4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-25 12:47:23 +08:00

1643 lines
50 KiB
C

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-06-01 KyleChan first version
*/
#include <rthw.h>
#include <rtthread.h>
#include <rtdevice.h>
#define DBG_TAG "Serial"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#ifdef RT_USING_POSIX_STDIO
#include <unistd.h>
#include <fcntl.h>
#include <poll.h>
#include <sys/ioctl.h>
#include <dfs_file.h>
#ifdef RT_USING_POSIX_TERMIOS
#include <termios.h>
#endif
#ifdef getc
#undef getc
#endif
#ifdef putc
#undef putc
#endif
RT_OBJECT_HOOKLIST_DEFINE(rt_hw_serial_rxind);
static rt_err_t serial_fops_rx_ind(rt_device_t dev, rt_size_t size)
{
rt_wqueue_wakeup(&(dev->wait_queue), (void*)POLLIN);
RT_OBJECT_HOOKLIST_CALL(rt_hw_serial_rxind, (dev, size));
return RT_EOK;
}
/* fops for serial */
static int serial_fops_open(struct dfs_file *fd)
{
rt_err_t ret = 0;
rt_uint16_t flags = 0;
rt_device_t device;
device = (rt_device_t)fd->vnode->data;
RT_ASSERT(device != RT_NULL);
switch (fd->flags & O_ACCMODE)
{
case O_RDONLY:
LOG_D("fops open: O_RDONLY!");
flags = RT_DEVICE_FLAG_RDONLY;
break;
case O_WRONLY:
LOG_D("fops open: O_WRONLY!");
flags = RT_DEVICE_FLAG_WRONLY;
break;
case O_RDWR:
LOG_D("fops open: O_RDWR!");
flags = RT_DEVICE_FLAG_RDWR;
break;
default:
LOG_E("fops open: unknown mode - %d!", fd->flags & O_ACCMODE);
break;
}
if ((fd->flags & O_ACCMODE) != O_WRONLY)
rt_device_set_rx_indicate(device, serial_fops_rx_ind);
ret = rt_device_open(device, flags);
if (ret == RT_EOK) return 0;
return ret;
}
static int serial_fops_close(struct dfs_file *fd)
{
rt_device_t device;
device = (rt_device_t)fd->vnode->data;
rt_device_set_rx_indicate(device, RT_NULL);
rt_device_close(device);
return 0;
}
static int serial_fops_ioctl(struct dfs_file *fd, int cmd, void *args)
{
rt_device_t device;
int flags = (int)(rt_base_t)args;
int mask = O_NONBLOCK | O_APPEND;
device = (rt_device_t)fd->vnode->data;
switch (cmd)
{
case FIONREAD:
break;
case FIONWRITE:
break;
case F_SETFL:
flags &= mask;
fd->flags &= ~mask;
fd->flags |= flags;
break;
}
return rt_device_control(device, cmd, args);
}
#ifdef RT_USING_DFS_V2
static ssize_t serial_fops_read(struct dfs_file *fd, void *buf, size_t count, off_t *pos)
#else
static ssize_t serial_fops_read(struct dfs_file *fd, void *buf, size_t count)
#endif
{
int size = 0;
rt_device_t device;
device = (rt_device_t)fd->vnode->data;
do
{
size = rt_device_read(device, -1, buf, count);
if (size <= 0)
{
if (fd->flags & O_NONBLOCK)
{
size = -EAGAIN;
break;
}
rt_wqueue_wait(&(device->wait_queue), 0, RT_WAITING_FOREVER);
}
}while (size <= 0);
return size;
}
#ifdef RT_USING_DFS_V2
static ssize_t serial_fops_write(struct dfs_file *fd, const void *buf, size_t count, off_t *pos)
#else
static ssize_t serial_fops_write(struct dfs_file *fd, const void *buf, size_t count)
#endif
{
rt_device_t device;
device = (rt_device_t)fd->vnode->data;
return rt_device_write(device, -1, buf, count);
}
static int serial_fops_poll(struct dfs_file *fd, struct rt_pollreq *req)
