2284 lines
77 KiB
C
2284 lines
77 KiB
C
/*
|
|
* Copyright (c) 2015-2016, Freescale Semiconductor, Inc.
|
|
* Copyright 2016-2021 NXP
|
|
* All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include "fsl_lpuart.h"
|
|
|
|
/*******************************************************************************
|
|
* Definitions
|
|
******************************************************************************/
|
|
|
|
/* Component ID definition, used by tools. */
|
|
#ifndef FSL_COMPONENT_ID
|
|
#define FSL_COMPONENT_ID "platform.drivers.lpuart"
|
|
#endif
|
|
|
|
/* LPUART transfer state. */
|
|
enum
|
|
{
|
|
kLPUART_TxIdle, /*!< TX idle. */
|
|
kLPUART_TxBusy, /*!< TX busy. */
|
|
kLPUART_RxIdle, /*!< RX idle. */
|
|
kLPUART_RxBusy /*!< RX busy. */
|
|
};
|
|
|
|
/*******************************************************************************
|
|
* Prototypes
|
|
******************************************************************************/
|
|
/*!
|
|
* @brief Check whether the RX ring buffer is full.
|
|
*
|
|
* @userData handle LPUART handle pointer.
|
|
* @retval true RX ring buffer is full.
|
|
* @retval false RX ring buffer is not full.
|
|
*/
|
|
static bool LPUART_TransferIsRxRingBufferFull(LPUART_Type *base, lpuart_handle_t *handle);
|
|
|
|
/*!
|
|
* @brief Write to TX register using non-blocking method.
|
|
*
|
|
* This function writes data to the TX register directly, upper layer must make
|
|
* sure the TX register is empty or TX FIFO has empty room before calling this function.
|
|
*
|
|
* @note This function does not check whether all the data has been sent out to bus,
|
|
* so before disable TX, check kLPUART_TransmissionCompleteFlag to ensure the TX is
|
|
* finished.
|
|
*
|
|
* @param base LPUART peripheral base address.
|
|
* @param data Start address of the data to write.
|
|
* @param length Size of the buffer to be sent.
|
|
*/
|
|
static void LPUART_WriteNonBlocking(LPUART_Type *base, const uint8_t *data, size_t length);
|
|
|
|
/*!
|
|
* @brief Read RX register using non-blocking method.
|
|
*
|
|
* This function reads data from the TX register directly, upper layer must make
|
|
* sure the RX register is full or TX FIFO has data before calling this function.
|
|
*
|
|
* @param base LPUART peripheral base address.
|
|
* @param data Start address of the buffer to store the received data.
|
|
* @param length Size of the buffer.
|
|
*/
|
|
static void LPUART_ReadNonBlocking(LPUART_Type *base, uint8_t *data, size_t length);
|
|
|
|
/*******************************************************************************
|
|
* Variables
|
|
******************************************************************************/
|
|
/* Array of LPUART peripheral base address. */
|
|
static LPUART_Type *const s_lpuartBases[] = LPUART_BASE_PTRS;
|
|
/* Array of LPUART handle. */
|
|
void *s_lpuartHandle[ARRAY_SIZE(s_lpuartBases)];
|
|
/* Array of LPUART IRQ number. */
|
|
#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
|
|
static const IRQn_Type s_lpuartRxIRQ[] = LPUART_RX_IRQS;
|
|
const IRQn_Type s_lpuartTxIRQ[] = LPUART_TX_IRQS;
|
|
#else
|
|
const IRQn_Type s_lpuartIRQ[] = LPUART_RX_TX_IRQS;
|
|
#endif
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
/* Array of LPUART clock name. */
|
|
static const clock_ip_name_t s_lpuartClock[] = LPUART_CLOCKS;
|
|
|
|
#if defined(LPUART_PERIPH_CLOCKS)
|
|
/* Array of LPUART functional clock name. */
|
|
static const clock_ip_name_t s_lpuartPeriphClocks[] = LPUART_PERIPH_CLOCKS;
|
|
#endif
|
|
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
|
|
/* LPUART ISR for transactional APIs. */
|
|
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
|
|
lpuart_isr_t s_lpuartIsr = (lpuart_isr_t)DefaultISR;
|
|
#else
|
|
lpuart_isr_t s_lpuartIsr;
|
|
#endif
|
|
|
|
/*******************************************************************************
|
|
* Code
|
|
******************************************************************************/
|
|
/*!
|
|
* brief Get the LPUART instance from peripheral base address.
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* return LPUART instance.
|
|
*/
|
|
uint32_t LPUART_GetInstance(LPUART_Type *base)
|
|
{
|
|
uint32_t instance;
|
|
|
|
/* Find the instance index from base address mappings. */
|
|
for (instance = 0U; instance < ARRAY_SIZE(s_lpuartBases); instance++)
|
|
{
|
|
if (s_lpuartBases[instance] == base)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(instance < ARRAY_SIZE(s_lpuartBases));
|
|
|
|
return instance;
|
|
}
|
|
|
|
/*!
|
|
* brief Get the length of received data in RX ring buffer.
|
|
*
|
|
* userData handle LPUART handle pointer.
|
|
* return Length of received data in RX ring buffer.
|
|
*/
|
|
size_t LPUART_TransferGetRxRingBufferLength(LPUART_Type *base, lpuart_handle_t *handle)
|
|
{
|
|
assert(NULL != handle);
|
|
|
|
size_t size;
|
|
size_t tmpRxRingBufferSize = handle->rxRingBufferSize;
|
|
uint16_t tmpRxRingBufferTail = handle->rxRingBufferTail;
|
|
uint16_t tmpRxRingBufferHead = handle->rxRingBufferHead;
|
|
|
|
if (tmpRxRingBufferTail > tmpRxRingBufferHead)
|
|
{
|
|
size = ((size_t)tmpRxRingBufferHead + tmpRxRingBufferSize - (size_t)tmpRxRingBufferTail);
|
|
}
|
|
else
|
|
{
|
|
size = ((size_t)tmpRxRingBufferHead - (size_t)tmpRxRingBufferTail);
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
static bool LPUART_TransferIsRxRingBufferFull(LPUART_Type *base, lpuart_handle_t *handle)
|
|
{
|
|
assert(NULL != handle);
|
|
|
|
bool full;
|
|
|
|
if (LPUART_TransferGetRxRingBufferLength(base, handle) == (handle->rxRingBufferSize - 1U))
|
|
{
|
|
full = true;
|
|
}
|
|
else
|
|
{
|
|
full = false;
|
|
}
|
|
return full;
|
|
}
|
|
|
|
static void LPUART_WriteNonBlocking(LPUART_Type *base, const uint8_t *data, size_t length)
|
|
{
|
|
assert(NULL != data);
|
|
|
|
size_t i;
|
|
|
|
/* The Non Blocking write data API assume user have ensured there is enough space in
|
|
peripheral to write. */
|
|
for (i = 0; i < length; i++)
|
|
{
|
|
base->DATA = data[i];
|
|
}
|
|
}
|
|
|
|
static void LPUART_ReadNonBlocking(LPUART_Type *base, uint8_t *data, size_t length)
|
|
{
|
|
assert(NULL != data);
|
|
|
|
size_t i;
|
|
#if defined(FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT) && FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT
|
|
uint32_t ctrl = base->CTRL;
|
|
bool isSevenDataBits = (((ctrl & LPUART_CTRL_M7_MASK) != 0U) ||
|
|
(((ctrl & LPUART_CTRL_M_MASK) == 0U) && ((ctrl & LPUART_CTRL_PE_MASK) != 0U)));
|
|
#endif
|
|
|
|
/* The Non Blocking read data API assume user have ensured there is enough space in
|
|
peripheral to write. */
|
|
for (i = 0; i < length; i++)
|
|
{
|
|
#if defined(FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT) && FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT
|
|
if (isSevenDataBits)
|
|
{
|
|
data[i] = (uint8_t)(base->DATA & 0x7FU);
|
|
}
|
|
else
|
|
{
|
|
data[i] = (uint8_t)base->DATA;
|
|
}
|
|
#else
|
|
data[i] = (uint8_t)(base->DATA);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* brief Initializes an LPUART instance with the user configuration structure and the peripheral clock.
|
|
*
|
|
* This function configures the LPUART module with user-defined settings. Call the LPUART_GetDefaultConfig() function
|
|
* to configure the configuration structure and get the default configuration.
|
|
* The example below shows how to use this API to configure the LPUART.
|
|
* code
|
|
* lpuart_config_t lpuartConfig;
|
|
* lpuartConfig.baudRate_Bps = 115200U;
|
|
* lpuartConfig.parityMode = kLPUART_ParityDisabled;
|
|
* lpuartConfig.dataBitsCount = kLPUART_EightDataBits;
|
|
* lpuartConfig.isMsb = false;
|
|
* lpuartConfig.stopBitCount = kLPUART_OneStopBit;
|
|
* lpuartConfig.txFifoWatermark = 0;
|
|
* lpuartConfig.rxFifoWatermark = 1;
|
|
* LPUART_Init(LPUART1, &lpuartConfig, 20000000U);
|
|
* endcode
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* param config Pointer to a user-defined configuration structure.
|
|
* param srcClock_Hz LPUART clock source frequency in HZ.
|
|
* retval kStatus_LPUART_BaudrateNotSupport Baudrate is not support in current clock source.
|
|
* retval kStatus_Success LPUART initialize succeed
|
|
*/
|
|
status_t LPUART_Init(LPUART_Type *base, const lpuart_config_t *config, uint32_t srcClock_Hz)
|
|
{
|
|
assert(NULL != config);
|
|
assert(0U < config->baudRate_Bps);
|
|
#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
|
|
assert((uint8_t)FSL_FEATURE_LPUART_FIFO_SIZEn(base) > config->txFifoWatermark);
|
|
assert((uint8_t)FSL_FEATURE_LPUART_FIFO_SIZEn(base) > config->rxFifoWatermark);
|
|
#endif
|
|
|
|
status_t status = kStatus_Success;
|
|
uint32_t temp;
|
|
uint16_t sbr, sbrTemp;
|
|
uint8_t osr, osrTemp;
|
|
uint32_t tempDiff, calculatedBaud, baudDiff;
|
|
|
|
/* This LPUART instantiation uses a slightly different baud rate calculation
|
|
* The idea is to use the best OSR (over-sampling rate) possible
|
|
* Note, OSR is typically hard-set to 16 in other LPUART instantiations
|
|
* loop to find the best OSR value possible, one that generates minimum baudDiff
|
|
* iterate through the rest of the supported values of OSR */
|
|
|
|
baudDiff = config->baudRate_Bps;
|
|
osr = 0U;
|
|
sbr = 0U;
|
|
for (osrTemp = 4U; osrTemp <= 32U; osrTemp++)
|
|
{
|
|
/* calculate the temporary sbr value */
|
|
sbrTemp = (uint16_t)((srcClock_Hz * 10U / (config->baudRate_Bps * (uint32_t)osrTemp) + 5U) / 10U);
|
|
/*set sbrTemp to 1 if the sourceClockInHz can not satisfy the desired baud rate*/
|
|
if (sbrTemp == 0U)
|
|
{
|
|
sbrTemp = 1U;
|
|
}
|
|
/* Calculate the baud rate based on the temporary OSR and SBR values */
|
|
calculatedBaud = (srcClock_Hz / ((uint32_t)osrTemp * (uint32_t)sbrTemp));
|
|
tempDiff = calculatedBaud > config->baudRate_Bps ? (calculatedBaud - config->baudRate_Bps) :
|
|
(config->baudRate_Bps - calculatedBaud);
|
|
|
|
if (tempDiff <= baudDiff)
|
|
{
|
|
baudDiff = tempDiff;
|
|
osr = osrTemp; /* update and store the best OSR value calculated */
|
|
sbr = sbrTemp; /* update store the best SBR value calculated */
|
|
}
|
|
}
|
|
|
|
/* Check to see if actual baud rate is within 3% of desired baud rate
|
|
* based on the best calculate OSR value */
|
|
if (baudDiff > ((config->baudRate_Bps / 100U) * 3U))
|
|
{
|
|
/* Unacceptable baud rate difference of more than 3%*/
|
|
status = kStatus_LPUART_BaudrateNotSupport;
|
|
}
|
|
else
|
|
{
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
|
|
uint32_t instance = LPUART_GetInstance(base);
|
|
|
|
/* Enable lpuart clock */
|
|
(void)CLOCK_EnableClock(s_lpuartClock[instance]);
|
|
#if defined(LPUART_PERIPH_CLOCKS)
|
|
(void)CLOCK_EnableClock(s_lpuartPeriphClocks[instance]);
|
|
#endif
|
|
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
|
|
#if defined(FSL_FEATURE_LPUART_HAS_GLOBAL) && FSL_FEATURE_LPUART_HAS_GLOBAL
|
|
/*Reset all internal logic and registers, except the Global Register */
|
|
LPUART_SoftwareReset(base);
|
|
#else
|
|
/* Disable LPUART TX RX before setting. */
|
|
base->CTRL &= ~(LPUART_CTRL_TE_MASK | LPUART_CTRL_RE_MASK);
|
|
#endif
|
|
|
|
temp = base->BAUD;
|
|
|
|
/* Acceptable baud rate, check if OSR is between 4x and 7x oversampling.
