rt-thread-official/src/scheduler_mp.c

1336 lines
41 KiB
C

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2006-03-17 Bernard the first version
* 2006-04-28 Bernard fix the scheduler algorthm
* 2006-04-30 Bernard add SCHEDULER_DEBUG
* 2006-05-27 Bernard fix the scheduler algorthm for same priority
* thread schedule
* 2006-06-04 Bernard rewrite the scheduler algorithm
* 2006-08-03 Bernard add hook support
* 2006-09-05 Bernard add 32 priority level support
* 2006-09-24 Bernard add rt_system_scheduler_start function
* 2009-09-16 Bernard fix _rt_scheduler_stack_check
* 2010-04-11 yi.qiu add module feature
* 2010-07-13 Bernard fix the maximal number of rt_scheduler_lock_nest
* issue found by kuronca
* 2010-12-13 Bernard add defunct list initialization even if not use heap.
* 2011-05-10 Bernard clean scheduler debug log.
* 2013-12-21 Grissiom add rt_critical_level
* 2018-11-22 Jesven remove the current task from ready queue
* add per cpu ready queue
* add _scheduler_get_highest_priority_thread to find highest priority task
* rt_schedule_insert_thread won't insert current task to ready queue
* in smp version, rt_hw_context_switch_interrupt maybe switch to
* new task directly
* 2022-01-07 Gabriel Moving __on_rt_xxxxx_hook to scheduler.c
* 2023-03-27 rose_man Split into scheduler upc and scheduler_mp.c
* 2023-09-15 xqyjlj perf rt_hw_interrupt_disable/enable
* 2023-12-10 xqyjlj use rt_hw_spinlock
* 2024-01-05 Shell Fixup of data racing in rt_critical_level
* 2024-01-18 Shell support rt_sched_thread of scheduling status for better mt protection
* 2024-01-18 Shell support rt_hw_thread_self to improve overall performance
*/
#include <rtthread.h>
#include <rthw.h>
#define DBG_TAG "kernel.scheduler"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
rt_list_t rt_thread_priority_table[RT_THREAD_PRIORITY_MAX];
static struct rt_spinlock _mp_scheduler_lock;
#define SCHEDULER_LOCK_FLAG(percpu) ((percpu)->sched_lock_flag)
#define SCHEDULER_ENTER_CRITICAL(curthr) \
do \
{ \
if (curthr) RT_SCHED_CTX(curthr).critical_lock_nest++; \
} while (0)
#define SCHEDULER_EXIT_CRITICAL(curthr) \
do \
{ \
if (curthr) RT_SCHED_CTX(curthr).critical_lock_nest--; \
} while (0)
#define SCHEDULER_CONTEXT_LOCK(percpu) \
do \
{ \
RT_ASSERT(SCHEDULER_LOCK_FLAG(percpu) == 0); \
_fast_spin_lock(&_mp_scheduler_lock); \
SCHEDULER_LOCK_FLAG(percpu) = 1; \
} while (0)
#define SCHEDULER_CONTEXT_UNLOCK(percpu) \
do \
{ \
RT_ASSERT(SCHEDULER_LOCK_FLAG(percpu) == 1); \
SCHEDULER_LOCK_FLAG(percpu) = 0; \
_fast_spin_unlock(&_mp_scheduler_lock); \
} while (0)
#define SCHEDULER_LOCK(level) \
do \
{ \
rt_thread_t _curthr; \
struct rt_cpu *_percpu; \
level = rt_hw_local_irq_disable(); \
_percpu = rt_cpu_self(); \
_curthr = _percpu->current_thread; \
SCHEDULER_ENTER_CRITICAL(_curthr); \
SCHEDULER_CONTEXT_LOCK(_percpu); \
} while (0)
#define SCHEDULER_UNLOCK(level) \
do \
{ \
rt_thread_t _curthr; \
struct rt_cpu *_percpu; \
_percpu = rt_cpu_self(); \
_curthr = _percpu->current_thread; \
SCHEDULER_CONTEXT_UNLOCK(_percpu); \
SCHEDULER_EXIT_CRITICAL(_curthr); \
rt_hw_local_irq_enable(level); \
} while (0)
#ifdef ARCH_USING_HW_THREAD_SELF
#define IS_CRITICAL_SWITCH_PEND(pcpu, curthr) (RT_SCHED_CTX(curthr).critical_switch_flag)
#define SET_CRITICAL_SWITCH_FLAG(pcpu, curthr) (RT_SCHED_CTX(curthr).critical_switch_flag = 1)
#define CLR_CRITICAL_SWITCH_FLAG(pcpu, curthr) (RT_SCHED_CTX(curthr).critical_switch_flag = 0)
#else /* !ARCH_USING_HW_THREAD_SELF */
#define IS_CRITICAL_SWITCH_PEND(pcpu, curthr) ((pcpu)->critical_switch_flag)
#define SET_CRITICAL_SWITCH_FLAG(pcpu, curthr) ((pcpu)->critical_switch_flag = 1)
#define CLR_CRITICAL_SWITCH_FLAG(pcpu, curthr) ((pcpu)->critical_switch_flag = 0)
#endif /* ARCH_USING_HW_THREAD_SELF */
static rt_uint32_t rt_thread_ready_priority_group;
#if RT_THREAD_PRIORITY_MAX > 32
/* Maximum priority level, 256 */
static rt_uint8_t rt_thread_ready_table[32];
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
/**
* Used only on scheduler for optimization of control flows, where the critical
* region is already guaranteed.