{
int mask = 0;
int flags = 0;
rt_device_t device;
struct rt_serial_device *serial;
device = (rt_device_t)fd->vnode->data;
RT_ASSERT(device != RT_NULL);
serial = (struct rt_serial_device *)device;
/* only support POLLIN */
flags = fd->flags & O_ACCMODE;
if (flags == O_RDONLY || flags == O_RDWR)
{
rt_base_t level;
struct rt_serial_rx_fifo* rx_fifo;
rt_poll_add(&(device->wait_queue), req);
rx_fifo = (struct rt_serial_rx_fifo*) serial->serial_rx;
level = rt_hw_interrupt_disable();
if (rt_ringbuffer_data_len(&rx_fifo->rb))
mask |= POLLIN;
rt_hw_interrupt_enable(level);
}
// mask|=POLLOUT;
return mask;
}
const static struct dfs_file_ops _serial_fops =
{
.open = serial_fops_open,
.close = serial_fops_close,
.ioctl = serial_fops_ioctl,
.read = serial_fops_read,
.write = serial_fops_write,
.poll = serial_fops_poll,
};
#endif /* RT_USING_POSIX_STDIO */
static rt_ssize_t rt_serial_get_linear_buffer(struct rt_ringbuffer *rb,
rt_uint8_t **ptr)
{
rt_size_t size;
RT_ASSERT(rb != RT_NULL);
*ptr = RT_NULL;
/* whether has enough data */
size = rt_ringbuffer_data_len(rb);
/* no data */
if (size == 0)
return 0;
*ptr = &rb->buffer_ptr[rb->read_index];
if(rb->buffer_size - rb->read_index > size)
{
return size;
}
return rb->buffer_size - rb->read_index;
}
static rt_ssize_t rt_serial_update_read_index(struct rt_ringbuffer *rb,
rt_uint16_t read_index)
{
rt_size_t size;
RT_ASSERT(rb != RT_NULL);
/* whether has enough data */
size = rt_ringbuffer_data_len(rb);
/* no data */
if (size == 0)
return 0;
/* less data */
if(size < read_index)
read_index = size;
if(rb->buffer_size - rb->read_index > read_index)
{
rb->read_index += read_index;
return read_index;
}
read_index = rb->buffer_size - rb->read_index;
/* we are going into the other side of the mirror */
rb->read_mirror = ~rb->read_mirror;
rb->read_index = 0;
return read_index;
}
static rt_ssize_t rt_serial_update_write_index(struct rt_ringbuffer *rb,
rt_uint16_t write_size)
{
rt_uint16_t size;
RT_ASSERT(rb != RT_NULL);
/* whether has enough space */
size = rt_ringbuffer_space_len(rb);
/* no space, drop some data */
if (size < write_size)
{
write_size = size;
#if !defined(RT_USING_ULOG) || defined(ULOG_USING_ISR_LOG)
LOG_W("The serial buffer (len %d) is overflow.", rb->buffer_size);
#endif
}
if (rb->buffer_size - rb->write_index > write_size)
{
/* this should not cause overflow because there is enough space for
* length of data in current mirror */
rb->write_index += write_size;
return write_size;
}
/* we are going into the other side of the mirror */
rb->write_mirror = ~rb->write_mirror;
rb->write_index = write_size - (rb->buffer_size - rb->write_index);
return write_size;
}
/**
* @brief Serial polling receive data routine, This function will receive data
* in a continuous loop by one by one byte.
* @param dev The pointer of device driver structure
* @param pos Empty parameter.
* @param buffer Receive data buffer.
* @param size Receive data buffer length.
* @return Return the final length of data received.