|
|
* If so, then "BOTHEDGE" sampling must be turned on */
|
|
if ((osr > 3U) && (osr < 8U))
|
|
{
|
|
temp |= LPUART_BAUD_BOTHEDGE_MASK;
|
|
}
|
|
|
|
/* program the osr value (bit value is one less than actual value) */
|
|
temp &= ~LPUART_BAUD_OSR_MASK;
|
|
temp |= LPUART_BAUD_OSR((uint32_t)osr - 1UL);
|
|
|
|
/* write the sbr value to the BAUD registers */
|
|
temp &= ~LPUART_BAUD_SBR_MASK;
|
|
base->BAUD = temp | LPUART_BAUD_SBR(sbr);
|
|
|
|
/* Set bit count and parity mode. */
|
|
base->BAUD &= ~LPUART_BAUD_M10_MASK;
|
|
|
|
temp = base->CTRL & ~(LPUART_CTRL_PE_MASK | LPUART_CTRL_PT_MASK | LPUART_CTRL_M_MASK | LPUART_CTRL_ILT_MASK |
|
|
LPUART_CTRL_IDLECFG_MASK);
|
|
|
|
temp |= (uint8_t)config->parityMode | LPUART_CTRL_IDLECFG(config->rxIdleConfig) |
|
|
LPUART_CTRL_ILT(config->rxIdleType);
|
|
|
|
#if defined(FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT) && FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT
|
|
if (kLPUART_SevenDataBits == config->dataBitsCount)
|
|
{
|
|
if (kLPUART_ParityDisabled != config->parityMode)
|
|
{
|
|
temp &= ~LPUART_CTRL_M7_MASK; /* Seven data bits and one parity bit */
|
|
}
|
|
else
|
|
{
|
|
temp |= LPUART_CTRL_M7_MASK;
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
if (kLPUART_ParityDisabled != config->parityMode)
|
|
{
|
|
temp |= LPUART_CTRL_M_MASK; /* Eight data bits and one parity bit */
|
|
}
|
|
}
|
|
|
|
base->CTRL = temp;
|
|
|
|
#if defined(FSL_FEATURE_LPUART_HAS_STOP_BIT_CONFIG_SUPPORT) && FSL_FEATURE_LPUART_HAS_STOP_BIT_CONFIG_SUPPORT
|
|
/* set stop bit per char */
|
|
temp = base->BAUD & ~LPUART_BAUD_SBNS_MASK;
|
|
base->BAUD = temp | LPUART_BAUD_SBNS((uint8_t)config->stopBitCount);
|
|
#endif
|
|
|
|
#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
|
|
/* Set tx/rx WATER watermark
|
|
Note:
|
|
Take care of the RX FIFO, RX interrupt request only assert when received bytes
|
|
equal or more than RX water mark, there is potential issue if RX water
|
|
mark larger than 1.
|
|
For example, if RX FIFO water mark is 2, upper layer needs 5 bytes and
|
|
5 bytes are received. the last byte will be saved in FIFO but not trigger
|
|
RX interrupt because the water mark is 2.
|
|
*/
|
|
base->WATER = (((uint32_t)(config->rxFifoWatermark) << 16U) | config->txFifoWatermark);
|
|
|
|
/* Enable tx/rx FIFO */
|
|
base->FIFO |= (LPUART_FIFO_TXFE_MASK | LPUART_FIFO_RXFE_MASK);
|
|
|
|
/* Flush FIFO */
|
|
base->FIFO |= (LPUART_FIFO_TXFLUSH_MASK | LPUART_FIFO_RXFLUSH_MASK);
|
|
#endif
|
|
|
|
/* Clear all status flags */
|
|
temp = (LPUART_STAT_RXEDGIF_MASK | LPUART_STAT_IDLE_MASK | LPUART_STAT_OR_MASK | LPUART_STAT_NF_MASK |
|
|
LPUART_STAT_FE_MASK | LPUART_STAT_PF_MASK);
|
|
|
|
#if defined(FSL_FEATURE_LPUART_HAS_LIN_BREAK_DETECT) && FSL_FEATURE_LPUART_HAS_LIN_BREAK_DETECT
|
|
temp |= LPUART_STAT_LBKDIF_MASK;
|
|
#endif
|
|
|
|
#if defined(FSL_FEATURE_LPUART_HAS_ADDRESS_MATCHING) && FSL_FEATURE_LPUART_HAS_ADDRESS_MATCHING
|
|
temp |= (LPUART_STAT_MA1F_MASK | LPUART_STAT_MA2F_MASK);
|
|
#endif
|
|
|
|
#if defined(FSL_FEATURE_LPUART_HAS_MODEM_SUPPORT) && FSL_FEATURE_LPUART_HAS_MODEM_SUPPORT
|
|
/* Set the CTS configuration/TX CTS source. */
|
|
base->MODIR |= LPUART_MODIR_TXCTSC(config->txCtsConfig) | LPUART_MODIR_TXCTSSRC(config->txCtsSource);
|
|
if (true == config->enableRxRTS)
|
|
{
|
|
/* Enable the receiver RTS(request-to-send) function. */
|
|
base->MODIR |= LPUART_MODIR_RXRTSE_MASK;
|
|
}
|
|
if (true == config->enableTxCTS)
|
|
{
|
|
/* Enable the CTS(clear-to-send) function. */
|
|
base->MODIR |= LPUART_MODIR_TXCTSE_MASK;
|
|
}
|
|
#endif
|
|
|
|
/* Set data bits order. */
|
|
if (true == config->isMsb)
|
|
{
|
|
temp |= LPUART_STAT_MSBF_MASK;
|
|
}
|
|
else
|
|
{
|
|
temp &= ~LPUART_STAT_MSBF_MASK;
|
|
}
|
|
|
|
base->STAT |= temp;
|
|
|
|
/* Enable TX/RX base on configure structure. */
|
|
temp = base->CTRL;
|
|
if (true == config->enableTx)
|
|
{
|
|
temp |= LPUART_CTRL_TE_MASK;
|
|
}
|
|
|
|
if (true == config->enableRx)
|
|
{
|
|
temp |= LPUART_CTRL_RE_MASK;
|
|
}
|
|
|
|
base->CTRL = temp;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
/*!
|
|
* brief Deinitializes a LPUART instance.
|
|
*
|
|
* This function waits for transmit to complete, disables TX and RX, and disables the LPUART clock.
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
*/
|
|
void LPUART_Deinit(LPUART_Type *base)
|
|
{
|
|
uint32_t temp;
|
|
|
|
#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
|
|
/* Wait tx FIFO send out*/
|
|
while (0U != ((base->WATER & LPUART_WATER_TXCOUNT_MASK) >> LPUART_WATER_TXWATER_SHIFT))
|
|
{
|
|
}
|
|
#endif
|
|
/* Wait last char shift out */
|
|
while (0U == (base->STAT & LPUART_STAT_TC_MASK))
|
|
{
|
|
}
|
|
|
|
/* Clear all status flags */
|
|
temp = (LPUART_STAT_RXEDGIF_MASK | LPUART_STAT_IDLE_MASK | LPUART_STAT_OR_MASK | LPUART_STAT_NF_MASK |
|
|
LPUART_STAT_FE_MASK | LPUART_STAT_PF_MASK);
|
|
|
|
#if defined(FSL_FEATURE_LPUART_HAS_LIN_BREAK_DETECT) && FSL_FEATURE_LPUART_HAS_LIN_BREAK_DETECT
|
|
temp |= LPUART_STAT_LBKDIF_MASK;
|
|
#endif
|
|
|
|
#if defined(FSL_FEATURE_LPUART_HAS_ADDRESS_MATCHING) && FSL_FEATURE_LPUART_HAS_ADDRESS_MATCHING
|
|
temp |= (LPUART_STAT_MA1F_MASK | LPUART_STAT_MA2F_MASK);
|
|
#endif
|
|
|
|
base->STAT |= temp;
|
|
|
|
/* Disable the module. */
|
|
base->CTRL = 0U;
|
|
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
uint32_t instance = LPUART_GetInstance(base);
|
|
|
|
/* Disable lpuart clock */
|
|
(void)CLOCK_DisableClock(s_lpuartClock[instance]);
|
|
|
|
#if defined(LPUART_PERIPH_CLOCKS)
|
|
(void)CLOCK_DisableClock(s_lpuartPeriphClocks[instance]);
|
|
#endif
|
|
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
}
|
|
|
|
/*!
|
|
* brief Gets the default configuration structure.
|
|
*
|
|
* This function initializes the LPUART configuration structure to a default value. The default
|
|
* values are:
|
|
* lpuartConfig->baudRate_Bps = 115200U;
|
|
* lpuartConfig->parityMode = kLPUART_ParityDisabled;
|
|
* lpuartConfig->dataBitsCount = kLPUART_EightDataBits;
|
|
* lpuartConfig->isMsb = false;
|
|
* lpuartConfig->stopBitCount = kLPUART_OneStopBit;
|
|
* lpuartConfig->txFifoWatermark = 0;
|
|
* lpuartConfig->rxFifoWatermark = 1;
|
|
* lpuartConfig->rxIdleType = kLPUART_IdleTypeStartBit;
|
|
* lpuartConfig->rxIdleConfig = kLPUART_IdleCharacter1;
|
|
* lpuartConfig->enableTx = false;
|
|
* lpuartConfig->enableRx = false;
|
|
*
|
|
* param config Pointer to a configuration structure.