*/
rt_inline void _fast_spin_lock(struct rt_spinlock *lock)
{
rt_hw_spin_lock(&lock->lock);
RT_SPIN_LOCK_DEBUG(lock);
}
rt_inline void _fast_spin_unlock(struct rt_spinlock *lock)
{
rt_base_t critical_level;
RT_SPIN_UNLOCK_DEBUG(lock, critical_level);
/* for the scenario of sched, we don't check critical level */
RT_UNUSED(critical_level);
rt_hw_spin_unlock(&lock->lock);
}
#if defined(RT_USING_HOOK) && defined(RT_HOOK_USING_FUNC_PTR)
static void (*rt_scheduler_hook)(struct rt_thread *from, struct rt_thread *to);
static void (*rt_scheduler_switch_hook)(struct rt_thread *tid);
/**
* @addtogroup Hook
*/
/**@{*/
/**
* @brief This function will set a hook function, which will be invoked when thread
* switch happens.
*
* @param hook is the hook function.
*/
void rt_scheduler_sethook(void (*hook)(struct rt_thread *from, struct rt_thread *to))
{
rt_scheduler_hook = hook;
}
/**
* @brief This function will set a hook function, which will be invoked when context
* switch happens.
*
* @param hook is the hook function.
*/
void rt_scheduler_switch_sethook(void (*hook)(struct rt_thread *tid))
{
rt_scheduler_switch_hook = hook;
}
/**@}*/
#endif /* RT_USING_HOOK */
#if RT_THREAD_PRIORITY_MAX > 32
rt_inline rt_base_t _get_global_highest_ready_prio(void)
{
rt_ubase_t number;
rt_ubase_t highest_ready_priority;
number = __rt_ffs(rt_thread_ready_priority_group) - 1;
if (number != -1)
{
highest_ready_priority = (number << 3) + __rt_ffs(rt_thread_ready_table[number]) - 1;
}
else
{
highest_ready_priority = -1;
}
return highest_ready_priority;
}
rt_inline rt_base_t _get_local_highest_ready_prio(struct rt_cpu* pcpu)
{
rt_ubase_t number;
rt_ubase_t local_highest_ready_priority;
number = __rt_ffs(pcpu->priority_group) - 1;
if (number != -1)
{
local_highest_ready_priority = (number << 3) + __rt_ffs(pcpu->ready_table[number]) - 1;
}
else
{
local_highest_ready_priority = -1;
}
return local_highest_ready_priority;
}
#else /* if RT_THREAD_PRIORITY_MAX <= 32 */
rt_inline rt_base_t _get_global_highest_ready_prio(void)
{
return __rt_ffs(rt_thread_ready_priority_group) - 1;
}
rt_inline rt_base_t _get_local_highest_ready_prio(struct rt_cpu* pcpu)
{
return __rt_ffs(pcpu->priority_group) - 1;
}
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
/*
* get the highest priority thread in ready queue
*/
static struct rt_thread* _scheduler_get_highest_priority_thread(rt_ubase_t *highest_prio)
{
struct rt_thread *highest_priority_thread;
rt_ubase_t highest_ready_priority, local_highest_ready_priority;
struct rt_cpu* pcpu = rt_cpu_self();
highest_ready_priority = _get_global_highest_ready_prio();
local_highest_ready_priority = _get_local_highest_ready_prio(pcpu);
/* get highest ready priority thread */
if (highest_ready_priority < local_highest_ready_priority)
{
*highest_prio = highest_ready_priority;
highest_priority_thread = RT_THREAD_LIST_NODE_ENTRY(
rt_thread_priority_table[highest_ready_priority].next);
}
else
{
*highest_prio = local_highest_ready_priority;
if (local_highest_ready_priority != -1)
{
highest_priority_thread = RT_THREAD_LIST_NODE_ENTRY(
pcpu->priority_table[local_highest_ready_priority].next);
}
else
{
highest_priority_thread = RT_NULL;
}
}
RT_ASSERT(!highest_priority_thread ||
rt_object_get_type(&highest_priority_thread->parent) == RT_Object_Class_Thread);
return highest_priority_thread;
}
/**
* @brief set READY and insert thread to ready queue
*
* @note caller must holding the `_mp_scheduler_lock` lock
*/
static void _sched_insert_thread_locked(struct rt_thread *thread)
{
int cpu_id;
int bind_cpu;
rt_uint32_t cpu_mask;
if ((RT_SCHED_CTX(thread).stat & RT_THREAD_STAT_MASK) == RT_THREAD_READY)
{
/* already in ready queue */
return ;
}
else if (RT_SCHED_CTX(thread).oncpu != RT_CPU_DETACHED)
{
/**
* only YIELD -> READY, SUSPEND -> READY is allowed by this API. However,
* this is a RUNNING thread. So here we reset it's status and let it go.