*/
rt_ssize_t _serial_poll_rx(struct rt_device *dev,
rt_off_t pos,
void *buffer,
rt_size_t size)
{
struct rt_serial_device *serial;
rt_size_t getc_size;
int getc_element; /* Gets one byte of data received */
rt_uint8_t *getc_buffer; /* Pointer to the receive data buffer */
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
RT_ASSERT(serial != RT_NULL);
getc_buffer = (rt_uint8_t *)buffer;
getc_size = size;
while(size)
{
getc_element = serial->ops->getc(serial);
if (getc_element == -1) break;
*getc_buffer = getc_element;
++ getc_buffer;
-- size;
if (serial->parent.open_flag & RT_DEVICE_FLAG_STREAM)
{
/* If open_flag satisfies RT_DEVICE_FLAG_STREAM
* and the received character is '\n', exit the loop directly */
if (getc_element == '\n') break;
}
}
return getc_size - size;
}
/**
* @brief Serial polling transmit data routines, This function will transmit
* data in a continuous loop by one by one byte.
* @param dev The pointer of device driver structure
* @param pos Empty parameter.
* @param buffer Transmit data buffer.
* @param size Transmit data buffer length.
* @return Return the final length of data received.
*/
rt_ssize_t _serial_poll_tx(struct rt_device *dev,
rt_off_t pos,
const void *buffer,
rt_size_t size)
{
struct rt_serial_device *serial;
rt_size_t putc_size;
rt_uint8_t *putc_buffer; /* Pointer to the transmit data buffer */
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
RT_ASSERT(serial != RT_NULL);
putc_buffer = (rt_uint8_t *)buffer;
putc_size = size;
while (size)
{
if (serial->parent.open_flag & RT_DEVICE_FLAG_STREAM)
{
/* If open_flag satisfies RT_DEVICE_FLAG_STREAM and the received character is '\n',
* inserts '\r' character before '\n' character for the effect of carriage return newline */
if (*putc_buffer == '\n')
serial->ops->putc(serial, '\r');
}
serial->ops->putc(serial, *putc_buffer);
++ putc_buffer;
-- size;
}
return putc_size - size;
}
/**
* @brief Serial receive data routines, This function will receive
* data by using fifo
* @param dev The pointer of device driver structure
* @param pos Empty parameter.
* @param buffer Receive data buffer.
* @param size Receive data buffer length.
* @return Return the final length of data received.
*/
static rt_ssize_t _serial_fifo_rx(struct rt_device *dev,
rt_off_t pos,
void *buffer,
rt_size_t size)
{
struct rt_serial_device *serial;
struct rt_serial_rx_fifo *rx_fifo;
rt_base_t level;
rt_size_t recv_len; /* The length of data from the ringbuffer */
RT_ASSERT(dev != RT_NULL);
if (size == 0) return 0;
serial = (struct rt_serial_device *)dev;
RT_ASSERT((serial != RT_NULL) && (buffer != RT_NULL));
rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
if (dev->open_flag & RT_SERIAL_RX_BLOCKING)
{
if (size > serial->config.rx_bufsz)
{
LOG_W("(%s) serial device received data:[%d] larger than "
"rx_bufsz:[%d], please increase the BSP_UARTx_RX_BUFSIZE option",
dev->parent.name, size, serial->config.rx_bufsz);
return 0;
}
/* Get the length of the data from the ringbuffer */
recv_len = rt_ringbuffer_data_len(&(rx_fifo->rb));
if (recv_len < size)
{
/* When recv_len is less than size, rx_cpt_index is updated to the size
* and rt_current_thread is suspend until rx_cpt_index is equal to 0 */
rx_fifo->rx_cpt_index = size;
rt_completion_wait(&(rx_fifo->rx_cpt), RT_WAITING_FOREVER);
}
}
/* This part of the code is open_flag as RT_SERIAL_RX_NON_BLOCKING */
level = rt_hw_interrupt_disable();
/* When open_flag is RT_SERIAL_RX_NON_BLOCKING,
* the data is retrieved directly from the ringbuffer and returned */
recv_len = rt_ringbuffer_get(&(rx_fifo->rb), buffer, size);
rt_hw_interrupt_enable(level);
return recv_len;
}
/**
* @brief Serial transmit data routines, This function will transmit
* data by using blocking_nbuf.
* @param dev The pointer of device driver structure
* @param pos Empty parameter.
