rt-thread-official/bsp/apollo2/libraries/drivers/hal/am_hal_iom.h

560 lines
23 KiB
C

//*****************************************************************************
//
// am_hal_iom.h
//! @file
//!
//! @brief Functions for accessing and configuring the IO Master module
//!
//! @addtogroup iom2 IO Master (SPI/I2C)
//! @ingroup apollo2hal
//! @{
//*****************************************************************************
//*****************************************************************************
//
// Copyright (c) 2017, Ambiq Micro
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from this
// software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// This is part of revision 1.2.9 of the AmbiqSuite Development Package.
//
//*****************************************************************************
#ifndef AM_HAL_IOM_H
#define AM_HAL_IOM_H
//*****************************************************************************
//
// Macro definitions
//
//*****************************************************************************
//*****************************************************************************
//
//! @name IOM Clock Frequencies
//! @brief Macro definitions for common SPI and I2C clock frequencies.
//!
//! These macros may be used with the ui32ClockFrequency member of the
//! am_hal_iom_config_t structure to set the clock frequency of the serial
//! interfaces.
//!
//! This list of frequencies is not exhaustive by any means. If your desired
//! frequency is not in this list, simply set ui32ClockFrequency to the
//! desired frequency (in Hz) when calling am_hal_iom_config().
//
//*****************************************************************************
#define AM_HAL_IOM_24MHZ 24000000
#define AM_HAL_IOM_16MHZ 16000000
#define AM_HAL_IOM_12MHZ 12000000
#define AM_HAL_IOM_8MHZ 8000000
#define AM_HAL_IOM_6MHZ 6000000
#define AM_HAL_IOM_4MHZ 4000000
#define AM_HAL_IOM_3MHZ 3000000
#define AM_HAL_IOM_2MHZ 2000000
#define AM_HAL_IOM_1_5MHZ 1500000
#define AM_HAL_IOM_1MHZ 1000000
#define AM_HAL_IOM_750KHZ 750000
#define AM_HAL_IOM_500KHZ 500000
#define AM_HAL_IOM_400KHZ 400000
#define AM_HAL_IOM_375KHZ 375000
#define AM_HAL_IOM_250KHZ 250000
#define AM_HAL_IOM_125KHZ 125000
#define AM_HAL_IOM_100KHZ 100000
#define AM_HAL_IOM_50KHZ 50000
#define AM_HAL_IOM_10KHZ 10000
// Hardware FIFO Size
#define AM_HAL_IOM_MAX_FIFO_SIZE 128
//*****************************************************************************
//
//! @name IOM Physical Protocols
//! @brief Macro Definitions for general IOM configuration.
//!
//! These macros may be used with the am_hal_iom_config_t structure to set the
//! operating parameters of each serial IO master module. Choose SPIMODE to
//! select the SPI interface, or I2CMODE to select the I2C interface.
//!
//! @{
//
//*****************************************************************************
#define AM_HAL_IOM_SPIMODE AM_REG_IOMSTR_CFG_IFCSEL(1)
#define AM_HAL_IOM_I2CMODE AM_REG_IOMSTR_CFG_IFCSEL(0)
//! @}
//*****************************************************************************
//
//! @name IOM Operations
//! @brief Macro definitions used for ui32Operation parameters.
//!
//! These macros may be used to specify which action an IOM command will
//! execute. The 'OFFSET' operations will cause the IOM hardware to transmit the
//! provided 1-byte 'offset' before executing the rest of the command.
//!
//! @{
//
//*****************************************************************************
#define AM_HAL_IOM_WRITE 0x00000000
#define AM_HAL_IOM_READ 0x80000000
//! @}
//*****************************************************************************
//
//! @name Command Options
//! @brief Macro definitions used for ui32Options parameters.
//!
//! These macros are all related to SPI or I2C command words. They can be used
//! to set specific options on a per-transaction basis.
//!
//! - CS_LOW - Do not raise the CS signal at the end of this SPI command.