|
|
*/
|
|
void LPUART_GetDefaultConfig(lpuart_config_t *config)
|
|
{
|
|
assert(NULL != config);
|
|
|
|
/* Initializes the configure structure to zero. */
|
|
(void)memset(config, 0, sizeof(*config));
|
|
|
|
config->baudRate_Bps = 115200U;
|
|
config->parityMode = kLPUART_ParityDisabled;
|
|
config->dataBitsCount = kLPUART_EightDataBits;
|
|
config->isMsb = false;
|
|
#if defined(FSL_FEATURE_LPUART_HAS_STOP_BIT_CONFIG_SUPPORT) && FSL_FEATURE_LPUART_HAS_STOP_BIT_CONFIG_SUPPORT
|
|
config->stopBitCount = kLPUART_OneStopBit;
|
|
#endif
|
|
#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
|
|
config->txFifoWatermark = 0U;
|
|
config->rxFifoWatermark = 0U;
|
|
#endif
|
|
#if defined(FSL_FEATURE_LPUART_HAS_MODEM_SUPPORT) && FSL_FEATURE_LPUART_HAS_MODEM_SUPPORT
|
|
config->enableRxRTS = false;
|
|
config->enableTxCTS = false;
|
|
config->txCtsConfig = kLPUART_CtsSampleAtStart;
|
|
config->txCtsSource = kLPUART_CtsSourcePin;
|
|
#endif
|
|
config->rxIdleType = kLPUART_IdleTypeStartBit;
|
|
config->rxIdleConfig = kLPUART_IdleCharacter1;
|
|
config->enableTx = false;
|
|
config->enableRx = false;
|
|
}
|
|
|
|
/*!
|
|
* brief Sets the LPUART instance baudrate.
|
|
*
|
|
* This function configures the LPUART module baudrate. This function is used to update
|
|
* the LPUART module baudrate after the LPUART module is initialized by the LPUART_Init.
|
|
* code
|
|
* LPUART_SetBaudRate(LPUART1, 115200U, 20000000U);
|
|
* endcode
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* param baudRate_Bps LPUART baudrate to be set.
|
|
* param srcClock_Hz LPUART clock source frequency in HZ.
|
|
* retval kStatus_LPUART_BaudrateNotSupport Baudrate is not supported in the current clock source.
|
|
* retval kStatus_Success Set baudrate succeeded.
|
|
*/
|
|
status_t LPUART_SetBaudRate(LPUART_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
|
|
{
|
|
assert(0U < baudRate_Bps);
|
|
|
|
status_t status = kStatus_Success;
|
|
uint32_t temp, oldCtrl;
|
|
uint16_t sbr, sbrTemp;
|
|
uint8_t osr, osrTemp;
|
|
uint32_t tempDiff, calculatedBaud, baudDiff;
|
|
|
|
/* This LPUART instantiation uses a slightly different baud rate calculation
|
|
* The idea is to use the best OSR (over-sampling rate) possible
|
|
* Note, OSR is typically hard-set to 16 in other LPUART instantiations
|
|
* loop to find the best OSR value possible, one that generates minimum baudDiff
|
|
* iterate through the rest of the supported values of OSR */
|
|
|
|
baudDiff = baudRate_Bps;
|
|
osr = 0U;
|
|
sbr = 0U;
|
|
for (osrTemp = 4U; osrTemp <= 32U; osrTemp++)
|
|
{
|
|
/* calculate the temporary sbr value */
|
|
sbrTemp = (uint16_t)((srcClock_Hz * 10U / (baudRate_Bps * (uint32_t)osrTemp) + 5U) / 10U);
|
|
/*set sbrTemp to 1 if the sourceClockInHz can not satisfy the desired baud rate*/
|
|
if (sbrTemp == 0U)
|
|
{
|
|
sbrTemp = 1U;
|
|
}
|
|
/* Calculate the baud rate based on the temporary OSR and SBR values */
|
|
calculatedBaud = srcClock_Hz / ((uint32_t)osrTemp * (uint32_t)sbrTemp);
|
|
|
|
tempDiff = calculatedBaud > baudRate_Bps ? (calculatedBaud - baudRate_Bps) : (baudRate_Bps - calculatedBaud);
|
|
|
|
if (tempDiff <= baudDiff)
|
|
{
|
|
baudDiff = tempDiff;
|
|
osr = osrTemp; /* update and store the best OSR value calculated */
|
|
sbr = sbrTemp; /* update store the best SBR value calculated */
|
|
}
|
|
}
|
|
|
|
/* Check to see if actual baud rate is within 3% of desired baud rate
|
|
* based on the best calculate OSR value */
|
|
if (baudDiff < (uint32_t)((baudRate_Bps / 100U) * 3U))
|
|
{
|
|
/* Store CTRL before disable Tx and Rx */
|
|
oldCtrl = base->CTRL;
|
|
|
|
/* Disable LPUART TX RX before setting. */
|
|
base->CTRL &= ~(LPUART_CTRL_TE_MASK | LPUART_CTRL_RE_MASK);
|
|
|
|
temp = base->BAUD;
|
|
|
|
/* Acceptable baud rate, check if OSR is between 4x and 7x oversampling.
|
|
* If so, then "BOTHEDGE" sampling must be turned on */
|
|
if ((osr > 3U) && (osr < 8U))
|
|
{
|
|
temp |= LPUART_BAUD_BOTHEDGE_MASK;
|
|
}
|
|
|
|
/* program the osr value (bit value is one less than actual value) */
|
|
temp &= ~LPUART_BAUD_OSR_MASK;
|
|
temp |= LPUART_BAUD_OSR((uint32_t)osr - 1UL);
|
|
|
|
/* write the sbr value to the BAUD registers */
|
|
temp &= ~LPUART_BAUD_SBR_MASK;
|
|
base->BAUD = temp | LPUART_BAUD_SBR(sbr);
|
|
|
|
/* Restore CTRL. */
|
|
base->CTRL = oldCtrl;
|
|
}
|
|
else
|
|
{
|
|
/* Unacceptable baud rate difference of more than 3%*/
|
|
status = kStatus_LPUART_BaudrateNotSupport;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/*!
|
|
* brief Enable 9-bit data mode for LPUART.
|
|
*
|
|
* This function set the 9-bit mode for LPUART module. The 9th bit is not used for parity thus can be modified by user.
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* param enable true to enable, flase to disable.
|
|
*/
|
|
void LPUART_Enable9bitMode(LPUART_Type *base, bool enable)
|
|
{
|
|
assert(base != NULL);
|
|
|
|
uint32_t temp = 0U;
|
|
|
|
if (enable)
|
|
{
|
|
/* Set LPUART_CTRL_M for 9-bit mode, clear LPUART_CTRL_PE to disable parity. */
|
|
temp = base->CTRL & ~((uint32_t)LPUART_CTRL_PE_MASK | (uint32_t)LPUART_CTRL_M_MASK);
|
|
temp |= (uint32_t)LPUART_CTRL_M_MASK;
|
|
base->CTRL = temp;
|
|
}
|
|
else
|
|
{
|
|
/* Clear LPUART_CTRL_M. */
|
|
base->CTRL &= ~(uint32_t)LPUART_CTRL_M_MASK;
|
|
}
|
|
#if defined(FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT) && FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT
|
|
/* Clear LPUART_CTRL_M7 to disable 7-bit mode. */
|
|
base->CTRL &= ~(uint32_t)LPUART_CTRL_M7_MASK;
|
|
#endif
|
|
#if defined(FSL_FEATURE_LPUART_HAS_10BIT_DATA_SUPPORT) && FSL_FEATURE_LPUART_HAS_10BIT_DATA_SUPPORT
|
|
/* Clear LPUART_BAUD_M10 to disable 10-bit mode. */
|
|
base->BAUD &= ~(uint32_t)LPUART_BAUD_M10_MASK;
|
|
#endif
|
|
}
|
|
|
|
/*!
|
|
* brief Transmit an address frame in 9-bit data mode.
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* param address LPUART slave address.
|
|
*/
|
|
void LPUART_SendAddress(LPUART_Type *base, uint8_t address)
|
|
{
|
|
assert(base != NULL);
|
|
|
|
uint32_t temp = base->DATA & 0xFFFFFC00UL;
|
|
temp |= ((uint32_t)address | (1UL << LPUART_DATA_R8T8_SHIFT));
|
|
base->DATA = temp;
|
|
}
|
|
|
|
/*!
|
|
* brief Enables LPUART interrupts according to a provided mask.
|
|
*
|
|
* This function enables the LPUART interrupts according to a provided mask. The mask
|
|
* is a logical OR of enumeration members. See the ref _lpuart_interrupt_enable.
|
|
* This examples shows how to enable TX empty interrupt and RX full interrupt:
|
|
* code
|
|
* LPUART_EnableInterrupts(LPUART1,kLPUART_TxDataRegEmptyInterruptEnable | kLPUART_RxDataRegFullInterruptEnable);
|
|
* endcode
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* param mask The interrupts to enable. Logical OR of ref _uart_interrupt_enable.
|
|
*/
|
|
void LPUART_EnableInterrupts(LPUART_Type *base, uint32_t mask)
|
|
{
|
|
/* Only consider the real interrupt enable bits. */
|
|
mask &= (uint32_t)kLPUART_AllInterruptEnable;
|
|
|
|
/* Check int enable bits in base->BAUD */
|
|
uint32_t tempReg = base->BAUD;
|
|
#if defined(FSL_FEATURE_LPUART_HAS_LIN_BREAK_DETECT) && FSL_FEATURE_LPUART_HAS_LIN_BREAK_DETECT
|
|
tempReg |= ((mask << 8U) & LPUART_BAUD_LBKDIE_MASK);
|
|
/* Clear bit 7 from mask */
|
|
mask &= ~(uint32_t)kLPUART_LinBreakInterruptEnable;
|
|
#endif
|
|
tempReg |= ((mask << 8U) & LPUART_BAUD_RXEDGIE_MASK);
|
|
/* Clear bit 6 from mask */
|
|
mask &= ~(uint32_t)kLPUART_RxActiveEdgeInterruptEnable;
|
|
base->BAUD = tempReg;
|
|
|
|
#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
|
|
/* Check int enable bits in base->FIFO */
|
|
base->FIFO = (base->FIFO & ~(LPUART_FIFO_TXOF_MASK | LPUART_FIFO_RXUF_MASK)) |
|
|
(mask & (LPUART_FIFO_TXOFE_MASK | LPUART_FIFO_RXUFE_MASK));
|
|
/* Clear bit 9 and bit 8 from mask */
|
|
mask &= ~((uint32_t)kLPUART_TxFifoOverflowInterruptEnable | (uint32_t)kLPUART_RxFifoUnderflowInterruptEnable);
|
|
#endif
|
|
|
|
/* Check int enable bits in base->CTRL */
|
|
base->CTRL |= mask;
|
|
}
|
|
|
|
/*!
|
|
* brief Disables LPUART interrupts according to a provided mask.
|
|
*
|
|
* This function disables the LPUART interrupts according to a provided mask. The mask
|
|
* is a logical OR of enumeration members. See ref _lpuart_interrupt_enable.
|
|
* This example shows how to disable the TX empty interrupt and RX full interrupt:
|
|
* code
|
|
* LPUART_DisableInterrupts(LPUART1,kLPUART_TxDataRegEmptyInterruptEnable | kLPUART_RxDataRegFullInterruptEnable);
|
|
* endcode
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* param mask The interrupts to disable. Logical OR of ref _lpuart_interrupt_enable.