* @param buffer Transmit data buffer.
* @param size Transmit data buffer length.
* @return Return the final length of data transmit.
*/
static rt_ssize_t _serial_fifo_tx_blocking_nbuf(struct rt_device *dev,
rt_off_t pos,
const void *buffer,
rt_size_t size)
{
struct rt_serial_device *serial;
struct rt_serial_tx_fifo *tx_fifo = RT_NULL;
rt_ssize_t rst;
RT_ASSERT(dev != RT_NULL);
if (size == 0) return 0;
serial = (struct rt_serial_device *)dev;
RT_ASSERT((serial != RT_NULL) && (buffer != RT_NULL));
tx_fifo = (struct rt_serial_tx_fifo *) serial->serial_tx;
RT_ASSERT(tx_fifo != RT_NULL);
if (rt_thread_self() == RT_NULL || (serial->parent.open_flag & RT_DEVICE_FLAG_STREAM))
{
/* using poll tx when the scheduler not startup or in stream mode */
return _serial_poll_tx(dev, pos, buffer, size);
}
/* When serial transmit in tx_blocking mode,
* if the activated mode is RT_TRUE, it will return directly */
if (tx_fifo->activated == RT_TRUE) return 0;
tx_fifo->activated = RT_TRUE;
/* Call the transmit interface for transmission */
rst = serial->ops->transmit(serial,
(rt_uint8_t *)buffer,
size,
RT_SERIAL_TX_BLOCKING);
/* Waiting for the transmission to complete */
rt_completion_wait(&(tx_fifo->tx_cpt), RT_WAITING_FOREVER);
/* Inactive tx mode flag */
tx_fifo->activated = RT_FALSE;
return rst;
}
/**
* @brief Serial transmit data routines, This function will transmit
* data by using blocking_buf.
* @param dev The pointer of device driver structure
* @param pos Empty parameter.
* @param buffer Transmit data buffer.
* @param size Transmit data buffer length.
* @return Return the final length of data transmit.
*/
static rt_ssize_t _serial_fifo_tx_blocking_buf(struct rt_device *dev,
rt_off_t pos,
const void *buffer,
rt_size_t size)
{
struct rt_serial_device *serial;
struct rt_serial_tx_fifo *tx_fifo = RT_NULL;
rt_size_t length = size;
rt_size_t offset = 0;
if (size == 0) return 0;
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
RT_ASSERT((serial != RT_NULL) && (buffer != RT_NULL));
tx_fifo = (struct rt_serial_tx_fifo *) serial->serial_tx;
RT_ASSERT(tx_fifo != RT_NULL);
if (rt_thread_self() == RT_NULL || (serial->parent.open_flag & RT_DEVICE_FLAG_STREAM))
{
/* using poll tx when the scheduler not startup or in stream mode */
return _serial_poll_tx(dev, pos, buffer, size);
}
/* When serial transmit in tx_blocking mode,
* if the activated mode is RT_TRUE, it will return directly */
if (tx_fifo->activated == RT_TRUE) return 0;
tx_fifo->activated = RT_TRUE;
while (size)
{
/* Copy one piece of data into the ringbuffer at a time
* until the length of the data is equal to size */
tx_fifo->put_size = rt_ringbuffer_put(&(tx_fifo->rb),
(rt_uint8_t *)buffer + offset,
size);
/* Call the transmit interface for transmission */
serial->ops->transmit(serial,
(rt_uint8_t *)buffer + offset,
tx_fifo->put_size,
RT_SERIAL_TX_BLOCKING);
offset += tx_fifo->put_size;
size -= tx_fifo->put_size;
/* Waiting for the transmission to complete */
rt_completion_wait(&(tx_fifo->tx_cpt), RT_WAITING_FOREVER);
}
/* Finally Inactivate the tx->fifo */
tx_fifo->activated = RT_FALSE;
return length;
}
/**
* @brief Serial transmit data routines, This function will transmit
* data by using nonblocking.
* @param dev The pointer of device driver structure
* @param pos Empty parameter.
* @param buffer Transmit data buffer.