*/
RT_SCHED_CTX(thread).stat = RT_THREAD_RUNNING | (RT_SCHED_CTX(thread).stat & ~RT_THREAD_STAT_MASK);
return ;
}
/* READY thread, insert to ready queue */
RT_SCHED_CTX(thread).stat = RT_THREAD_READY | (RT_SCHED_CTX(thread).stat & ~RT_THREAD_STAT_MASK);
cpu_id = rt_hw_cpu_id();
bind_cpu = RT_SCHED_CTX(thread).bind_cpu;
/* insert thread to ready list */
if (bind_cpu == RT_CPUS_NR)
{
#if RT_THREAD_PRIORITY_MAX > 32
rt_thread_ready_table[RT_SCHED_PRIV(thread).number] |= RT_SCHED_PRIV(thread).high_mask;
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
rt_thread_ready_priority_group |= RT_SCHED_PRIV(thread).number_mask;
/* there is no time slices left(YIELD), inserting thread before ready list*/
if((RT_SCHED_CTX(thread).stat & RT_THREAD_STAT_YIELD_MASK) != 0)
{
rt_list_insert_before(&(rt_thread_priority_table[RT_SCHED_PRIV(thread).current_priority]),
&RT_THREAD_LIST_NODE(thread));
}
/* there are some time slices left, inserting thread after ready list to schedule it firstly at next time*/
else
{
rt_list_insert_after(&(rt_thread_priority_table[RT_SCHED_PRIV(thread).current_priority]),
&RT_THREAD_LIST_NODE(thread));
}
cpu_mask = RT_CPU_MASK ^ (1 << cpu_id);
rt_hw_ipi_send(RT_SCHEDULE_IPI, cpu_mask);
}
else
{
struct rt_cpu *pcpu = rt_cpu_index(bind_cpu);
#if RT_THREAD_PRIORITY_MAX > 32
pcpu->ready_table[RT_SCHED_PRIV(thread).number] |= RT_SCHED_PRIV(thread).high_mask;
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
pcpu->priority_group |= RT_SCHED_PRIV(thread).number_mask;
/* there is no time slices left(YIELD), inserting thread before ready list*/
if((RT_SCHED_CTX(thread).stat & RT_THREAD_STAT_YIELD_MASK) != 0)
{
rt_list_insert_before(&(rt_cpu_index(bind_cpu)->priority_table[RT_SCHED_PRIV(thread).current_priority]),
&RT_THREAD_LIST_NODE(thread));
}
/* there are some time slices left, inserting thread after ready list to schedule it firstly at next time*/
else
{
rt_list_insert_after(&(rt_cpu_index(bind_cpu)->priority_table[RT_SCHED_PRIV(thread).current_priority]),
&RT_THREAD_LIST_NODE(thread));
}
if (cpu_id != bind_cpu)
{
cpu_mask = 1 << bind_cpu;
rt_hw_ipi_send(RT_SCHEDULE_IPI, cpu_mask);
}
}
LOG_D("insert thread[%.*s], the priority: %d",
RT_NAME_MAX, thread->parent.name, RT_SCHED_PRIV(thread).current_priority);
}
/* remove thread from ready queue */
static void _sched_remove_thread_locked(struct rt_thread *thread)
{
LOG_D("%s [%.*s], the priority: %d", __func__,
RT_NAME_MAX, thread->parent.name,
RT_SCHED_PRIV(thread).current_priority);
/* remove thread from ready list */
rt_list_remove(&RT_THREAD_LIST_NODE(thread));
if (RT_SCHED_CTX(thread).bind_cpu == RT_CPUS_NR)
{
if (rt_list_isempty(&(rt_thread_priority_table[RT_SCHED_PRIV(thread).current_priority])))
{
#if RT_THREAD_PRIORITY_MAX > 32
rt_thread_ready_table[RT_SCHED_PRIV(thread).number] &= ~RT_SCHED_PRIV(thread).high_mask;
if (rt_thread_ready_table[RT_SCHED_PRIV(thread).number] == 0)
{
rt_thread_ready_priority_group &= ~RT_SCHED_PRIV(thread).number_mask;
}
#else
rt_thread_ready_priority_group &= ~RT_SCHED_PRIV(thread).number_mask;
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
}
}
else
{
struct rt_cpu *pcpu = rt_cpu_index(RT_SCHED_CTX(thread).bind_cpu);
if (rt_list_isempty(&(pcpu->priority_table[RT_SCHED_PRIV(thread).current_priority])))
{
#if RT_THREAD_PRIORITY_MAX > 32
pcpu->ready_table[RT_SCHED_PRIV(thread).number] &= ~RT_SCHED_PRIV(thread).high_mask;
if (pcpu->ready_table[RT_SCHED_PRIV(thread).number] == 0)
{
pcpu->priority_group &= ~RT_SCHED_PRIV(thread).number_mask;
}
#else
pcpu->priority_group &= ~RT_SCHED_PRIV(thread).number_mask;
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
}
}
}
/**
* @brief This function will initialize the system scheduler.
*/
void rt_system_scheduler_init(void)
{
int cpu;
rt_base_t offset;
LOG_D("start scheduler: max priority 0x%02x",
RT_THREAD_PRIORITY_MAX);
rt_spin_lock_init(&_mp_scheduler_lock);
for (offset = 0; offset < RT_THREAD_PRIORITY_MAX; offset ++)
{
rt_list_init(&rt_thread_priority_table[offset]);
}
for (cpu = 0; cpu < RT_CPUS_NR; cpu++)
{
struct rt_cpu *pcpu = rt_cpu_index(cpu);
for (offset = 0; offset < RT_THREAD_PRIORITY_MAX; offset ++)
{
rt_list_init(&pcpu->priority_table[offset]);
}
pcpu->irq_switch_flag = 0;
pcpu->current_priority = RT_THREAD_PRIORITY_MAX - 1;
pcpu->current_thread = RT_NULL;
pcpu->priority_group = 0;
#if RT_THREAD_PRIORITY_MAX > 32
rt_memset(pcpu->ready_table, 0, sizeof(pcpu->ready_table));
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
#ifdef RT_USING_SMART
rt_spin_lock_init(&(pcpu->spinlock));
#endif
}
/* initialize ready priority group */
rt_thread_ready_priority_group = 0;
#if RT_THREAD_PRIORITY_MAX > 32
/* initialize ready table */
rt_memset(rt_thread_ready_table, 0, sizeof(rt_thread_ready_table));
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
}
/**
* @brief This function will startup the scheduler. It will select one thread
* with the highest priority level, then switch to it.