|
|
*/
|
|
void LPUART_DisableInterrupts(LPUART_Type *base, uint32_t mask)
|
|
{
|
|
/* Only consider the real interrupt enable bits. */
|
|
mask &= (uint32_t)kLPUART_AllInterruptEnable;
|
|
/* Check int enable bits in base->BAUD */
|
|
uint32_t tempReg = base->BAUD;
|
|
#if defined(FSL_FEATURE_LPUART_HAS_LIN_BREAK_DETECT) && FSL_FEATURE_LPUART_HAS_LIN_BREAK_DETECT
|
|
tempReg &= ~((mask << 8U) & LPUART_BAUD_LBKDIE_MASK);
|
|
/* Clear bit 7 from mask */
|
|
mask &= ~(uint32_t)kLPUART_LinBreakInterruptEnable;
|
|
#endif
|
|
tempReg &= ~((mask << 8U) & LPUART_BAUD_RXEDGIE_MASK);
|
|
/* Clear bit 6 from mask */
|
|
mask &= ~(uint32_t)kLPUART_RxActiveEdgeInterruptEnable;
|
|
base->BAUD = tempReg;
|
|
|
|
#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
|
|
/* Check int enable bits in base->FIFO */
|
|
base->FIFO = (base->FIFO & ~(LPUART_FIFO_TXOF_MASK | LPUART_FIFO_RXUF_MASK)) &
|
|
~(mask & (LPUART_FIFO_TXOFE_MASK | LPUART_FIFO_RXUFE_MASK));
|
|
/* Clear bit 9 and bit 8 from mask */
|
|
mask &= ~((uint32_t)kLPUART_TxFifoOverflowInterruptEnable | (uint32_t)kLPUART_RxFifoUnderflowInterruptEnable);
|
|
#endif
|
|
|
|
/* Check int enable bits in base->CTRL */
|
|
base->CTRL &= ~mask;
|
|
}
|
|
|
|
/*!
|
|
* brief Gets enabled LPUART interrupts.
|
|
*
|
|
* This function gets the enabled LPUART interrupts. The enabled interrupts are returned
|
|
* as the logical OR value of the enumerators ref _lpuart_interrupt_enable. To check
|
|
* a specific interrupt enable status, compare the return value with enumerators
|
|
* in ref _lpuart_interrupt_enable.
|
|
* For example, to check whether the TX empty interrupt is enabled:
|
|
* code
|
|
* uint32_t enabledInterrupts = LPUART_GetEnabledInterrupts(LPUART1);
|
|
*
|
|
* if (kLPUART_TxDataRegEmptyInterruptEnable & enabledInterrupts)
|
|
* {
|
|
* ...
|
|
* }
|
|
* endcode
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* return LPUART interrupt flags which are logical OR of the enumerators in ref _lpuart_interrupt_enable.
|
|
*/
|
|
uint32_t LPUART_GetEnabledInterrupts(LPUART_Type *base)
|
|
{
|
|
/* Check int enable bits in base->CTRL */
|
|
uint32_t temp = (uint32_t)(base->CTRL & (uint32_t)kLPUART_AllInterruptEnable);
|
|
|
|
/* Check int enable bits in base->BAUD */
|
|
temp = (temp & ~(uint32_t)kLPUART_RxActiveEdgeInterruptEnable) | ((base->BAUD & LPUART_BAUD_RXEDGIE_MASK) >> 8U);
|
|
#if defined(FSL_FEATURE_LPUART_HAS_LIN_BREAK_DETECT) && FSL_FEATURE_LPUART_HAS_LIN_BREAK_DETECT
|
|
temp = (temp & ~(uint32_t)kLPUART_LinBreakInterruptEnable) | ((base->BAUD & LPUART_BAUD_LBKDIE_MASK) >> 8U);
|
|
#endif
|
|
|
|
#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
|
|
/* Check int enable bits in base->FIFO */
|
|
temp =
|
|
(temp & ~((uint32_t)kLPUART_TxFifoOverflowInterruptEnable | (uint32_t)kLPUART_RxFifoUnderflowInterruptEnable)) |
|
|
(base->FIFO & (LPUART_FIFO_TXOFE_MASK | LPUART_FIFO_RXUFE_MASK));
|
|
#endif
|
|
|
|
return temp;
|
|
}
|
|
|
|
/*!
|
|
* brief Gets LPUART status flags.
|
|
*
|
|
* This function gets all LPUART status flags. The flags are returned as the logical
|
|
* OR value of the enumerators ref _lpuart_flags. To check for a specific status,
|
|
* compare the return value with enumerators in the ref _lpuart_flags.
|
|
* For example, to check whether the TX is empty:
|
|
* code
|
|
* if (kLPUART_TxDataRegEmptyFlag & LPUART_GetStatusFlags(LPUART1))
|
|
* {
|
|
* ...
|
|
* }
|
|
* endcode
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* return LPUART status flags which are ORed by the enumerators in the _lpuart_flags.
|
|
*/
|
|
uint32_t LPUART_GetStatusFlags(LPUART_Type *base)
|
|
{
|
|
uint32_t temp;
|
|
temp = base->STAT;
|
|
#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
|
|
temp |= (base->FIFO &
|
|
(LPUART_FIFO_TXEMPT_MASK | LPUART_FIFO_RXEMPT_MASK | LPUART_FIFO_TXOF_MASK | LPUART_FIFO_RXUF_MASK)) >>
|
|
16U;
|
|
#endif
|
|
/* Only keeps the status bits */
|
|
temp &= (uint32_t)kLPUART_AllFlags;
|
|
return temp;
|
|
}
|
|
|
|
/*!
|
|
* brief Clears status flags with a provided mask.
|
|
*
|
|
* This function clears LPUART status flags with a provided mask. Automatically cleared flags
|
|
* can't be cleared by this function.
|
|
* Flags that can only cleared or set by hardware are:
|
|
* kLPUART_TxDataRegEmptyFlag, kLPUART_TransmissionCompleteFlag, kLPUART_RxDataRegFullFlag,
|
|
* kLPUART_RxActiveFlag, kLPUART_NoiseErrorInRxDataRegFlag, kLPUART_ParityErrorInRxDataRegFlag,
|
|
* kLPUART_TxFifoEmptyFlag,kLPUART_RxFifoEmptyFlag
|
|
* Note: This API should be called when the Tx/Rx is idle, otherwise it takes no effects.
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* param mask the status flags to be cleared. The user can use the enumerators in the
|
|
* _lpuart_status_flag_t to do the OR operation and get the mask.
|
|
* return 0 succeed, others failed.
|
|
* retval kStatus_LPUART_FlagCannotClearManually The flag can't be cleared by this function but
|
|
* it is cleared automatically by hardware.
|
|
* retval kStatus_Success Status in the mask are cleared.
|
|
*/
|
|
status_t LPUART_ClearStatusFlags(LPUART_Type *base, uint32_t mask)
|
|
{
|
|
uint32_t temp;
|
|
status_t status;
|
|
|
|
/* Only deal with the clearable flags */
|
|
mask &= (uint32_t)kLPUART_AllClearFlags;
|
|
#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
|
|
/* Status bits in FIFO register */
|
|
if ((mask & ((uint32_t)kLPUART_TxFifoOverflowFlag | (uint32_t)kLPUART_RxFifoUnderflowFlag)) != 0U)
|
|
{
|
|
/* Get the FIFO register value and mask the rx/tx FIFO flush bits and the status bits that can be W1C in case
|
|
they are written 1 accidentally. */
|
|
temp = (uint32_t)base->FIFO;
|
|
temp &= (uint32_t)(
|
|
~(LPUART_FIFO_TXFLUSH_MASK | LPUART_FIFO_RXFLUSH_MASK | LPUART_FIFO_TXOF_MASK | LPUART_FIFO_RXUF_MASK));
|
|
temp |= (mask << 16U) & (LPUART_FIFO_TXOF_MASK | LPUART_FIFO_RXUF_MASK);
|
|
base->FIFO = temp;
|
|
}
|
|
#endif
|
|
/* Status bits in STAT register */
|
|
/* First get the STAT register value and mask all the bits that not represent status, then OR with the status bit
|
|
* that is to be W1C */
|
|
temp = (base->STAT & 0x3E000000UL) | mask;
|
|
base->STAT = temp;
|
|
/* If some flags still pending. */
|
|
if (0U != (mask & LPUART_GetStatusFlags(base)))
|
|
{
|
|
status = kStatus_LPUART_FlagCannotClearManually;
|
|
}
|
|
else
|
|
{
|
|
status = kStatus_Success;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/*!
|
|
* brief Writes to the transmitter register using a blocking method.
|
|
*
|
|
* This function polls the transmitter register, first waits for the register to be empty or TX FIFO to have room,
|
|
* and writes data to the transmitter buffer, then waits for the data to be sent out to bus.
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* param data Start address of the data to write.
|
|
* param length Size of the data to write.
|
|
* retval kStatus_LPUART_Timeout Transmission timed out and was aborted.
|
|
* retval kStatus_Success Successfully wrote all data.
|
|
*/
|
|
status_t LPUART_WriteBlocking(LPUART_Type *base, const uint8_t *data, size_t length)
|
|
{
|
|
assert(NULL != data);
|
|
|
|
const uint8_t *dataAddress = data;
|
|
size_t transferSize = length;
|
|
|
|
#if UART_RETRY_TIMES
|
|
uint32_t waitTimes;
|
|
#endif
|
|
|
|
while (0U != transferSize)
|
|
{
|
|
#if UART_RETRY_TIMES
|
|
waitTimes = UART_RETRY_TIMES;
|
|
while ((0U == (base->STAT & LPUART_STAT_TDRE_MASK)) && (0U != --waitTimes))
|
|
#else
|
|
while (0U == (base->STAT & LPUART_STAT_TDRE_MASK))
|
|
#endif
|
|
{
|
|
}
|
|
#if UART_RETRY_TIMES
|
|
if (0U == waitTimes)
|
|
{
|
|
return kStatus_LPUART_Timeout;
|
|
}
|
|
#endif
|
|
base->DATA = *(dataAddress);
|
|
dataAddress++;
|
|
transferSize--;
|
|
}
|
|
/* Ensure all the data in the transmit buffer are sent out to bus. */
|
|
#if UART_RETRY_TIMES
|
|
waitTimes = UART_RETRY_TIMES;
|
|
while ((0U == (base->STAT & LPUART_STAT_TC_MASK)) && (0U != --waitTimes))
|
|
#else
|
|
while (0U == (base->STAT & LPUART_STAT_TC_MASK))
|
|
#endif
|
|
{
|
|
}
|
|
#if UART_RETRY_TIMES
|
|
if (0U == waitTimes)
|
|
{
|
|
return kStatus_LPUART_Timeout;
|
|
}
|
|
#endif
|
|
return kStatus_Success;
|
|
}
|
|
|
|
/*!
|
|
* brief Reads the receiver data register using a blocking method.
|
|
*
|
|
* This function polls the receiver register, waits for the receiver register full or receiver FIFO
|
|
* has data, and reads data from the TX register.