* @param size Transmit data buffer length.
* @return Return the final length of data transmit.
*/
static rt_ssize_t _serial_fifo_tx_nonblocking(struct rt_device *dev,
rt_off_t pos,
const void *buffer,
rt_size_t size)
{
struct rt_serial_device *serial;
struct rt_serial_tx_fifo *tx_fifo;
rt_base_t level;
rt_size_t length;
RT_ASSERT(dev != RT_NULL);
if (size == 0) return 0;
serial = (struct rt_serial_device *)dev;
RT_ASSERT((serial != RT_NULL) && (buffer != RT_NULL));
tx_fifo = (struct rt_serial_tx_fifo *) serial->serial_tx;
level = rt_hw_interrupt_disable();
if (tx_fifo->activated == RT_FALSE)
{
/* When serial transmit in tx_non_blocking mode, if the activated mode is RT_FALSE,
* start copying data into the ringbuffer */
tx_fifo->activated = RT_TRUE;
/* Copying data into the ringbuffer */
length = rt_ringbuffer_put(&(tx_fifo->rb), buffer, size);
rt_hw_interrupt_enable(level);
rt_uint8_t *put_ptr = RT_NULL;
/* Get the linear length buffer from rinbuffer */
tx_fifo->put_size = rt_serial_get_linear_buffer(&(tx_fifo->rb), &put_ptr);
/* Call the transmit interface for transmission */
serial->ops->transmit(serial,
put_ptr,
tx_fifo->put_size,
RT_SERIAL_TX_NON_BLOCKING);
/* In tx_nonblocking mode, there is no need to call rt_completion_wait() APIs to wait
* for the rt_current_thread to resume */
return length;
}
/* If the activated mode is RT_TRUE, it means that serial device is transmitting,
* where only the data in the ringbuffer and there is no need to call the transmit() API.
* Note that this part of the code requires disable interrupts
* to prevent multi thread reentrant */
/* Copying data into the ringbuffer */
length = rt_ringbuffer_put(&(tx_fifo->rb), buffer, size);
rt_hw_interrupt_enable(level);
return length;
}
/**
* @brief Enable serial transmit mode.
* @param dev The pointer of device driver structure
* @param rx_oflag The flag of that the serial port opens.
* @return Return the status of the operation.
*/
static rt_err_t rt_serial_tx_enable(struct rt_device *dev,
rt_uint16_t tx_oflag)
{
struct rt_serial_device *serial;
struct rt_serial_tx_fifo *tx_fifo = RT_NULL;
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
if (serial->config.tx_bufsz == 0)
{
/* Cannot use RT_SERIAL_TX_NON_BLOCKING when tx_bufsz is 0 */
if (tx_oflag == RT_SERIAL_TX_NON_BLOCKING)
{
LOG_E("(%s) serial device with misconfigure: tx_bufsz = 0",
dev->parent.name);
return -RT_EINVAL;
}
#ifndef RT_USING_DEVICE_OPS
dev->write = _serial_poll_tx;
#endif
dev->open_flag |= RT_SERIAL_TX_BLOCKING;
return RT_EOK;
}
/* Limits the minimum value of tx_bufsz */
if (serial->config.tx_bufsz < RT_SERIAL_TX_MINBUFSZ)
serial->config.tx_bufsz = RT_SERIAL_TX_MINBUFSZ;