*/
void rt_system_scheduler_start(void)
{
struct rt_thread *to_thread;
rt_ubase_t highest_ready_priority;
/**
* legacy rt_cpus_lock. some bsp codes still use it as for it's critical
* region. Since scheduler is never touching this, here we just release it
* on the entry.
*/
rt_hw_spin_unlock(&_cpus_lock);
/* ISR will corrupt the coherency of running frame */
rt_hw_local_irq_disable();
/**
* for the accessing of the scheduler context. Noted that we don't have
* current_thread at this point
*/
_fast_spin_lock(&_mp_scheduler_lock);
/* get the thread scheduling to */
to_thread = _scheduler_get_highest_priority_thread(&highest_ready_priority);
RT_ASSERT(to_thread);
/* to_thread is picked to running on current core, so remove it from ready queue */
_sched_remove_thread_locked(to_thread);
/* dedigate current core to `to_thread` */
RT_SCHED_CTX(to_thread).oncpu = rt_hw_cpu_id();
RT_SCHED_CTX(to_thread).stat = RT_THREAD_RUNNING;
LOG_D("[cpu#%d] switch to priority#%d thread:%.*s(sp:0x%08x)",
rt_hw_cpu_id(), RT_SCHED_PRIV(to_thread).current_priority,
RT_NAME_MAX, to_thread->parent.name, to_thread->sp);
_fast_spin_unlock(&_mp_scheduler_lock);
/* switch to new thread */
rt_hw_context_switch_to((rt_ubase_t)&to_thread->sp, to_thread);
/* never come back */
}
/**
* @addtogroup Thread
* @cond
*/
/**@{*/
/**
* @brief This function will handle IPI interrupt and do a scheduling in system.
*
* @param vector is the number of IPI interrupt for system scheduling.
*
* @param param is not used, and can be set to RT_NULL.
*
* @note this function should be invoke or register as ISR in BSP.
*/
void rt_scheduler_ipi_handler(int vector, void *param)
{
rt_schedule();
}
/**
* @brief Lock the system scheduler
*
* @param plvl pointer to the object where lock level stores to
*
* @return rt_err_t RT_EOK
*/
rt_err_t rt_sched_lock(rt_sched_lock_level_t *plvl)
{
rt_base_t level;
if (!plvl)
return -RT_EINVAL;
SCHEDULER_LOCK(level);
*plvl = level;
return RT_EOK;
}
/**
* @brief Unlock the system scheduler
* @note this will not cause the scheduler to do a reschedule
*
* @param level the lock level of previous call to rt_sched_lock()
*
* @return rt_err_t RT_EOK
*/
rt_err_t rt_sched_unlock(rt_sched_lock_level_t level)
{
SCHEDULER_UNLOCK(level);
return RT_EOK;
}
rt_bool_t rt_sched_is_locked(void)
{
rt_bool_t rc;
rt_base_t level;
struct rt_cpu *pcpu;
level = rt_hw_local_irq_disable();
pcpu = rt_cpu_self();
/* get lock stat which is a boolean value */
rc = pcpu->sched_lock_flag;
rt_hw_local_irq_enable(level);
return rc;
}
/**
* @brief Pick the highest runnable thread, and pass the control to it
*
* @note caller should hold the scheduler context lock. lock will be released
* before return from this routine
*/
static rt_thread_t _prepare_context_switch_locked(int cpu_id,
struct rt_cpu *pcpu,
rt_thread_t current_thread)
{
rt_thread_t to_thread = RT_NULL;
rt_ubase_t highest_ready_priority;
/* quickly check if any other ready threads queuing */
if (rt_thread_ready_priority_group != 0 || pcpu->priority_group != 0)
{
/* pick the highest ready thread */
to_thread = _scheduler_get_highest_priority_thread(&highest_ready_priority);
/* detach current thread from percpu scheduling context */
RT_SCHED_CTX(current_thread).oncpu = RT_CPU_DETACHED;
/* check if current thread should be put to ready queue, or scheduling again */
if ((RT_SCHED_CTX(current_thread).stat & RT_THREAD_STAT_MASK) == RT_THREAD_RUNNING)
{
/* check if current thread can be running on current core again */
if (RT_SCHED_CTX(current_thread).bind_cpu == RT_CPUS_NR
|| RT_SCHED_CTX(current_thread).bind_cpu == cpu_id)
{
/* if current_thread is the highest runnable thread */
if (RT_SCHED_PRIV(current_thread).current_priority < highest_ready_priority)
{
to_thread = current_thread;
}
/* or no higher-priority thread existed and it has remaining ticks */
else if (RT_SCHED_PRIV(current_thread).current_priority == highest_ready_priority &&
(RT_SCHED_CTX(current_thread).stat & RT_THREAD_STAT_YIELD_MASK) == 0)
{
to_thread = current_thread;
}
/* otherwise give out the core */
else
{
_sched_insert_thread_locked(current_thread);
}
}
else
{
/* put current_thread to ready queue of another core */
_sched_insert_thread_locked(current_thread);
}
/* consume the yield flags after scheduling */
RT_SCHED_CTX(current_thread).stat &= ~RT_THREAD_STAT_YIELD_MASK;
}
/**
* Now destination thread is determined, core is passed to it. Though
* the percpu scheduling context is not updated here, since the cpu
* is locked contiguously before all the scheduling works are done, it's
* safe to observe that current thread as the running thread on this
* core for any observers if they properly do the synchronization
* (take the SCHEDULER_LOCK).