//! - NO_STOP - Do not release the I2C bus with a STOP bit after this command.
//! - LSB_FIRST - Reverse the payload bits of this command.
//! - 10BIT_ADDRESS - (I2C only) use a 10-bit I2C address protocol.
//! - RAW - Don't use an offset byte.
//! - OFFSET() - Send this 1-byte offset as the first byte of the transaction.
//! This can be used to access "registers" in external I2C devices, or add a
//! 1-byte write to the beginning of a SPI write or read command. See
//! "normal mode" operation in the I2C/SPI Master section of the datasheet
//! for more information on this parameter.
//!
//! @{
//
//*****************************************************************************
#define AM_HAL_IOM_CS_LOW 0x10000000
#define AM_HAL_IOM_NO_STOP 0x10000000
#define AM_HAL_IOM_LSB_FIRST 0x08000000
#define AM_HAL_IOM_10BIT_ADDRESS 0x04000000
#define AM_HAL_IOM_RAW 0x40000000
#define AM_HAL_IOM_OFFSET(n) (((n) << 8) & 0x0000FF00)
//! @}
//*****************************************************************************
//
//! @name IOM Interrupts
//! @brief Macro definitions for IOM interrupt status bits.
//!
//! These macros correspond to the bits in the IOM interrupt status register.
//! They may be used with any of the \e am_hal_iom_int_x() functions.
//!
//! @{
//
//*****************************************************************************
#define AM_HAL_IOM_INT_ARB AM_REG_IOMSTR_INTEN_ARB_M
#define AM_HAL_IOM_INT_STOP AM_REG_IOMSTR_INTEN_STOP_M
#define AM_HAL_IOM_INT_START AM_REG_IOMSTR_INTEN_START_M
#define AM_HAL_IOM_INT_ICMD AM_REG_IOMSTR_INTEN_ICMD_M
#define AM_HAL_IOM_INT_IACC AM_REG_IOMSTR_INTEN_IACC_M
#define AM_HAL_IOM_INT_WTLEN AM_REG_IOMSTR_INTEN_WTLEN_M
#define AM_HAL_IOM_INT_NAK AM_REG_IOMSTR_INTEN_NAK_M
#define AM_HAL_IOM_INT_FOVFL AM_REG_IOMSTR_INTEN_FOVFL_M
#define AM_HAL_IOM_INT_FUNDFL AM_REG_IOMSTR_INTEN_FUNDFL_M
#define AM_HAL_IOM_INT_THR AM_REG_IOMSTR_INTEN_THR_M
#define AM_HAL_IOM_INT_CMDCMP AM_REG_IOMSTR_INTEN_CMDCMP_M
//! @}
//*****************************************************************************
//
//! @name IOM function errors
//! @brief Return values for IOM HAL function errors, such as with the function
//! am_hal_iom_error_status_get().
//!
//! @{
//
//*****************************************************************************
#define AM_HAL_IOM_ERR_INVALID_MODULE (1 << 30)
//! @}
//*****************************************************************************
//
//! @name Software IOM modules
//! @brief Macro definitions for using the software I2C interface.
//!
//! Use this macro as the module number for standard IOM functions to emulate
//! them using the bit-banged i2c interface.
//!
//! @{
//
//*****************************************************************************
#define AM_HAL_IOM_I2CBB_MODULE AM_REG_IOMSTR_NUM_MODULES
//! @}
//*****************************************************************************
//
//! @brief Union type for a word-aligned, byte-addressable array.
//!
//! This is a convenience macro that may be used to define byte-addressable
//! arrays with 32-bit alignment. This allows the programmer to define SPI or
//! I2C transactions as a series of 8-bit values, but also write them to the
//! IOM FIFO efficiently as a series of 32-bit values.
//!
//! Example usage:
//!
//! @code
//! //
//! // Declare a buffer array with at least 3-bytes worth of space.
//! //
//! am_hal_iom_buffer(3) sBuffer;
//!