if (tx_oflag == RT_SERIAL_TX_BLOCKING)
{
/* When using RT_SERIAL_TX_BLOCKING, it is necessary to determine
* whether serial device needs to use buffer */
rt_err_t optmode; /* The operating mode used by serial device */
/* Call the Control() API to get the operating mode */
optmode = serial->ops->control(serial,
RT_DEVICE_CHECK_OPTMODE,
(void *)RT_DEVICE_FLAG_TX_BLOCKING);
if (optmode == RT_SERIAL_TX_BLOCKING_BUFFER)
{
/* If use RT_SERIAL_TX_BLOCKING_BUFFER, the ringbuffer is initialized */
tx_fifo = (struct rt_serial_tx_fifo *) rt_malloc
(sizeof(struct rt_serial_tx_fifo) + serial->config.tx_bufsz);
RT_ASSERT(tx_fifo != RT_NULL);
rt_ringbuffer_init(&(tx_fifo->rb),
tx_fifo->buffer,
serial->config.tx_bufsz);
serial->serial_tx = tx_fifo;
#ifndef RT_USING_DEVICE_OPS
dev->write = _serial_fifo_tx_blocking_buf;
#endif
}
else
{
/* If not use RT_SERIAL_TX_BLOCKING_BUFFER,
* the control() API is called to configure the serial device */
tx_fifo = (struct rt_serial_tx_fifo*) rt_malloc
(sizeof(struct rt_serial_tx_fifo));
RT_ASSERT(tx_fifo != RT_NULL);
/* Init rb.buffer_ptr to RT_NULL, in rt_serial_write() need check it
* otherwise buffer_ptr maybe a random value, as rt_malloc not init memory */
tx_fifo->rb.buffer_ptr = RT_NULL;
serial->serial_tx = tx_fifo;
#ifndef RT_USING_DEVICE_OPS
dev->write = _serial_fifo_tx_blocking_nbuf;
#endif
/* Call the control() API to configure the serial device by RT_SERIAL_TX_BLOCKING*/
serial->ops->control(serial,
RT_DEVICE_CTRL_CONFIG,
(void *)RT_SERIAL_TX_BLOCKING);
rt_memset(&tx_fifo->rb, RT_NULL, sizeof(tx_fifo->rb));
}
tx_fifo->activated = RT_FALSE;
tx_fifo->put_size = 0;
rt_completion_init(&(tx_fifo->tx_cpt));
dev->open_flag |= RT_SERIAL_TX_BLOCKING;
return RT_EOK;
}
/* When using RT_SERIAL_TX_NON_BLOCKING, ringbuffer needs to be initialized,
* and initialize the tx_fifo->activated value is RT_FALSE.
*/
tx_fifo = (struct rt_serial_tx_fifo *) rt_malloc
(sizeof(struct rt_serial_tx_fifo) + serial->config.tx_bufsz);
RT_ASSERT(tx_fifo != RT_NULL);
tx_fifo->activated = RT_FALSE;
tx_fifo->put_size = 0;
rt_ringbuffer_init(&(tx_fifo->rb),
tx_fifo->buffer,
serial->config.tx_bufsz);
serial->serial_tx = tx_fifo;
#ifndef RT_USING_DEVICE_OPS
dev->write = _serial_fifo_tx_nonblocking;
#endif
dev->open_flag |= RT_SERIAL_TX_NON_BLOCKING;
/* Call the control() API to configure the serial device by RT_SERIAL_TX_NON_BLOCKING*/
serial->ops->control(serial,
RT_DEVICE_CTRL_CONFIG,
(void *)RT_SERIAL_TX_NON_BLOCKING);
return RT_EOK;
}
/**
* @brief Enable serial receive mode.
* @param dev The pointer of device driver structure
* @param rx_oflag The flag of that the serial port opens.
* @return Return the status of the operation.