*/
RT_SCHED_CTX(to_thread).oncpu = cpu_id;
/* check if context switch is required */
if (to_thread != current_thread)
{
pcpu->current_priority = (rt_uint8_t)highest_ready_priority;
RT_OBJECT_HOOK_CALL(rt_scheduler_hook, (current_thread, to_thread));
/* remove to_thread from ready queue and update its status to RUNNING */
_sched_remove_thread_locked(to_thread);
RT_SCHED_CTX(to_thread).stat = RT_THREAD_RUNNING | (RT_SCHED_CTX(to_thread).stat & ~RT_THREAD_STAT_MASK);
RT_SCHEDULER_STACK_CHECK(to_thread);
RT_OBJECT_HOOK_CALL(rt_scheduler_switch_hook, (current_thread));
}
else
{
/* current thread is still the best runnable thread */
to_thread = RT_NULL;
}
}
else
{
/* no ready threads */
to_thread = RT_NULL;
}
return to_thread;
}
#ifdef RT_USING_SIGNALS
static void _sched_thread_preprocess_signal(struct rt_thread *current_thread)
{
/* should process signal? */
if (rt_sched_thread_is_suspended(current_thread))
{
/* if current_thread signal is in pending */
if ((RT_SCHED_CTX(current_thread).stat & RT_THREAD_STAT_SIGNAL_MASK) & RT_THREAD_STAT_SIGNAL_PENDING)
{
#ifdef RT_USING_SMART
rt_thread_wakeup(current_thread);
#else
rt_thread_resume(current_thread);
#endif
}
}
}
static void _sched_thread_process_signal(struct rt_thread *current_thread)
{
rt_base_t level;
SCHEDULER_LOCK(level);
/* check stat of thread for signal */
if (RT_SCHED_CTX(current_thread).stat & RT_THREAD_STAT_SIGNAL_PENDING)
{
extern void rt_thread_handle_sig(rt_bool_t clean_state);
RT_SCHED_CTX(current_thread).stat &= ~RT_THREAD_STAT_SIGNAL_PENDING;
SCHEDULER_UNLOCK(level);
/* check signal status */
rt_thread_handle_sig(RT_TRUE);
}
else
{
SCHEDULER_UNLOCK(level);
}
/* lock is released above */
}
#define SCHED_THREAD_PREPROCESS_SIGNAL(pcpu, curthr) \
do \
{ \
SCHEDULER_CONTEXT_LOCK(pcpu); \
_sched_thread_preprocess_signal(curthr); \
SCHEDULER_CONTEXT_UNLOCK(pcpu); \
} while (0)
#define SCHED_THREAD_PREPROCESS_SIGNAL_LOCKED(curthr) \
_sched_thread_preprocess_signal(curthr)
#define SCHED_THREAD_PROCESS_SIGNAL(curthr) _sched_thread_process_signal(curthr)
#else /* ! RT_USING_SIGNALS */
#define SCHED_THREAD_PREPROCESS_SIGNAL(pcpu, curthr)
#define SCHED_THREAD_PREPROCESS_SIGNAL_LOCKED(curthr)
#define SCHED_THREAD_PROCESS_SIGNAL(curthr)
#endif /* RT_USING_SIGNALS */
rt_err_t rt_sched_unlock_n_resched(rt_sched_lock_level_t level)
{
struct rt_thread *to_thread;
struct rt_thread *current_thread;
struct rt_cpu *pcpu;
int cpu_id;
rt_err_t error = RT_EOK;
cpu_id = rt_hw_cpu_id();
pcpu = rt_cpu_index(cpu_id);
current_thread = pcpu->current_thread;
if (!current_thread)
{
/* scheduler is unavailable yet */
SCHEDULER_CONTEXT_UNLOCK(pcpu);
SCHEDULER_EXIT_CRITICAL(current_thread);
rt_hw_local_irq_enable(level);
return -RT_EBUSY;
}
/* whether do switch in interrupt */
if (rt_atomic_load(&(pcpu->irq_nest)))
{
pcpu->irq_switch_flag = 1;
SCHEDULER_CONTEXT_UNLOCK(pcpu);
SCHEDULER_EXIT_CRITICAL(current_thread);
rt_hw_local_irq_enable(level);
return -RT_ESCHEDISR;
}
/* prepare current_thread for processing if signals existed */
SCHED_THREAD_PREPROCESS_SIGNAL_LOCKED(current_thread);
/* whether caller had locked the local scheduler already */
if (RT_SCHED_CTX(current_thread).critical_lock_nest > 1)
{
/* leaving critical region of global context since we can't schedule */
SCHEDULER_CONTEXT_UNLOCK(pcpu);
SET_CRITICAL_SWITCH_FLAG(pcpu, current_thread);
error = -RT_ESCHEDLOCKED;
SCHEDULER_EXIT_CRITICAL(current_thread);
}
else
{
/* flush critical switch flag since a scheduling is done */
CLR_CRITICAL_SWITCH_FLAG(pcpu, current_thread);
/* pick the highest runnable thread, and pass the control to it */
to_thread = _prepare_context_switch_locked(cpu_id, pcpu, current_thread);
if (to_thread)
{
/* switch to new thread */
LOG_D("[cpu#%d] UNLOCK switch to priority#%d "
"thread:%.*s(sp:0x%08x), "
"from thread:%.*s(sp: 0x%08x)",
cpu_id, RT_SCHED_PRIV(to_thread).current_priority,
RT_NAME_MAX, to_thread->parent.name, to_thread->sp,
RT_NAME_MAX, current_thread->parent.name, current_thread->sp);
rt_hw_context_switch((rt_ubase_t)&current_thread->sp,
(rt_ubase_t)&to_thread->sp, to_thread);
}
else
{
SCHEDULER_CONTEXT_UNLOCK(pcpu);
SCHEDULER_EXIT_CRITICAL(current_thread);
}
}
/* leaving critical region of percpu scheduling context */
rt_hw_local_irq_enable(level);
/* process signals on thread if any existed */
SCHED_THREAD_PROCESS_SIGNAL(current_thread);
return error;
}
/**
* @brief This function will perform one scheduling. It will select one thread
* with the highest priority level in global ready queue or local ready queue,
* then switch to it.
