AES_STATUS_RUNNING)
;
/* Save encrypted/decrypted data */
for (i = 3; i >= 0; i--)
{
_out[i] = __REV(AES->DATA);
}
_out += 4;
}
}
/***************************************************************************//**
* @brief
* Output feedback (OFB) cipher mode encryption/decryption, 128 bit key.
*
* @details
* Encryption:
* @verbatim
* InitVector +----------------+
* | | |
* V | V
* +--------------+ | +--------------+
* Key ->| Block cipher | | Key ->| Block cipher |
* | encryption | | | encryption |
* +--------------+ | +--------------+
* | | |
* |---------+ |
* V V
* Plaintext ->XOR Plaintext ->XOR
* | |
* V V
* Ciphertext Ciphertext
* @endverbatim
* Decryption:
* @verbatim
* InitVector +----------------+
* | | |
* V | V
* +--------------+ | +--------------+
* Key ->| Block cipher | | Key ->| Block cipher |
* | encryption | | | encryption |
* +--------------+ | +--------------+
* | | |
* |---------+ |
* V V
* Ciphertext ->XOR Ciphertext ->XOR
* | |
* V V
* Plaintext Plaintext
* @endverbatim
* Please refer to general comments on layout and byte ordering of parameters.
*
* @param[out] out
* Buffer to place encrypted/decrypted data. Must be at least @p len long. It
* may be set equal to @p in, in which case the input buffer is overwritten.
*
* @param[in] in
* Buffer holding data to encrypt/decrypt. Must be at least @p len long.
*
* @param[in] len
* Number of bytes to encrypt/decrypt. Must be a multiple of 16.
*
* @param[in] key
* 128 bit encryption key.
*
* @param[in] iv
* 128 bit initalization vector to use.
******************************************************************************/
void AES_OFB128(uint8_t *out,
const uint8_t *in,
unsigned int len,
const uint8_t *key,
const uint8_t *iv)
{
int i;
uint32_t *_out = (uint32_t *)out;
const uint32_t *_in = (const uint32_t *)in;
const uint32_t *_key = (const uint32_t *)key;
const uint32_t *_iv = (const uint32_t *)iv;
EFM_ASSERT(!(len % AES_BLOCKSIZE));
/* Select encryption mode, trigger explicitly by command */
AES->CTRL = AES_CTRL_KEYBUFEN;
/* Load key into high key for key buffer usage */
/* Load initialization vector */
for (i = 3; i >= 0; i--)
{
AES->KEYHA = __REV(_key[i]);
AES->DATA = __REV(_iv[i]);
}
/* Encrypt/decrypt data */
len /= AES_BLOCKSIZE;
while (len--)
{
AES->CMD = AES_CMD_START;
/* Wait for completion */
while (AES->STATUS & AES_STATUS_RUNNING)
;
/* Save encrypted/decrypted data */
for (i = 3; i >= 0; i--)
{
_out[i] = __REV(AES->DATA) ^ _in[i];
}
_out += 4;
_in += 4;
}
}
/***************************************************************************//**
* @brief
* Output feedback (OFB) cipher mode encryption/decryption, 256 bit key.
*
* @details
* Please see AES_OFB128() for OFB figure.
*
* Please refer to general comments on layout and byte ordering of parameters.
*
* @param[out] out
* Buffer to place encrypted/decrypted data. Must be at least @p len long. It
* may be set equal to @p in, in which case the input buffer is overwritten.
*
* @param[in] in
* Buffer holding data to encrypt/decrypt. Must be at least @p len long.
*
* @param[in] len
* Number of bytes to encrypt/decrypt. Must be a multiple of 16.
*
* @param[in] key
* 256 bit encryption key.
*
* @param[in] iv
* 128 bit initalization vector to use.
******************************************************************************/
void AES_OFB256(uint8_t *out,
const uint8_t *in,
unsigned int len,
const uint8_t *key,
const uint8_t *iv)
{
int i;
int j;
uint32_t *_out = (uint32_t *)out;
const uint32_t *_in = (const uint32_t *)in;
const uint32_t *_key = (const uint32_t *)key;
const uint32_t *_iv = (const uint32_t *)iv;
EFM_ASSERT(!(len % AES_BLOCKSIZE));
/* Select encryption mode, trigger explicitly by command */
AES->CTRL = AES_CTRL_AES256;
/* Load initialization vector */
for (i = 3; i >= 0; i--)
{
AES->DATA = __REV(_iv[i]);
}
/* Encrypt/decrypt data */
len /= AES_BLOCKSIZE;
while (len--)
{
/* Load key */
for (i = 3, j = 7; i >= 0; i--, j--)
{
AES->KEYLA = __REV(_key[j]);
AES->KEYHA = __REV(_key[i]);
}
AES->CMD = AES_CMD_START;
/* Wait for completion */
while (AES->STATUS & AES_STATUS_RUNNING)
;
/* Save encrypted/decrypted data */
for (i = 3; i >= 0; i--)
{
_out[i] = __REV(AES->DATA) ^ _in[i];
}
_out += 4;
_in += 4;
}
}
/** @} (end addtogroup AES) */
/** @} (end addtogroup EM_Library) */
#endif /* defined(AES_COUNT) && (AES_COUNT > 0) */