*/
static rt_err_t rt_serial_rx_enable(struct rt_device *dev,
rt_uint16_t rx_oflag)
{
struct rt_serial_device *serial;
struct rt_serial_rx_fifo *rx_fifo = RT_NULL;
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
if (serial->config.rx_bufsz == 0)
{
/* Cannot use RT_SERIAL_RX_NON_BLOCKING when rx_bufsz is 0 */
if (rx_oflag == RT_SERIAL_RX_NON_BLOCKING)
{
LOG_E("(%s) serial device with misconfigure: rx_bufsz = 0",
dev->parent.name);
return -RT_EINVAL;
}
#ifndef RT_USING_DEVICE_OPS
dev->read = _serial_poll_rx;
#endif
dev->open_flag |= RT_SERIAL_RX_BLOCKING;
return RT_EOK;
}
/* Limits the minimum value of rx_bufsz */
if (serial->config.rx_bufsz < RT_SERIAL_RX_MINBUFSZ)
serial->config.rx_bufsz = RT_SERIAL_RX_MINBUFSZ;
rx_fifo = (struct rt_serial_rx_fifo *) rt_malloc
(sizeof(struct rt_serial_rx_fifo) + serial->config.rx_bufsz);
RT_ASSERT(rx_fifo != RT_NULL);
rt_ringbuffer_init(&(rx_fifo->rb), rx_fifo->buffer, serial->config.rx_bufsz);
serial->serial_rx = rx_fifo;
#ifndef RT_USING_DEVICE_OPS
dev->read = _serial_fifo_rx;
#endif
if (rx_oflag == RT_SERIAL_RX_NON_BLOCKING)
{
dev->open_flag |= RT_SERIAL_RX_NON_BLOCKING;
/* Call the control() API to configure the serial device by RT_SERIAL_RX_NON_BLOCKING*/
serial->ops->control(serial,
RT_DEVICE_CTRL_CONFIG,
(void *) RT_SERIAL_RX_NON_BLOCKING);
return RT_EOK;
}
/* When using RT_SERIAL_RX_BLOCKING, rt_completion_init() and rx_cpt_index are initialized */
rx_fifo->rx_cpt_index = 0;
rt_completion_init(&(rx_fifo->rx_cpt));
dev->open_flag |= RT_SERIAL_RX_BLOCKING;
/* Call the control() API to configure the serial device by RT_SERIAL_RX_BLOCKING*/
serial->ops->control(serial,
RT_DEVICE_CTRL_CONFIG,
(void *) RT_SERIAL_RX_BLOCKING);
return RT_EOK;
}
/**
* @brief Disable serial receive mode.
* @param dev The pointer of device driver structure
* @param rx_oflag The flag of that the serial port opens.
* @return Return the status of the operation.
*/
static rt_err_t rt_serial_rx_disable(struct rt_device *dev,
rt_uint16_t rx_oflag)
{
struct rt_serial_device *serial;
struct rt_serial_rx_fifo *rx_fifo;
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
#ifndef RT_USING_DEVICE_OPS
dev->read = RT_NULL;
#endif
if (serial->serial_rx == RT_NULL) return RT_EOK;
do
{
if (rx_oflag == RT_SERIAL_RX_NON_BLOCKING)
{
dev->open_flag &= ~ RT_SERIAL_RX_NON_BLOCKING;
serial->ops->control(serial,
RT_DEVICE_CTRL_CLR_INT,
(void *)RT_SERIAL_RX_NON_BLOCKING);
break;
}
dev->open_flag &= ~ RT_SERIAL_RX_BLOCKING;
serial->ops->control(serial,
RT_DEVICE_CTRL_CLR_INT,
(void *)RT_SERIAL_RX_BLOCKING);
} while (0);
rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
rt_free(rx_fifo);
serial->serial_rx = RT_NULL;
return RT_EOK;
}
/**
* @brief Disable serial tranmit mode.
* @param dev The pointer of device driver structure
* @param rx_oflag The flag of that the serial port opens.
* @return Return the status of the operation.
*/
static rt_err_t rt_serial_tx_disable(struct rt_device *dev,
rt_uint16_t tx_oflag)
{
struct rt_serial_device *serial;
struct rt_serial_tx_fifo *tx_fifo;
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
#ifndef RT_USING_DEVICE_OPS
dev->write = RT_NULL;
#endif
if (serial->serial_tx == RT_NULL) return RT_EOK;
tx_fifo = (struct rt_serial_tx_fifo *)serial->serial_tx;
RT_ASSERT(tx_fifo != RT_NULL);
do
{
if (tx_oflag == RT_SERIAL_TX_NON_BLOCKING)
{
dev->open_flag &= ~ RT_SERIAL_TX_NON_BLOCKING;
serial->ops->control(serial,
RT_DEVICE_CTRL_CLR_INT,
(void *)RT_SERIAL_TX_NON_BLOCKING);
break;
}
rt_completion_done(&(tx_fifo->tx_cpt));
dev->open_flag &= ~ RT_SERIAL_TX_BLOCKING;
serial->ops->control(serial,
RT_DEVICE_CTRL_CLR_INT,
(void *)RT_SERIAL_TX_BLOCKING);
} while (0);
rt_free(tx_fifo);
serial->serial_tx = RT_NULL;
rt_memset(&serial->rx_notify, 0, sizeof(struct rt_device_notify));
return RT_EOK;
}
/**
* @brief Initialize the serial device.