//! //
//! // Populate the buffer with a 3-byte command.
//! //
//! sBuffer.bytes[0] = 's';
//! sBuffer.bytes[1] = 'p';
//! sBuffer.bytes[2] = 'i';
//!
//! //
//! // Send the buffer over the spi interface.
//! //
//! am_hal_iom_spi_write(psDevice, sBuffer.words, 3, 0);
//!
//! @endcode
//
//*****************************************************************************
#define am_hal_iom_buffer(A) \
union \
{ \
uint32_t words[(A + 3) >> 2]; \
uint8_t bytes[A]; \
}
//*****************************************************************************
//
//! @brief Configuration structure for the IO master module.
//
//*****************************************************************************
typedef struct
{
//
//! @brief Selects the physical protocol for the IO master module. Choose
//! either AM_HAL_IOM_SPIMODE or AM_HAL_IOM_I2CMODE.
//
uint32_t ui32InterfaceMode;
//
//! @brief Selects the output clock frequency for SPI or I2C mode. Choose
//! one of the AM_HAL_IOM_nMHZ or AM_HAL_IOM_nKHZ macros.
//
uint32_t ui32ClockFrequency;
//
//! Select the SPI clock phase (unused in I2C mode).
//
bool bSPHA;
//
//! Select the SPI clock polarity (unused in I2C mode).
//
bool bSPOL;
//
//! @brief Select the FIFO write threshold.
//!
//! The IOM controller will generate a processor interrupt when the number
//! of entries in the FIFO goes *below* this number.
//
uint8_t ui8WriteThreshold;
//
//! @brief Select the FIFO read threshold.
//!
//! The IOM controller will generate a processor interrupt when the number
//! of entries in the FIFO grows *larger* than this number.
//
uint8_t ui8ReadThreshold;
}
am_hal_iom_config_t;
//*****************************************************************************
//
//! Configuration structure for an individual SPI device.
//
//*****************************************************************************
typedef struct
{
//
//! IOM module to use for communicating with this device.
//
uint32_t ui32Module;
//
//! Chip select signal that should be used for this device.
//
uint32_t ui32ChipSelect;
//
//! Additional options that will ALWAYS be ORed into the command word.
//
uint32_t ui32Options;
}
am_hal_iom_spi_device_t;
//*****************************************************************************
//
//! Configuration structure for an individual I2C device.
//
//*****************************************************************************
typedef struct
{
//
//! IOM module to use for communicating with this device.
//
uint32_t ui32Module;
//
//! I2C address associated with this device.
//
uint32_t ui32BusAddress;
//
//! Additional options that will ALWAYS be ORed into the command word.
//
uint32_t ui32Options;
}
am_hal_iom_i2c_device_t;
//*****************************************************************************
//
// Typedef for non-blocking function callbacks.
//
//*****************************************************************************
typedef void (*am_hal_iom_callback_t)(void);
//*****************************************************************************
//
// Typedef for a function that waits until the IOM queue is empty.
//
//*****************************************************************************
typedef void (*am_hal_iom_queue_flush_t)(uint32_t);
extern am_hal_iom_queue_flush_t am_hal_iom_queue_flush;
//*****************************************************************************
//
// Operations
//
//*****************************************************************************
#define AM_HAL_IOM_QUEUE_SPI_WRITE 0
#define AM_HAL_IOM_QUEUE_SPI_READ 1
#define AM_HAL_IOM_QUEUE_I2C_WRITE 2
#define AM_HAL_IOM_QUEUE_I2C_READ 3
//*****************************************************************************
//
// Structure to hold IOM operations.
//
//*****************************************************************************
typedef struct
{
uint32_t ui32Operation;
uint32_t ui32Module;
uint32_t ui32ChipSelect;
uint32_t *pui32Data;
uint32_t ui32NumBytes;
uint32_t ui32Options;
am_hal_iom_callback_t pfnCallback;
}
am_hal_iom_queue_entry_t;
//*****************************************************************************
//
// Structure to hold IOM configuration during module power-down.