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* param data Start address of the buffer to store the received data.
|
|
* param length Size of the buffer.
|
|
* retval kStatus_LPUART_RxHardwareOverrun Receiver overrun happened while receiving data.
|
|
* retval kStatus_LPUART_NoiseError Noise error happened while receiving data.
|
|
* retval kStatus_LPUART_FramingError Framing error happened while receiving data.
|
|
* retval kStatus_LPUART_ParityError Parity error happened while receiving data.
|
|
* retval kStatus_LPUART_Timeout Transmission timed out and was aborted.
|
|
* retval kStatus_Success Successfully received all data.
|
|
*/
|
|
status_t LPUART_ReadBlocking(LPUART_Type *base, uint8_t *data, size_t length)
|
|
{
|
|
assert(NULL != data);
|
|
|
|
status_t status = kStatus_Success;
|
|
uint32_t statusFlag;
|
|
uint8_t *dataAddress = data;
|
|
|
|
#if defined(FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT) && FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT
|
|
uint32_t ctrl = base->CTRL;
|
|
bool isSevenDataBits = (((ctrl & LPUART_CTRL_M7_MASK) != 0U) ||
|
|
(((ctrl & LPUART_CTRL_M_MASK) == 0U) && ((ctrl & LPUART_CTRL_PE_MASK) != 0U)));
|
|
#endif
|
|
|
|
#if UART_RETRY_TIMES
|
|
uint32_t waitTimes;
|
|
#endif
|
|
|
|
while (0U != (length--))
|
|
{
|
|
#if UART_RETRY_TIMES
|
|
waitTimes = UART_RETRY_TIMES;
|
|
#endif
|
|
#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
|
|
while (0U == ((base->WATER & LPUART_WATER_RXCOUNT_MASK) >> LPUART_WATER_RXCOUNT_SHIFT))
|
|
#else
|
|
while (0U == (base->STAT & LPUART_STAT_RDRF_MASK))
|
|
#endif
|
|
{
|
|
#if UART_RETRY_TIMES
|
|
if (0U == --waitTimes)
|
|
{
|
|
status = kStatus_LPUART_Timeout;
|
|
break;
|
|
}
|
|
#endif
|
|
statusFlag = LPUART_GetStatusFlags(base);
|
|
|
|
if (0U != (statusFlag & (uint32_t)kLPUART_RxOverrunFlag))
|
|
{
|
|
status = ((kStatus_Success == LPUART_ClearStatusFlags(base, (uint32_t)kLPUART_RxOverrunFlag)) ?
|
|
(kStatus_LPUART_RxHardwareOverrun) :
|
|
(kStatus_LPUART_FlagCannotClearManually));
|
|
/* Other error flags(FE, NF, and PF) are prevented from setting once OR is set, no need to check other
|
|
* error flags*/
|
|
break;
|
|
}
|
|
|
|
if (0U != (statusFlag & (uint32_t)kLPUART_ParityErrorFlag))
|
|
{
|
|
status = ((kStatus_Success == LPUART_ClearStatusFlags(base, (uint32_t)kLPUART_ParityErrorFlag)) ?
|
|
(kStatus_LPUART_ParityError) :
|
|
(kStatus_LPUART_FlagCannotClearManually));
|
|
}
|
|
|
|
if (0U != (statusFlag & (uint32_t)kLPUART_FramingErrorFlag))
|
|
{
|
|
status = ((kStatus_Success == LPUART_ClearStatusFlags(base, (uint32_t)kLPUART_FramingErrorFlag)) ?
|
|
(kStatus_LPUART_FramingError) :
|
|
(kStatus_LPUART_FlagCannotClearManually));
|
|
}
|
|
|
|
if (0U != (statusFlag & (uint32_t)kLPUART_NoiseErrorFlag))
|
|
{
|
|
status = ((kStatus_Success == LPUART_ClearStatusFlags(base, (uint32_t)kLPUART_NoiseErrorFlag)) ?
|
|
(kStatus_LPUART_NoiseError) :
|
|
(kStatus_LPUART_FlagCannotClearManually));
|
|
}
|
|
if (kStatus_Success != status)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (kStatus_Success == status)
|
|
{
|
|
#if defined(FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT) && FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT
|
|
if (isSevenDataBits)
|
|
{
|
|
*(dataAddress) = (uint8_t)(base->DATA & 0x7FU);
|
|
dataAddress++;
|
|
}
|
|
else
|
|
{
|
|
*(dataAddress) = (uint8_t)base->DATA;
|
|
dataAddress++;
|
|
}
|
|
#else
|
|
*(dataAddress) = (uint8_t)base->DATA;
|
|
dataAddress++;
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/*!
|
|
* brief Initializes the LPUART handle.
|
|
*
|
|
* This function initializes the LPUART handle, which can be used for other LPUART
|
|
* transactional APIs. Usually, for a specified LPUART instance,
|
|
* call this API once to get the initialized handle.
|
|
*
|
|
* The LPUART driver supports the "background" receiving, which means that user can set up
|
|
* an RX ring buffer optionally. Data received is stored into the ring buffer even when the
|
|
* user doesn't call the LPUART_TransferReceiveNonBlocking() API. If there is already data received
|
|
* in the ring buffer, the user can get the received data from the ring buffer directly.
|
|
* The ring buffer is disabled if passing NULL as p ringBuffer.
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* param handle LPUART handle pointer.
|
|
* param callback Callback function.
|
|
* param userData User data.
|
|
*/
|
|
void LPUART_TransferCreateHandle(LPUART_Type *base,
|
|
lpuart_handle_t *handle,
|
|
lpuart_transfer_callback_t callback,
|
|
void *userData)
|
|
{
|
|
assert(NULL != handle);
|
|
|
|
uint32_t instance;
|
|
|
|
#if defined(FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT) && FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT
|
|
uint32_t ctrl = base->CTRL;
|
|
bool isSevenDataBits = (((ctrl & LPUART_CTRL_M7_MASK) != 0U) ||
|
|
(((ctrl & LPUART_CTRL_M_MASK) == 0U) && ((ctrl & LPUART_CTRL_PE_MASK) != 0U)));
|
|
#endif
|
|
|
|
/* Zero the handle. */
|
|
(void)memset(handle, 0, sizeof(lpuart_handle_t));
|
|
|
|
/* Set the TX/RX state. */
|
|
handle->rxState = (uint8_t)kLPUART_RxIdle;
|
|
handle->txState = (uint8_t)kLPUART_TxIdle;
|
|
|
|
/* Set the callback and user data. */
|
|
handle->callback = callback;
|
|
handle->userData = userData;
|
|
|
|
#if defined(FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT) && FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT
|
|
/* Initial seven data bits flag */
|
|
handle->isSevenDataBits = isSevenDataBits;
|
|
#endif
|
|
|
|
/* Get instance from peripheral base address. */
|
|
instance = LPUART_GetInstance(base);
|
|
|
|
/* Save the handle in global variables to support the double weak mechanism. */
|
|
s_lpuartHandle[instance] = handle;
|
|
|
|
s_lpuartIsr = LPUART_TransferHandleIRQ;
|
|
|
|
/* Enable interrupt in NVIC. */
|
|
#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
|
|
(void)EnableIRQ(s_lpuartRxIRQ[instance]);
|
|
(void)EnableIRQ(s_lpuartTxIRQ[instance]);
|
|
#else
|
|
(void)EnableIRQ(s_lpuartIRQ[instance]);
|
|
#endif
|
|
}
|
|
|
|
/*!
|
|
* brief Sets up the RX ring buffer.
|
|
*
|
|
* This function sets up the RX ring buffer to a specific UART handle.
|
|
*
|
|
* When the RX ring buffer is used, data received is stored into the ring buffer even when
|
|
* the user doesn't call the UART_TransferReceiveNonBlocking() API. If there is already data received
|
|
* in the ring buffer, the user can get the received data from the ring buffer directly.
|
|
*
|
|
* note When using RX ring buffer, one byte is reserved for internal use. In other
|
|
* words, if p ringBufferSize is 32, then only 31 bytes are used for saving data.
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* param handle LPUART handle pointer.
|
|
* param ringBuffer Start address of ring buffer for background receiving. Pass NULL to disable the ring buffer.
|
|
* param ringBufferSize size of the ring buffer.
|
|
*/
|
|
void LPUART_TransferStartRingBuffer(LPUART_Type *base,
|
|
lpuart_handle_t *handle,
|
|
uint8_t *ringBuffer,
|
|
size_t ringBufferSize)
|
|
{
|
|
assert(NULL != handle);
|
|
assert(NULL != ringBuffer);
|
|
|
|
/* Setup the ring buffer address */
|
|
handle->rxRingBuffer = ringBuffer;
|
|
handle->rxRingBufferSize = ringBufferSize;
|
|
handle->rxRingBufferHead = 0U;
|
|
handle->rxRingBufferTail = 0U;
|
|
|
|
/* Disable and re-enable the global interrupt to protect the interrupt enable register during read-modify-wrte. */
|
|
uint32_t irqMask = DisableGlobalIRQ();
|
|
/* Enable the interrupt to accept the data when user need the ring buffer. */
|
|
base->CTRL |= (uint32_t)(LPUART_CTRL_RIE_MASK | LPUART_CTRL_ORIE_MASK);
|
|
EnableGlobalIRQ(irqMask);
|
|
}
|
|
|
|
/*!
|
|
* brief Aborts the background transfer and uninstalls the ring buffer.
|
|
*
|
|
* This function aborts the background transfer and uninstalls the ring buffer.
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* param handle LPUART handle pointer.
|
|
*/
|
|
void LPUART_TransferStopRingBuffer(LPUART_Type *base, lpuart_handle_t *handle)
|
|
{
|
|
assert(NULL != handle);
|
|
|
|
if (handle->rxState == (uint8_t)kLPUART_RxIdle)
|
|
{
|
|
/* Disable and re-enable the global interrupt to protect the interrupt enable register during read-modify-wrte.
|
|
*/
|
|
uint32_t irqMask = DisableGlobalIRQ();
|
|
base->CTRL &= ~(uint32_t)(LPUART_CTRL_RIE_MASK | LPUART_CTRL_ORIE_MASK);
|
|
EnableGlobalIRQ(irqMask);
|
|
}
|
|
|
|
handle->rxRingBuffer = NULL;
|
|
handle->rxRingBufferSize = 0U;
|
|
handle->rxRingBufferHead = 0U;
|
|
handle->rxRingBufferTail = 0U;
|
|
}
|
|
|
|
/*!
|
|
* brief Transmits a buffer of data using the interrupt method.
|
|
*
|
|
* This function send data using an interrupt method. This is a non-blocking function, which
|
|
* returns directly without waiting for all data written to the transmitter register. When
|
|
* all data is written to the TX register in the ISR, the LPUART driver calls the callback
|
|
* function and passes the ref kStatus_LPUART_TxIdle as status parameter.
|
|
*
|
|
* note The kStatus_LPUART_TxIdle is passed to the upper layer when all data are written
|
|
* to the TX register. However, there is no check to ensure that all the data sent out. Before disabling the TX,
|
|
* check the kLPUART_TransmissionCompleteFlag to ensure that the transmit is finished.
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* param handle LPUART handle pointer.
|
|
* param xfer LPUART transfer structure, see #lpuart_transfer_t.
|
|
* retval kStatus_Success Successfully start the data transmission.
|
|
* retval kStatus_LPUART_TxBusy Previous transmission still not finished, data not all written to the TX register.
|
|
* retval kStatus_InvalidArgument Invalid argument.
|
|
*/
|
|
status_t LPUART_TransferSendNonBlocking(LPUART_Type *base, lpuart_handle_t *handle, lpuart_transfer_t *xfer)
|
|
{
|
|
assert(NULL != handle);
|
|
assert(NULL != xfer);
|
|
assert(NULL != xfer->txData);
|
|
assert(0U != xfer->dataSize);
|
|
|
|
status_t status;
|
|
|
|
/* Return error if current TX busy. */
|
|
if ((uint8_t)kLPUART_TxBusy == handle->txState)
|
|
{
|
|
status = kStatus_LPUART_TxBusy;
|
|
}
|
|
else
|
|
{
|
|
handle->txData = xfer->txData;
|
|
handle->txDataSize = xfer->dataSize;
|
|
handle->txDataSizeAll = xfer->dataSize;
|
|
handle->txState = (uint8_t)kLPUART_TxBusy;
|
|
|
|
/* Disable and re-enable the global interrupt to protect the interrupt enable register during read-modify-wrte.
|
|
*/
|
|
uint32_t irqMask = DisableGlobalIRQ();
|
|
/* Enable transmitter interrupt. */
|
|
base->CTRL |= (uint32_t)LPUART_CTRL_TIE_MASK;
|
|
EnableGlobalIRQ(irqMask);
|
|
|
|
status = kStatus_Success;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/*!
|
|
* brief Aborts the interrupt-driven data transmit.
|
|
*
|
|
* This function aborts the interrupt driven data sending. The user can get the remainBtyes to find out
|
|
* how many bytes are not sent out.