*/
void rt_schedule(void)
{
rt_base_t level;
struct rt_thread *to_thread;
struct rt_thread *current_thread;
struct rt_cpu *pcpu;
int cpu_id;
/* enter ciritical region of percpu scheduling context */
level = rt_hw_local_irq_disable();
/* get percpu scheduling context */
cpu_id = rt_hw_cpu_id();
pcpu = rt_cpu_index(cpu_id);
current_thread = pcpu->current_thread;
/* whether do switch in interrupt */
if (rt_atomic_load(&(pcpu->irq_nest)))
{
pcpu->irq_switch_flag = 1;
rt_hw_local_irq_enable(level);
return ; /* -RT_ESCHEDISR */
}
/* forbid any recursive entries of schedule() */
SCHEDULER_ENTER_CRITICAL(current_thread);
/* prepare current_thread for processing if signals existed */
SCHED_THREAD_PREPROCESS_SIGNAL(pcpu, current_thread);
/* whether caller had locked the local scheduler already */
if (RT_SCHED_CTX(current_thread).critical_lock_nest > 1)
{
SET_CRITICAL_SWITCH_FLAG(pcpu, current_thread);
SCHEDULER_EXIT_CRITICAL(current_thread);
/* -RT_ESCHEDLOCKED */
}
else
{
/* flush critical switch flag since a scheduling is done */
CLR_CRITICAL_SWITCH_FLAG(pcpu, current_thread);
pcpu->irq_switch_flag = 0;
/**
* take the context lock before we do the real scheduling works. Context
* lock will be released before returning from this _schedule_locked()
*/
SCHEDULER_CONTEXT_LOCK(pcpu);
/* pick the highest runnable thread, and pass the control to it */
to_thread = _prepare_context_switch_locked(cpu_id, pcpu, current_thread);
if (to_thread)
{
LOG_D("[cpu#%d] switch to priority#%d "
"thread:%.*s(sp:0x%08x), "
"from thread:%.*s(sp: 0x%08x)",
cpu_id, RT_SCHED_PRIV(to_thread).current_priority,
RT_NAME_MAX, to_thread->parent.name, to_thread->sp,
RT_NAME_MAX, current_thread->parent.name, current_thread->sp);
rt_hw_context_switch((rt_ubase_t)&current_thread->sp,
(rt_ubase_t)&to_thread->sp, to_thread);
}
else
{
/* current thread continue to take the core */
SCHEDULER_CONTEXT_UNLOCK(pcpu);
SCHEDULER_EXIT_CRITICAL(current_thread);
}
}
/* leaving critical region of percpu scheduling context */
rt_hw_local_irq_enable(level);
/* process signals on thread if any existed */
SCHED_THREAD_PROCESS_SIGNAL(current_thread);
}
/**
* @brief This function checks whether a scheduling is needed after an IRQ context switching. If yes,
* it will select one thread with the highest priority level, and then switch
* to it.
*/
void rt_scheduler_do_irq_switch(void *context)
{
int cpu_id;
rt_base_t level;
struct rt_cpu *pcpu;
struct rt_thread *to_thread;
struct rt_thread *current_thread;
level = rt_hw_local_irq_disable();
cpu_id = rt_hw_cpu_id();
pcpu = rt_cpu_index(cpu_id);
current_thread = pcpu->current_thread;
/* forbid any recursive entries of schedule() */
SCHEDULER_ENTER_CRITICAL(current_thread);
SCHED_THREAD_PREPROCESS_SIGNAL(pcpu, current_thread);
/* any pending scheduling existed? */
if (pcpu->irq_switch_flag == 0)
{
/* if no, just continue execution of current_thread */
SCHEDULER_EXIT_CRITICAL(current_thread);
rt_hw_local_irq_enable(level);
return;
}
/* whether caller had locked the local scheduler already */
if (RT_SCHED_CTX(current_thread).critical_lock_nest > 1)
{
SET_CRITICAL_SWITCH_FLAG(pcpu, current_thread);
SCHEDULER_EXIT_CRITICAL(current_thread);
}
else if (rt_atomic_load(&(pcpu->irq_nest)) == 0)
{
/* flush critical & irq switch flag since a scheduling is done */
CLR_CRITICAL_SWITCH_FLAG(pcpu, current_thread);
pcpu->irq_switch_flag = 0;
SCHEDULER_CONTEXT_LOCK(pcpu);
/* pick the highest runnable thread, and pass the control to it */
to_thread = _prepare_context_switch_locked(cpu_id, pcpu, current_thread);
if (to_thread)
{
LOG_D("[cpu#%d] IRQ switch to priority#%d "
"thread:%.*s(sp:0x%08x), "
"from thread:%.*s(sp: 0x%08x)",
cpu_id, RT_SCHED_PRIV(to_thread).current_priority,
RT_NAME_MAX, to_thread->parent.name, to_thread->sp,
RT_NAME_MAX, current_thread->parent.name, current_thread->sp);
rt_hw_context_switch_interrupt(context, (rt_ubase_t)&current_thread->sp,
(rt_ubase_t)&to_thread->sp, to_thread);
}
else
{
/* current thread continue to take the core */
SCHEDULER_CONTEXT_UNLOCK(pcpu);
SCHEDULER_EXIT_CRITICAL(current_thread);
}
}
else
{
SCHEDULER_EXIT_CRITICAL(current_thread);
}
/* leaving critical region of percpu scheduling context */
rt_hw_local_irq_enable(level);
}
/**
* @brief This function will insert a thread to the system ready queue. The state of
* thread will be set as READY and the thread will be removed from suspend queue.