//
//*****************************************************************************
typedef struct
{
uint32_t FIFOTHR;
uint32_t CLKCFG;
uint32_t CFG;
uint32_t INTEN;
uint32_t bValid;
}
am_hal_iom_pwrsave_t;
//*****************************************************************************
//
// Global variables
//
//*****************************************************************************
extern am_hal_iom_pwrsave_t am_hal_iom_pwrsave[AM_REG_IOMSTR_NUM_MODULES];
extern uint32_t g_iom_error_status;
//*****************************************************************************
//
// External function definitions
//
//*****************************************************************************
extern void am_hal_iom_pwrctrl_enable(uint32_t ui32Module);
extern void am_hal_iom_pwrctrl_disable(uint32_t ui32Module);
extern void am_hal_iom_power_on_restore(uint32_t ui32Module);
extern void am_hal_iom_power_off_save(uint32_t ui32Module);
extern void am_hal_iom_config(uint32_t ui32Module,
const am_hal_iom_config_t *psConfig);
extern uint32_t am_hal_iom_frequency_get(uint32_t ui32Module);
extern void am_hal_iom_enable(uint32_t ui32Module);
extern void am_hal_iom_disable(uint32_t ui32Module);
extern void am_hal_iom_spi_write(uint32_t ui32Module, uint32_t ui32ChipSelect,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options);
extern void am_hal_iom_spi_read(uint32_t ui32Module, uint32_t ui32ChipSelect,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options);
extern uint32_t am_hal_iom_spi_write_nq(uint32_t ui32Module, uint32_t ui32ChipSelect,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options);
extern uint32_t am_hal_iom_spi_read_nq(uint32_t ui32Module, uint32_t ui32ChipSelect,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options);
extern void am_hal_iom_spi_write_nb(uint32_t ui32Module, uint32_t ui32ChipSelect,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options,
am_hal_iom_callback_t pfnCallback);
extern uint32_t am_hal_iom_spi_read_nb(uint32_t ui32Module, uint32_t ui32ChipSelect,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options,
am_hal_iom_callback_t pfnCallback);
extern void am_hal_iom_spi_cmd_run(uint32_t ui32Operation,
uint32_t ui32Module,
uint32_t ui32ChipSelect,
uint32_t ui32NumBytes,
uint32_t ui32Options);
extern void am_hal_iom_i2c_write(uint32_t ui32Module,
uint32_t ui32BusAddress,
uint32_t *pui32Data,
uint32_t ui32NumBytes,
uint32_t ui32Options);
extern void am_hal_iom_i2c_read(uint32_t ui32Module,
uint32_t ui32BusAddress,
uint32_t *pui32Data,
uint32_t ui32NumBytes,
uint32_t ui32Options);
extern uint32_t am_hal_iom_i2c_write_nq(uint32_t ui32Module,
uint32_t ui32BusAddress,
uint32_t *pui32Data,
uint32_t ui32NumBytes,
uint32_t ui32Options);
extern uint32_t am_hal_iom_i2c_read_nq(uint32_t ui32Module,
uint32_t ui32BusAddress,
uint32_t *pui32Data,
uint32_t ui32NumBytes,
uint32_t ui32Options);
extern void am_hal_iom_i2c_write_nb(uint32_t ui32Module,
uint32_t ui32BusAddress,
uint32_t *pui32Data,
uint32_t ui32NumBytes,
uint32_t ui32Options,
am_hal_iom_callback_t pfnCallback);
extern void am_hal_iom_i2c_read_nb(uint32_t ui32Module,
uint32_t ui32BusAddress,
uint32_t *pui32Data,
uint32_t ui32NumBytes,
uint32_t ui32Options,
am_hal_iom_callback_t pfnCallback);
extern void am_hal_iom_i2c_cmd_run(uint32_t ui32Operation,
uint32_t ui32Module,