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* param handle LPUART handle pointer.
|
|
*/
|
|
void LPUART_TransferAbortSend(LPUART_Type *base, lpuart_handle_t *handle)
|
|
{
|
|
assert(NULL != handle);
|
|
|
|
/* Disable and re-enable the global interrupt to protect the interrupt enable register during read-modify-wrte. */
|
|
uint32_t irqMask = DisableGlobalIRQ();
|
|
base->CTRL &= ~(uint32_t)(LPUART_CTRL_TIE_MASK | LPUART_CTRL_TCIE_MASK);
|
|
EnableGlobalIRQ(irqMask);
|
|
|
|
handle->txDataSize = 0;
|
|
handle->txState = (uint8_t)kLPUART_TxIdle;
|
|
}
|
|
|
|
/*!
|
|
* brief Gets the number of bytes that have been sent out to bus.
|
|
*
|
|
* This function gets the number of bytes that have been sent out to bus by an interrupt method.
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* param handle LPUART handle pointer.
|
|
* param count Send bytes count.
|
|
* retval kStatus_NoTransferInProgress No send in progress.
|
|
* retval kStatus_InvalidArgument Parameter is invalid.
|
|
* retval kStatus_Success Get successfully through the parameter \p count;
|
|
*/
|
|
status_t LPUART_TransferGetSendCount(LPUART_Type *base, lpuart_handle_t *handle, uint32_t *count)
|
|
{
|
|
assert(NULL != handle);
|
|
assert(NULL != count);
|
|
|
|
status_t status = kStatus_Success;
|
|
size_t tmptxDataSize = handle->txDataSize;
|
|
|
|
if ((uint8_t)kLPUART_TxIdle == handle->txState)
|
|
{
|
|
status = kStatus_NoTransferInProgress;
|
|
}
|
|
else
|
|
{
|
|
#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
|
|
*count = handle->txDataSizeAll - tmptxDataSize -
|
|
((base->WATER & LPUART_WATER_TXCOUNT_MASK) >> LPUART_WATER_TXCOUNT_SHIFT);
|
|
#else
|
|
if ((base->STAT & (uint32_t)kLPUART_TxDataRegEmptyFlag) != 0U)
|
|
{
|
|
*count = handle->txDataSizeAll - tmptxDataSize;
|
|
}
|
|
else
|
|
{
|
|
*count = handle->txDataSizeAll - tmptxDataSize - 1U;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/*!
|
|
* brief Receives a buffer of data using the interrupt method.
|
|
*
|
|
* This function receives data using an interrupt method. This is a non-blocking function
|
|
* which returns without waiting to ensure that all data are received.
|
|
* If the RX ring buffer is used and not empty, the data in the ring buffer is copied and
|
|
* the parameter p receivedBytes shows how many bytes are copied from the ring buffer.
|
|
* After copying, if the data in the ring buffer is not enough for read, the receive
|
|
* request is saved by the LPUART driver. When the new data arrives, the receive request
|
|
* is serviced first. When all data is received, the LPUART driver notifies the upper layer
|
|
* through a callback function and passes a status parameter ref kStatus_UART_RxIdle.
|
|
* For example, the upper layer needs 10 bytes but there are only 5 bytes in ring buffer.
|
|
* The 5 bytes are copied to xfer->data, which returns with the
|
|
* parameter p receivedBytes set to 5. For the remaining 5 bytes, the newly arrived data is
|
|
* saved from xfer->data[5]. When 5 bytes are received, the LPUART driver notifies the upper layer.
|
|
* If the RX ring buffer is not enabled, this function enables the RX and RX interrupt
|
|
* to receive data to xfer->data. When all data is received, the upper layer is notified.
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* param handle LPUART handle pointer.
|
|
* param xfer LPUART transfer structure, see #uart_transfer_t.
|
|
* param receivedBytes Bytes received from the ring buffer directly.
|
|
* retval kStatus_Success Successfully queue the transfer into the transmit queue.
|
|
* retval kStatus_LPUART_RxBusy Previous receive request is not finished.
|
|
* retval kStatus_InvalidArgument Invalid argument.
|
|
*/
|
|
status_t LPUART_TransferReceiveNonBlocking(LPUART_Type *base,
|
|
lpuart_handle_t *handle,
|
|
lpuart_transfer_t *xfer,
|
|
size_t *receivedBytes)
|
|
{
|
|
assert(NULL != handle);
|
|
assert(NULL != xfer);
|
|
assert(NULL != xfer->rxData);
|
|
assert(0U != xfer->dataSize);
|
|
|
|
uint32_t i;
|
|
status_t status;
|
|
uint32_t irqMask;
|
|
/* How many bytes to copy from ring buffer to user memory. */
|
|
size_t bytesToCopy = 0U;
|
|
/* How many bytes to receive. */
|
|
size_t bytesToReceive;
|
|
/* How many bytes currently have received. */
|
|
size_t bytesCurrentReceived;
|
|
|
|
/* How to get data:
|
|
1. If RX ring buffer is not enabled, then save xfer->data and xfer->dataSize
|
|
to lpuart handle, enable interrupt to store received data to xfer->data. When
|
|
all data received, trigger callback.
|
|
2. If RX ring buffer is enabled and not empty, get data from ring buffer first.
|
|
If there are enough data in ring buffer, copy them to xfer->data and return.
|
|
If there are not enough data in ring buffer, copy all of them to xfer->data,
|
|
save the xfer->data remained empty space to lpuart handle, receive data
|
|
to this empty space and trigger callback when finished. */
|
|
|
|
if ((uint8_t)kLPUART_RxBusy == handle->rxState)
|
|
{
|
|
status = kStatus_LPUART_RxBusy;
|
|
}
|
|
else
|
|
{
|
|
bytesToReceive = xfer->dataSize;
|
|
bytesCurrentReceived = 0;
|
|
|
|
/* If RX ring buffer is used. */
|
|
if (NULL != handle->rxRingBuffer)
|
|
{
|
|
/* Disable and re-enable the global interrupt to protect the interrupt enable register during
|
|
* read-modify-wrte. */
|
|
irqMask = DisableGlobalIRQ();
|
|
/* Disable LPUART RX IRQ, protect ring buffer. */
|
|
base->CTRL &= ~(uint32_t)(LPUART_CTRL_RIE_MASK | LPUART_CTRL_ORIE_MASK);
|
|
EnableGlobalIRQ(irqMask);
|
|
|
|
/* How many bytes in RX ring buffer currently. */
|
|
bytesToCopy = LPUART_TransferGetRxRingBufferLength(base, handle);
|
|
|
|
if (0U != bytesToCopy)
|
|
{
|
|
bytesToCopy = MIN(bytesToReceive, bytesToCopy);
|
|
|
|
bytesToReceive -= bytesToCopy;
|
|
|
|
/* Copy data from ring buffer to user memory. */
|
|
for (i = 0U; i < bytesToCopy; i++)
|
|
{
|
|
xfer->rxData[bytesCurrentReceived] = handle->rxRingBuffer[handle->rxRingBufferTail];
|
|
bytesCurrentReceived++;
|
|
|
|
/* Wrap to 0. Not use modulo (%) because it might be large and slow. */
|
|
if (((uint32_t)handle->rxRingBufferTail + 1U) == handle->rxRingBufferSize)
|
|
{
|
|
handle->rxRingBufferTail = 0U;
|
|
}
|
|
else
|
|
{
|
|
handle->rxRingBufferTail++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If ring buffer does not have enough data, still need to read more data. */
|
|
if (0U != bytesToReceive)
|
|
{
|
|
/* No data in ring buffer, save the request to LPUART handle. */
|
|
handle->rxData = &xfer->rxData[bytesCurrentReceived];
|
|
handle->rxDataSize = bytesToReceive;
|
|
handle->rxDataSizeAll = xfer->dataSize;
|
|
handle->rxState = (uint8_t)kLPUART_RxBusy;
|
|
}
|
|
|
|
/* Disable and re-enable the global interrupt to protect the interrupt enable register during
|
|
* read-modify-wrte. */
|
|
irqMask = DisableGlobalIRQ();
|
|
/* Re-enable LPUART RX IRQ. */
|
|
base->CTRL |= (uint32_t)(LPUART_CTRL_RIE_MASK | LPUART_CTRL_ORIE_MASK);
|
|
EnableGlobalIRQ(irqMask);
|
|
|
|
/* Call user callback since all data are received. */
|
|
if (0U == bytesToReceive)
|
|
{
|
|
if (NULL != handle->callback)
|
|
{
|
|
handle->callback(base, handle, kStatus_LPUART_RxIdle, handle->userData);
|
|
}
|
|
}
|
|
}
|
|
/* Ring buffer not used. */
|
|
else
|
|
{
|
|
handle->rxData = &xfer->rxData[bytesCurrentReceived];
|
|
handle->rxDataSize = bytesToReceive;
|
|
handle->rxDataSizeAll = bytesToReceive;
|
|
handle->rxState = (uint8_t)kLPUART_RxBusy;
|
|
|
|
/* Disable and re-enable the global interrupt to protect the interrupt enable register during
|
|
* read-modify-wrte. */
|
|
irqMask = DisableGlobalIRQ();
|
|
/* Enable RX interrupt. */
|
|
base->CTRL |= (uint32_t)(LPUART_CTRL_RIE_MASK | LPUART_CTRL_ILIE_MASK | LPUART_CTRL_ORIE_MASK);
|
|
EnableGlobalIRQ(irqMask);
|
|
}
|
|
|
|
/* Return the how many bytes have read. */
|
|
if (NULL != receivedBytes)
|
|
{
|
|
*receivedBytes = bytesCurrentReceived;
|
|
}
|
|
|
|
status = kStatus_Success;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/*!
|
|
* brief Aborts the interrupt-driven data receiving.
|
|
*
|
|
* This function aborts the interrupt-driven data receiving. The user can get the remainBytes to find out
|
|
* how many bytes not received yet.
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* param handle LPUART handle pointer.
|
|
*/
|
|
void LPUART_TransferAbortReceive(LPUART_Type *base, lpuart_handle_t *handle)
|
|
{
|
|
assert(NULL != handle);
|
|
|
|
/* Only abort the receive to handle->rxData, the RX ring buffer is still working. */
|
|
if (NULL == handle->rxRingBuffer)
|
|
{
|
|
/* Disable and re-enable the global interrupt to protect the interrupt enable register during read-modify-wrte.
|
|
*/
|
|
uint32_t irqMask = DisableGlobalIRQ();
|
|
/* Disable RX interrupt. */
|
|
base->CTRL &= ~(uint32_t)(LPUART_CTRL_RIE_MASK | LPUART_CTRL_ILIE_MASK | LPUART_CTRL_ORIE_MASK);
|
|
EnableGlobalIRQ(irqMask);
|
|
}
|
|
|
|
handle->rxDataSize = 0U;
|
|
handle->rxState = (uint8_t)kLPUART_RxIdle;
|
|
}
|
|
|
|
/*!
|
|
* brief Gets the number of bytes that have been received.
|
|
*
|
|
* This function gets the number of bytes that have been received.
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* param handle LPUART handle pointer.
|
|
* param count Receive bytes count.
|
|
* retval kStatus_NoTransferInProgress No receive in progress.
|
|
* retval kStatus_InvalidArgument Parameter is invalid.
|
|
* retval kStatus_Success Get successfully through the parameter \p count;
|
|
*/
|
|
status_t LPUART_TransferGetReceiveCount(LPUART_Type *base, lpuart_handle_t *handle, uint32_t *count)
|
|
{
|
|
assert(NULL != handle);
|
|
assert(NULL != count);
|
|
|
|
status_t status = kStatus_Success;
|
|
size_t tmprxDataSize = handle->rxDataSize;
|
|
|
|
if ((uint8_t)kLPUART_RxIdle == handle->rxState)
|
|
{
|
|
status = kStatus_NoTransferInProgress;
|
|
}
|
|
else
|
|
{
|
|
*count = handle->rxDataSizeAll - tmprxDataSize;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/*!
|
|
* brief LPUART IRQ handle function.
|
|
*
|
|
* This function handles the LPUART transmit and receive IRQ request.