*
* @param thread is the thread to be inserted.
*
* @note Please do not invoke this function in user application.
* Caller must hold the scheduler lock
*/
void rt_sched_insert_thread(struct rt_thread *thread)
{
RT_ASSERT(thread != RT_NULL);
RT_SCHED_DEBUG_IS_LOCKED;
/* set READY and insert thread to ready queue */
_sched_insert_thread_locked(thread);
}
/**
* @brief This function will remove a thread from system ready queue.
*
* @param thread is the thread to be removed.
*
* @note Please do not invoke this function in user application.
*/
void rt_sched_remove_thread(struct rt_thread *thread)
{
RT_ASSERT(thread != RT_NULL);
RT_SCHED_DEBUG_IS_LOCKED;
/* remove thread from scheduler ready list */
_sched_remove_thread_locked(thread);
RT_SCHED_CTX(thread).stat = RT_THREAD_SUSPEND_UNINTERRUPTIBLE;
}
/* thread status initialization and setting up on startup */
void rt_sched_thread_init_priv(struct rt_thread *thread, rt_uint32_t tick, rt_uint8_t priority)
{
rt_list_init(&RT_THREAD_LIST_NODE(thread));
/* priority init */
RT_ASSERT(priority < RT_THREAD_PRIORITY_MAX);
RT_SCHED_PRIV(thread).init_priority = priority;
RT_SCHED_PRIV(thread).current_priority = priority;
/* don't add to scheduler queue as init thread */
RT_SCHED_PRIV(thread).number_mask = 0;
#if RT_THREAD_PRIORITY_MAX > 32
RT_SCHED_PRIV(thread).number = 0;
RT_SCHED_PRIV(thread).high_mask = 0;
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
/* tick init */
RT_SCHED_PRIV(thread).init_tick = tick;
RT_SCHED_PRIV(thread).remaining_tick = tick;
#ifdef RT_USING_SMP
/* lock init */
RT_SCHED_CTX(thread).critical_lock_nest = 0;
#endif /* RT_USING_SMP */
}
/* Normally, there isn't anyone racing with us so this operation is lockless */
void rt_sched_thread_startup(struct rt_thread *thread)
{
#if RT_THREAD_PRIORITY_MAX > 32
RT_SCHED_PRIV(thread).number = RT_SCHED_PRIV(thread).current_priority >> 3; /* 5bit */
RT_SCHED_PRIV(thread).number_mask = 1L << RT_SCHED_PRIV(thread).number;
RT_SCHED_PRIV(thread).high_mask = 1L << (RT_SCHED_PRIV(thread).current_priority & 0x07); /* 3bit */
#else
RT_SCHED_PRIV(thread).number_mask = 1L << RT_SCHED_PRIV(thread).current_priority;
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
/* change thread stat, so we can resume it */
RT_SCHED_CTX(thread).stat = RT_THREAD_SUSPEND;
}
/**
* @brief Update scheduling status of thread. this operation is taken as an
* atomic operation of the update of SP. Since the local irq is disabled,
* it's okay to assume that the stack will not be modified meanwhile.
*/
void rt_sched_post_ctx_switch(struct rt_thread *thread)
{
struct rt_cpu* pcpu = rt_cpu_self();
rt_thread_t from_thread = pcpu->current_thread;
RT_ASSERT(rt_hw_interrupt_is_disabled());
if (from_thread)
{
RT_ASSERT(RT_SCHED_CTX(from_thread).critical_lock_nest == 1);
/* release the scheduler lock since we are done with critical region */
RT_SCHED_CTX(from_thread).critical_lock_nest = 0;
SCHEDULER_CONTEXT_UNLOCK(pcpu);
}
/* safe to access since irq is masked out */
pcpu->current_thread = thread;
#ifdef ARCH_USING_HW_THREAD_SELF
rt_hw_thread_set_self(thread);
#endif /* ARCH_USING_HW_THREAD_SELF */
}
#ifdef RT_DEBUGING_CRITICAL
static volatile int _critical_error_occurred = 0;
void rt_exit_critical_safe(rt_base_t critical_level)
{
struct rt_cpu *pcpu = rt_cpu_self();
rt_thread_t current_thread = pcpu->current_thread;
if (current_thread && !_critical_error_occurred)
{
if (critical_level != RT_SCHED_CTX(current_thread).critical_lock_nest)
{
int dummy = 1;
_critical_error_occurred = 1;
rt_kprintf("%s: un-compatible critical level\n" \
"\tCurrent %d\n\tCaller %d\n",
__func__, RT_SCHED_CTX(current_thread).critical_lock_nest,
critical_level);
rt_backtrace();
while (dummy) ;
}
}
rt_exit_critical();
}
#else /* !RT_DEBUGING_CRITICAL */
void rt_exit_critical_safe(rt_base_t critical_level)
{
RT_UNUSED(critical_level);
return rt_exit_critical();
}
#endif /* RT_DEBUGING_CRITICAL */
RTM_EXPORT(rt_exit_critical_safe);
#ifdef ARCH_USING_HW_THREAD_SELF
#define FREE_THREAD_SELF(lvl)
#else /* !ARCH_USING_HW_THREAD_SELF */
#define FREE_THREAD_SELF(lvl) \
do \
{ \
rt_hw_local_irq_enable(lvl); \
} while (0)
#endif /* ARCH_USING_HW_THREAD_SELF */
/**
* @brief This function will lock the thread scheduler.