uint32_t ui32BusAddress,
uint32_t ui32NumBytes,
uint32_t ui32Options);
extern void am_hal_iom_command_repeat_set(uint32_t ui32Module,
uint32_t ui32CmdCount);
extern uint32_t am_hal_iom_status_get(uint32_t ui32Module);
extern uint32_t am_hal_iom_error_status_get(uint32_t ui32Module);
extern uint32_t am_hal_iom_fifo_write(uint32_t ui32Module, uint32_t *pui32Data,
uint32_t ui32NumBytes);
extern uint32_t am_hal_iom_fifo_read(uint32_t ui32Module, uint32_t *pui32Data,
uint32_t ui32NumBytes);
extern uint8_t am_hal_iom_fifo_empty_slots(uint32_t ui32Module);
extern uint8_t am_hal_iom_fifo_full_slots(uint32_t ui32Module);
extern void am_hal_iom_poll_complete(uint32_t ui32Module);
extern void am_hal_iom_int_service(uint32_t ui32Module, uint32_t ui32Status);
extern void am_hal_iom_int_enable(uint32_t ui32Module, uint32_t ui32Interrupt);
extern uint32_t am_hal_iom_int_enable_get(uint32_t ui32Module);
extern void am_hal_iom_int_disable(uint32_t ui32Module, uint32_t ui32Interrupt);
extern void am_hal_iom_int_clear(uint32_t ui32Module, uint32_t ui32Interrupt);
extern void am_hal_iom_int_set(uint32_t ui32Module, uint32_t ui32Interrupt);
extern uint32_t am_hal_iom_int_status_get(uint32_t ui32Module, bool bEnabledOnly);
extern void am_hal_iom_queue_init(uint32_t ui32ModuleNum,
am_hal_iom_queue_entry_t *psQueueMemory,
uint32_t ui32QueueMemSize);
extern uint32_t am_hal_iom_queue_length_get(uint32_t ui32Module);
extern void am_hal_iom_sleeping_queue_flush(uint32_t ui32Module);
extern void am_hal_iom_queue_spi_write(uint32_t ui32Module, uint32_t ui32ChipSelect,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options,
am_hal_iom_callback_t pfnCallback);
extern void am_hal_iom_queue_spi_read(uint32_t ui32Module, uint32_t ui32ChipSelect,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options,
am_hal_iom_callback_t pfnCallback);
extern void am_hal_iom_queue_i2c_write(uint32_t ui32Module, uint32_t ui32BusAddress,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options,
am_hal_iom_callback_t pfnCallback);
extern void am_hal_iom_queue_i2c_read(uint32_t ui32Module, uint32_t ui32BusAddress,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options,
am_hal_iom_callback_t pfnCallback);
extern void am_hal_iom_queue_start_next_msg(uint32_t ui32Module);
extern void am_hal_iom_queue_service(uint32_t ui32Module, uint32_t ui32Status);
//*****************************************************************************
//
// Helper functions.
//
//*****************************************************************************
#define AM_IOMASTER_ISR_QUEUE(x) \
void am_iomaster##x##_isr(void) \
{ \
uint32_t ui32IntStatus; \
g_iom_error_status = am_hal_iom_error_status_get(x); \
ui32IntStatus = am_hal_iom_int_status_get(x, false); \
am_hal_iom_int_clear(x, ui32IntStatus); \
am_hal_iom_queue_service(x, ui32IntStatus); \
}
#define AM_IOMASTER_ISR_NB(x) \
void am_iomaster##x##_isr(void) \
{ \
uint32_t ui32IntStatus; \
g_iom_error_status = am_hal_iom_error_status_get(x); \
ui32IntStatus = am_hal_iom_int_status_get(x, false); \
am_hal_iom_int_clear(x, ui32IntStatus); \
am_hal_iom_int_service(x, ui32IntStatus); \
}
#endif // AM_HAL_IOM_H
//*****************************************************************************
//
// End Doxygen group.
//! @}
//
//*****************************************************************************