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* param irqHandle LPUART handle pointer.
|
|
*/
|
|
void LPUART_TransferHandleIRQ(LPUART_Type *base, void *irqHandle)
|
|
{
|
|
assert(NULL != irqHandle);
|
|
|
|
uint8_t count;
|
|
uint8_t tempCount;
|
|
uint32_t status = LPUART_GetStatusFlags(base);
|
|
uint32_t enabledInterrupts = LPUART_GetEnabledInterrupts(base);
|
|
uint16_t tpmRxRingBufferHead;
|
|
uint32_t tpmData;
|
|
uint32_t irqMask;
|
|
lpuart_handle_t *handle = (lpuart_handle_t *)irqHandle;
|
|
|
|
/* If RX overrun. */
|
|
if ((uint32_t)kLPUART_RxOverrunFlag == ((uint32_t)kLPUART_RxOverrunFlag & status))
|
|
{
|
|
/* Clear overrun flag, otherwise the RX does not work. */
|
|
base->STAT = ((base->STAT & 0x3FE00000U) | LPUART_STAT_OR_MASK);
|
|
|
|
/* Trigger callback. */
|
|
if (NULL != (handle->callback))
|
|
{
|
|
handle->callback(base, handle, kStatus_LPUART_RxHardwareOverrun, handle->userData);
|
|
}
|
|
}
|
|
|
|
/* If IDLE flag is set and the IDLE interrupt is enabled. */
|
|
if ((0U != ((uint32_t)kLPUART_IdleLineFlag & status)) &&
|
|
(0U != ((uint32_t)kLPUART_IdleLineInterruptEnable & enabledInterrupts)))
|
|
{
|
|
#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
|
|
count = ((uint8_t)((base->WATER & LPUART_WATER_RXCOUNT_MASK) >> LPUART_WATER_RXCOUNT_SHIFT));
|
|
|
|
while ((0U != handle->rxDataSize) && (0U != count))
|
|
{
|
|
tempCount = (uint8_t)MIN(handle->rxDataSize, count);
|
|
|
|
/* Using non block API to read the data from the registers. */
|
|
LPUART_ReadNonBlocking(base, handle->rxData, tempCount);
|
|
handle->rxData = &handle->rxData[tempCount];
|
|
handle->rxDataSize -= tempCount;
|
|
count -= tempCount;
|
|
|
|
/* If rxDataSize is 0, invoke rx idle callback.*/
|
|
if (0U == (handle->rxDataSize))
|
|
{
|
|
handle->rxState = (uint8_t)kLPUART_RxIdle;
|
|
|
|
if (NULL != handle->callback)
|
|
{
|
|
handle->callback(base, handle, kStatus_LPUART_RxIdle, handle->userData);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
/* Clear IDLE flag.*/
|
|
base->STAT = ((base->STAT & 0x3FE00000U) | LPUART_STAT_IDLE_MASK);
|
|
|
|
/* If rxDataSize is 0, disable rx ready, overrun and idle line interrupt.*/
|
|
if (0U == handle->rxDataSize)
|
|
{
|
|
/* Disable and re-enable the global interrupt to protect the interrupt enable register during
|
|
* read-modify-wrte. */
|
|
irqMask = DisableGlobalIRQ();
|
|
base->CTRL &= ~(uint32_t)(LPUART_CTRL_RIE_MASK | LPUART_CTRL_ILIE_MASK | LPUART_CTRL_ORIE_MASK);
|
|
EnableGlobalIRQ(irqMask);
|
|
}
|
|
/* Invoke callback if callback is not NULL and rxDataSize is not 0. */
|
|
else if (NULL != handle->callback)
|
|
{
|
|
handle->callback(base, handle, kStatus_LPUART_IdleLineDetected, handle->userData);
|
|
}
|
|
else
|
|
{
|
|
/* Avoid MISRA 15.7 */
|
|
}
|
|
}
|
|
/* Receive data register full */
|
|
if ((0U != ((uint32_t)kLPUART_RxDataRegFullFlag & status)) &&
|
|
(0U != ((uint32_t)kLPUART_RxDataRegFullInterruptEnable & enabledInterrupts)))
|
|
{
|
|
/* Get the size that can be stored into buffer for this interrupt. */
|
|
#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
|
|
count = ((uint8_t)((base->WATER & LPUART_WATER_RXCOUNT_MASK) >> LPUART_WATER_RXCOUNT_SHIFT));
|
|
#else
|
|
count = 1;
|
|
#endif
|
|
|
|
/* If handle->rxDataSize is not 0, first save data to handle->rxData. */
|
|
while ((0U != handle->rxDataSize) && (0U != count))
|
|
{
|
|
#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
|
|
tempCount = (uint8_t)MIN(handle->rxDataSize, count);
|
|
#else
|
|
tempCount = 1;
|
|
#endif
|
|
|
|
/* Using non block API to read the data from the registers. */
|
|
LPUART_ReadNonBlocking(base, handle->rxData, tempCount);
|
|
handle->rxData = &handle->rxData[tempCount];
|
|
handle->rxDataSize -= tempCount;
|
|
count -= tempCount;
|
|
|
|
/* If all the data required for upper layer is ready, trigger callback. */
|
|
if (0U == handle->rxDataSize)
|
|
{
|
|
handle->rxState = (uint8_t)kLPUART_RxIdle;
|
|
|
|
if (NULL != handle->callback)
|
|
{
|
|
handle->callback(base, handle, kStatus_LPUART_RxIdle, handle->userData);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If use RX ring buffer, receive data to ring buffer. */
|
|
if (NULL != handle->rxRingBuffer)
|
|
{
|
|
while (0U != count--)
|
|
{
|
|
/* If RX ring buffer is full, trigger callback to notify over run. */
|
|
if (LPUART_TransferIsRxRingBufferFull(base, handle))
|
|
{
|
|
if (NULL != handle->callback)
|
|
{
|
|
handle->callback(base, handle, kStatus_LPUART_RxRingBufferOverrun, handle->userData);
|
|
}
|
|
}
|
|
|
|
/* If ring buffer is still full after callback function, the oldest data is overridden. */
|
|
if (LPUART_TransferIsRxRingBufferFull(base, handle))
|
|
{
|
|
/* Increase handle->rxRingBufferTail to make room for new data. */
|
|
if (((uint32_t)handle->rxRingBufferTail + 1U) == handle->rxRingBufferSize)
|
|
{
|
|
handle->rxRingBufferTail = 0U;
|
|
}
|
|
else
|
|
{
|
|
handle->rxRingBufferTail++;
|
|
}
|
|
}
|
|
|
|
/* Read data. */
|
|
tpmRxRingBufferHead = handle->rxRingBufferHead;
|
|
tpmData = base->DATA;
|
|
#if defined(FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT) && FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT
|
|
if (handle->isSevenDataBits)
|
|
{
|
|
handle->rxRingBuffer[tpmRxRingBufferHead] = (uint8_t)(tpmData & 0x7FU);
|
|
}
|
|
else
|
|
{
|
|
handle->rxRingBuffer[tpmRxRingBufferHead] = (uint8_t)tpmData;
|
|
}
|
|
#else
|
|
handle->rxRingBuffer[tpmRxRingBufferHead] = (uint8_t)tpmData;
|
|
#endif
|
|
|
|
/* Increase handle->rxRingBufferHead. */
|
|
if (((uint32_t)handle->rxRingBufferHead + 1U) == handle->rxRingBufferSize)
|
|
{
|
|
handle->rxRingBufferHead = 0U;
|
|
}
|
|
else
|
|
{
|
|
handle->rxRingBufferHead++;
|
|
}
|
|
}
|
|
}
|
|
/* If no receive requst pending, stop RX interrupt. */
|
|
else if (0U == handle->rxDataSize)
|
|
{
|
|
/* Disable and re-enable the global interrupt to protect the interrupt enable register during
|
|
* read-modify-wrte. */
|
|
irqMask = DisableGlobalIRQ();
|
|
base->CTRL &= ~(uint32_t)(LPUART_CTRL_RIE_MASK | LPUART_CTRL_ORIE_MASK | LPUART_CTRL_ILIE_MASK);
|
|
EnableGlobalIRQ(irqMask);
|
|
}
|
|
else
|
|
{
|
|
}
|
|
}
|
|
|
|
/* Send data register empty and the interrupt is enabled. */
|
|
if ((0U != ((uint32_t)kLPUART_TxDataRegEmptyFlag & status)) &&
|
|
(0U != ((uint32_t)kLPUART_TxDataRegEmptyInterruptEnable & enabledInterrupts)))
|
|
{
|
|
/* Get the bytes that available at this moment. */
|
|
#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
|
|
count = (uint8_t)FSL_FEATURE_LPUART_FIFO_SIZEn(base) -
|
|
(uint8_t)((base->WATER & LPUART_WATER_TXCOUNT_MASK) >> LPUART_WATER_TXCOUNT_SHIFT);
|
|
#else
|
|
count = 1;
|
|
#endif
|
|
|
|
while ((0U != handle->txDataSize) && (0U != count))
|
|
{
|
|
#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
|
|
tempCount = (uint8_t)MIN(handle->txDataSize, count);
|
|
#else
|
|
tempCount = 1;
|
|
#endif
|
|
|
|
/* Using non block API to write the data to the registers. */
|
|
LPUART_WriteNonBlocking(base, handle->txData, tempCount);
|
|
handle->txData = &handle->txData[tempCount];
|
|
handle->txDataSize -= tempCount;
|
|
count -= tempCount;
|
|
|
|
/* If all the data are written to data register, notify user with the callback, then TX finished. */
|
|
if (0U == handle->txDataSize)
|
|
{
|
|
/* Disable and re-enable the global interrupt to protect the interrupt enable register during
|
|
* read-modify-wrte. */
|
|
irqMask = DisableGlobalIRQ();
|
|
/* Disable TX register empty interrupt and enable transmission completion interrupt. */
|
|
base->CTRL = (base->CTRL & ~LPUART_CTRL_TIE_MASK) | LPUART_CTRL_TCIE_MASK;
|
|
EnableGlobalIRQ(irqMask);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Transmission complete and the interrupt is enabled. */
|
|
if ((0U != ((uint32_t)kLPUART_TransmissionCompleteFlag & status)) &&
|
|
(0U != ((uint32_t)kLPUART_TransmissionCompleteInterruptEnable & enabledInterrupts)))
|
|
{
|
|
/* Set txState to idle only when all data has been sent out to bus. */
|
|
handle->txState = (uint8_t)kLPUART_TxIdle;
|
|
|
|
/* Disable and re-enable the global interrupt to protect the interrupt enable register during read-modify-wrte.
|
|
*/
|
|
irqMask = DisableGlobalIRQ();
|
|
/* Disable transmission complete interrupt. */
|
|
base->CTRL &= ~(uint32_t)LPUART_CTRL_TCIE_MASK;
|
|
EnableGlobalIRQ(irqMask);
|
|
|
|
/* Trigger callback. */
|
|
if (NULL != handle->callback)
|
|
{
|
|
handle->callback(base, handle, kStatus_LPUART_TxIdle, handle->userData);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* brief LPUART Error IRQ handle function.
|
|
*
|
|
* This function handles the LPUART error IRQ request.
|
|
*
|
|
* param base LPUART peripheral base address.
|
|
* param irqHandle LPUART handle pointer.