*/
rt_base_t rt_enter_critical(void)
{
rt_base_t critical_level;
struct rt_thread *current_thread;
#ifndef ARCH_USING_HW_THREAD_SELF
rt_base_t level;
struct rt_cpu *pcpu;
/* disable interrupt */
level = rt_hw_local_irq_disable();
pcpu = rt_cpu_self();
current_thread = pcpu->current_thread;
#else /* !ARCH_USING_HW_THREAD_SELF */
current_thread = rt_hw_thread_self();
#endif /* ARCH_USING_HW_THREAD_SELF */
if (!current_thread)
{
FREE_THREAD_SELF(level);
/* scheduler unavailable */
return -RT_EINVAL;
}
/* critical for local cpu */
RT_SCHED_CTX(current_thread).critical_lock_nest++;
critical_level = RT_SCHED_CTX(current_thread).critical_lock_nest;
FREE_THREAD_SELF(level);
return critical_level;
}
RTM_EXPORT(rt_enter_critical);
/**
* @brief This function will unlock the thread scheduler.
*/
void rt_exit_critical(void)
{
struct rt_thread *current_thread;
rt_bool_t need_resched;
#ifndef ARCH_USING_HW_THREAD_SELF
rt_base_t level;
struct rt_cpu *pcpu;
/* disable interrupt */
level = rt_hw_local_irq_disable();
pcpu = rt_cpu_self();
current_thread = pcpu->current_thread;
#else /* !ARCH_USING_HW_THREAD_SELF */
current_thread = rt_hw_thread_self();
#endif /* ARCH_USING_HW_THREAD_SELF */
if (!current_thread)
{
FREE_THREAD_SELF(level);
return;
}
/* the necessary memory barrier is done on irq_(dis|en)able */
RT_SCHED_CTX(current_thread).critical_lock_nest--;
/* may need a rescheduling */
if (RT_SCHED_CTX(current_thread).critical_lock_nest == 0)
{
/* is there any scheduling request unfinished? */
need_resched = IS_CRITICAL_SWITCH_PEND(pcpu, current_thread);
CLR_CRITICAL_SWITCH_FLAG(pcpu, current_thread);
FREE_THREAD_SELF(level);
if (need_resched)
rt_schedule();
}
else
{
/* each exit_critical is strictly corresponding to an enter_critical */
RT_ASSERT(RT_SCHED_CTX(current_thread).critical_lock_nest > 0);
FREE_THREAD_SELF(level);
}
}
RTM_EXPORT(rt_exit_critical);
/**
* @brief Get the scheduler lock level.
*
* @return the level of the scheduler lock. 0 means unlocked.
*/
rt_uint16_t rt_critical_level(void)
{
rt_base_t level;
rt_uint16_t critical_lvl;
struct rt_thread *current_thread;
level = rt_hw_local_irq_disable();
current_thread = rt_cpu_self()->current_thread;
if (current_thread)
{
/* the necessary memory barrier is done on irq_(dis|en)able */
critical_lvl = RT_SCHED_CTX(current_thread).critical_lock_nest;
}
else
{
critical_lvl = 0;
}
rt_hw_local_irq_enable(level);
return critical_lvl;
}
RTM_EXPORT(rt_critical_level);
rt_err_t rt_sched_thread_bind_cpu(struct rt_thread *thread, int cpu)
{
rt_sched_lock_level_t slvl;
rt_uint8_t thread_stat;
RT_SCHED_DEBUG_IS_UNLOCKED;
if (cpu >= RT_CPUS_NR)
{
cpu = RT_CPUS_NR;
}
rt_sched_lock(&slvl);
thread_stat = rt_sched_thread_get_stat(thread);
if (thread_stat == RT_THREAD_READY)
{
/* unbind */
/* remove from old ready queue */
rt_sched_remove_thread(thread);
/* change thread bind cpu */
RT_SCHED_CTX(thread).bind_cpu = cpu;
/* add to new ready queue */
rt_sched_insert_thread(thread);
if (rt_thread_self() != RT_NULL)
{
rt_sched_unlock_n_resched(slvl);
}
else
{
rt_sched_unlock(slvl);
}
}
else
{
RT_SCHED_CTX(thread).bind_cpu = cpu;
if (thread_stat == RT_THREAD_RUNNING)
{
/* thread is running on a cpu */
int current_cpu = rt_hw_cpu_id();
if (cpu != RT_CPUS_NR)
{
if (RT_SCHED_CTX(thread).oncpu == current_cpu)
{
/* current thread on current cpu */
if (cpu != current_cpu)
{
/* bind to other cpu */
rt_hw_ipi_send(RT_SCHEDULE_IPI, 1U << cpu);
/* self cpu need reschedule */
rt_sched_unlock_n_resched(slvl);
}
else
{
/* else do nothing */
rt_sched_unlock(slvl);
}
}
else
{
/* no running on self cpu, but dest cpu can be itself */
rt_hw_ipi_send(RT_SCHEDULE_IPI, 1U << RT_SCHED_CTX(thread).oncpu);
rt_sched_unlock(slvl);
}
}
else
{
/* else do nothing */
rt_sched_unlock(slvl);
}
}
else
{
rt_sched_unlock(slvl);
}
}
return RT_EOK;
}
/**@}*/
/**@endcond*/