|
|
*/
|
|
void LPUART_TransferHandleErrorIRQ(LPUART_Type *base, void *irqHandle)
|
|
{
|
|
/* To be implemented by User. */
|
|
}
|
|
#if defined(FSL_FEATURE_LPUART_HAS_SHARED_IRQ0_IRQ1) && FSL_FEATURE_LPUART_HAS_SHARED_IRQ0_IRQ1
|
|
#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
|
|
void LPUART0_LPUART1_RX_DriverIRQHandler(void);
|
|
void LPUART0_LPUART1_RX_DriverIRQHandler(void)
|
|
{
|
|
/* If handle is registered, treat the transfer function is enabled. */
|
|
if (NULL != s_lpuartHandle[0])
|
|
{
|
|
s_lpuartIsr(LPUART0, s_lpuartHandle[0]);
|
|
}
|
|
if (NULL != s_lpuartHandle[1])
|
|
{
|
|
s_lpuartIsr(LPUART1, s_lpuartHandle[1]);
|
|
}
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
void LPUART0_LPUART1_TX_DriverIRQHandler(void);
|
|
void LPUART0_LPUART1_TX_DriverIRQHandler(void)
|
|
{
|
|
/* If handle is registered, treat the transfer function is enabled. */
|
|
if (NULL != s_lpuartHandle[0])
|
|
{
|
|
s_lpuartIsr(LPUART0, s_lpuartHandle[0]);
|
|
}
|
|
if (NULL != s_lpuartHandle[1])
|
|
{
|
|
s_lpuartIsr(LPUART1, s_lpuartHandle[1]);
|
|
}
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#else
|
|
void LPUART0_LPUART1_DriverIRQHandler(void);
|
|
void LPUART0_LPUART1_DriverIRQHandler(void)
|
|
{
|
|
/* If handle is registered, treat the transfer function is enabled. */
|
|
if (NULL != s_lpuartHandle[0])
|
|
{
|
|
s_lpuartIsr(LPUART0, s_lpuartHandle[0]);
|
|
}
|
|
if (NULL != s_lpuartHandle[1])
|
|
{
|
|
s_lpuartIsr(LPUART1, s_lpuartHandle[1]);
|
|
}
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(LPUART0)
|
|
#if !(defined(FSL_FEATURE_LPUART_HAS_SHARED_IRQ0_IRQ1) && FSL_FEATURE_LPUART_HAS_SHARED_IRQ0_IRQ1)
|
|
#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
|
|
void LPUART0_TX_DriverIRQHandler(void);
|
|
void LPUART0_TX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART0, s_lpuartHandle[0]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
void LPUART0_RX_DriverIRQHandler(void);
|
|
void LPUART0_RX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART0, s_lpuartHandle[0]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#else
|
|
void LPUART0_DriverIRQHandler(void);
|
|
void LPUART0_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART0, s_lpuartHandle[0]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(LPUART1)
|
|
#if !(defined(FSL_FEATURE_LPUART_HAS_SHARED_IRQ0_IRQ1) && FSL_FEATURE_LPUART_HAS_SHARED_IRQ0_IRQ1)
|
|
#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
|
|
void LPUART1_TX_DriverIRQHandler(void);
|
|
void LPUART1_TX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART1, s_lpuartHandle[1]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
void LPUART1_RX_DriverIRQHandler(void);
|
|
void LPUART1_RX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART1, s_lpuartHandle[1]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#else
|
|
void LPUART1_DriverIRQHandler(void);
|
|
void LPUART1_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART1, s_lpuartHandle[1]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(LPUART2)
|
|
#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
|
|
void LPUART2_TX_DriverIRQHandler(void);
|
|
void LPUART2_TX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART2, s_lpuartHandle[2]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
void LPUART2_RX_DriverIRQHandler(void);
|
|
void LPUART2_RX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART2, s_lpuartHandle[2]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#else
|
|
void LPUART2_DriverIRQHandler(void);
|
|
void LPUART2_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART2, s_lpuartHandle[2]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(LPUART3)
|
|
#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
|
|
void LPUART3_TX_DriverIRQHandler(void);
|
|
void LPUART3_TX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART3, s_lpuartHandle[3]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
void LPUART3_RX_DriverIRQHandler(void);
|
|
void LPUART3_RX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART3, s_lpuartHandle[3]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#else
|
|
void LPUART3_DriverIRQHandler(void);
|
|
void LPUART3_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART3, s_lpuartHandle[3]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(LPUART4)
|
|
#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
|
|
void LPUART4_TX_DriverIRQHandler(void);
|
|
void LPUART4_TX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART4, s_lpuartHandle[4]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
void LPUART4_RX_DriverIRQHandler(void);
|
|
void LPUART4_RX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART4, s_lpuartHandle[4]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#else
|
|
void LPUART4_DriverIRQHandler(void);
|
|
void LPUART4_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART4, s_lpuartHandle[4]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(LPUART5)
|
|
#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
|
|
void LPUART5_TX_DriverIRQHandler(void);
|
|
void LPUART5_TX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART5, s_lpuartHandle[5]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
void LPUART5_RX_DriverIRQHandler(void);
|
|
void LPUART5_RX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART5, s_lpuartHandle[5]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#else
|
|
void LPUART5_DriverIRQHandler(void);
|
|
void LPUART5_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART5, s_lpuartHandle[5]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(LPUART6)
|
|
#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
|
|
void LPUART6_TX_DriverIRQHandler(void);
|
|
void LPUART6_TX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART6, s_lpuartHandle[6]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
void LPUART6_RX_DriverIRQHandler(void);
|
|
void LPUART6_RX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART6, s_lpuartHandle[6]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#else
|
|
void LPUART6_DriverIRQHandler(void);
|
|
void LPUART6_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART6, s_lpuartHandle[6]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(LPUART7)
|
|
#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
|
|
void LPUART7_TX_DriverIRQHandler(void);
|
|
void LPUART7_TX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART7, s_lpuartHandle[7]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
void LPUART7_RX_DriverIRQHandler(void);
|
|
void LPUART7_RX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART7, s_lpuartHandle[7]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#else
|
|
void LPUART7_DriverIRQHandler(void);
|
|
void LPUART7_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART7, s_lpuartHandle[7]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(LPUART8)
|
|
#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
|
|
void LPUART8_TX_DriverIRQHandler(void);
|
|
void LPUART8_TX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART8, s_lpuartHandle[8]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
void LPUART8_RX_DriverIRQHandler(void);
|
|
void LPUART8_RX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART8, s_lpuartHandle[8]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#else
|
|
void LPUART8_DriverIRQHandler(void);
|
|
void LPUART8_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART8, s_lpuartHandle[8]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(LPUART9)
|
|
#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
|
|
void LPUART9_TX_DriverIRQHandler(void);
|
|
void LPUART9_TX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART9, s_lpuartHandle[9]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
void LPUART9_RX_DriverIRQHandler(void);
|
|
void LPUART9_RX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART9, s_lpuartHandle[9]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#else
|
|
void LPUART9_DriverIRQHandler(void);
|
|
void LPUART9_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART9, s_lpuartHandle[9]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(LPUART10)
|
|
#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
|
|
void LPUART10_TX_DriverIRQHandler(void);
|
|
void LPUART10_TX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART10, s_lpuartHandle[10]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
void LPUART10_RX_DriverIRQHandler(void);
|
|
void LPUART10_RX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART10, s_lpuartHandle[10]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#else
|
|
void LPUART10_DriverIRQHandler(void);
|
|
void LPUART10_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART10, s_lpuartHandle[10]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(LPUART11)
|
|
#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
|
|
void LPUART11_TX_DriverIRQHandler(void);
|
|
void LPUART11_TX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART11, s_lpuartHandle[11]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
void LPUART11_RX_DriverIRQHandler(void);
|
|
void LPUART11_RX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART11, s_lpuartHandle[11]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#else
|
|
void LPUART11_DriverIRQHandler(void);
|
|
void LPUART11_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART11, s_lpuartHandle[11]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(LPUART12)
|
|
#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
|
|
void LPUART12_TX_DriverIRQHandler(void);
|
|
void LPUART12_TX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART12, s_lpuartHandle[12]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
void LPUART12_RX_DriverIRQHandler(void);
|
|
void LPUART12_RX_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART12, s_lpuartHandle[12]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#else
|
|
void LPUART12_DriverIRQHandler(void);
|
|
void LPUART12_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(LPUART12, s_lpuartHandle[12]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(CM4_0__LPUART)
|
|
void M4_0_LPUART_DriverIRQHandler(void);
|
|
void M4_0_LPUART_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(CM4_0__LPUART, s_lpuartHandle[LPUART_GetInstance(CM4_0__LPUART)]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CM4_1__LPUART)
|
|
void M4_1_LPUART_DriverIRQHandler(void);
|
|
void M4_1_LPUART_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(CM4_1__LPUART, s_lpuartHandle[LPUART_GetInstance(CM4_1__LPUART)]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CM4__LPUART)
|
|
void M4_LPUART_DriverIRQHandler(void);
|
|
void M4_LPUART_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(CM4__LPUART, s_lpuartHandle[LPUART_GetInstance(CM4__LPUART)]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
|
|
#if defined(DMA__LPUART0)
|
|
void DMA_UART0_INT_DriverIRQHandler(void);
|
|
void DMA_UART0_INT_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(DMA__LPUART0, s_lpuartHandle[LPUART_GetInstance(DMA__LPUART0)]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
|
|
#if defined(DMA__LPUART1)
|
|
void DMA_UART1_INT_DriverIRQHandler(void);
|
|
void DMA_UART1_INT_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(DMA__LPUART1, s_lpuartHandle[LPUART_GetInstance(DMA__LPUART1)]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
|
|
#if defined(DMA__LPUART2)
|
|
void DMA_UART2_INT_DriverIRQHandler(void);
|
|
void DMA_UART2_INT_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(DMA__LPUART2, s_lpuartHandle[LPUART_GetInstance(DMA__LPUART2)]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
|
|
#if defined(DMA__LPUART3)
|
|
void DMA_UART3_INT_DriverIRQHandler(void);
|
|
void DMA_UART3_INT_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(DMA__LPUART3, s_lpuartHandle[LPUART_GetInstance(DMA__LPUART3)]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
|
|
#if defined(DMA__LPUART4)
|
|
void DMA_UART4_INT_DriverIRQHandler(void);
|
|
void DMA_UART4_INT_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(DMA__LPUART4, s_lpuartHandle[LPUART_GetInstance(DMA__LPUART4)]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
|
|
#if defined(ADMA__LPUART0)
|
|
void ADMA_UART0_INT_DriverIRQHandler(void);
|
|
void ADMA_UART0_INT_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(ADMA__LPUART0, s_lpuartHandle[LPUART_GetInstance(ADMA__LPUART0)]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
|
|
#if defined(ADMA__LPUART1)
|
|
void ADMA_UART1_INT_DriverIRQHandler(void);
|
|
void ADMA_UART1_INT_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(ADMA__LPUART1, s_lpuartHandle[LPUART_GetInstance(ADMA__LPUART1)]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
|
|
#if defined(ADMA__LPUART2)
|
|
void ADMA_UART2_INT_DriverIRQHandler(void);
|
|
void ADMA_UART2_INT_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(ADMA__LPUART2, s_lpuartHandle[LPUART_GetInstance(ADMA__LPUART2)]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|
|
|
|
#if defined(ADMA__LPUART3)
|
|
void ADMA_UART3_INT_DriverIRQHandler(void);
|
|
void ADMA_UART3_INT_DriverIRQHandler(void)
|
|
{
|
|
s_lpuartIsr(ADMA__LPUART3, s_lpuartHandle[LPUART_GetInstance(ADMA__LPUART3)]);
|
|
SDK_ISR_EXIT_BARRIER;
|
|
}
|
|
#endif
|