* @param dev The pointer of device driver structure
* @return Return the status of the operation.
*/
static rt_err_t rt_serial_init(struct rt_device *dev)
{
rt_err_t result = RT_EOK;
struct rt_serial_device *serial;
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
RT_ASSERT(serial->ops->transmit != RT_NULL);
/* initialize rx/tx */
serial->serial_rx = RT_NULL;
serial->serial_tx = RT_NULL;
/* apply configuration */
if (serial->ops->configure)
result = serial->ops->configure(serial, &serial->config);
return result;
}
/**
* @brief Open the serial device.
* @param dev The pointer of device driver structure
* @param oflag The flag of that the serial port opens.
* @return Return the status of the operation.
*/
static rt_err_t rt_serial_open(struct rt_device *dev, rt_uint16_t oflag)
{
struct rt_serial_device *serial;
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
/* Check that the device has been turned on */
if ((dev->open_flag) & (15 << 12))
{
LOG_D("(%s) serial device has already been opened, it will run in its original configuration", dev->parent.name);
return RT_EOK;
}
LOG_D("open serial device: 0x%08x with open flag: 0x%04x",
dev, oflag);
/* By default, the receive mode of a serial devide is RT_SERIAL_RX_NON_BLOCKING */
if ((oflag & RT_SERIAL_RX_BLOCKING) == RT_SERIAL_RX_BLOCKING)
dev->open_flag |= RT_SERIAL_RX_BLOCKING;
else
dev->open_flag |= RT_SERIAL_RX_NON_BLOCKING;
/* By default, the transmit mode of a serial devide is RT_SERIAL_TX_BLOCKING */
if ((oflag & RT_SERIAL_TX_NON_BLOCKING) == RT_SERIAL_TX_NON_BLOCKING)
dev->open_flag |= RT_SERIAL_TX_NON_BLOCKING;
else
dev->open_flag |= RT_SERIAL_TX_BLOCKING;
/* set steam flag */
if ((oflag & RT_DEVICE_FLAG_STREAM) ||
(dev->open_flag & RT_DEVICE_FLAG_STREAM))
dev->open_flag |= RT_DEVICE_FLAG_STREAM;
/* initialize the Rx structure according to open flag */
if (serial->serial_rx == RT_NULL)
rt_serial_rx_enable(dev, dev->open_flag &
(RT_SERIAL_RX_BLOCKING | RT_SERIAL_RX_NON_BLOCKING));
/* initialize the Tx structure according to open flag */
if (serial->serial_tx == RT_NULL)
rt_serial_tx_enable(dev, dev->open_flag &
(RT_SERIAL_TX_BLOCKING | RT_SERIAL_TX_NON_BLOCKING));
return RT_EOK;
}
/**
* @brief Close the serial device.
* @param dev The pointer of device driver structure
* @return Return the status of the operation.
*/
static rt_err_t rt_serial_close(struct rt_device *dev)
{
struct rt_serial_device *serial;
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
/* this device has more reference count */
if (dev->ref_count > 1) return -RT_ERROR;
/* Disable serial receive mode. */
rt_serial_rx_disable(dev, dev->open_flag &
(RT_SERIAL_RX_BLOCKING | RT_SERIAL_RX_NON_BLOCKING));
/* Disable serial tranmit mode. */
rt_serial_tx_disable(dev, dev->open_flag &
(RT_SERIAL_TX_BLOCKING | RT_SERIAL_TX_NON_BLOCKING));
/* Clear the callback function */
serial->parent.rx_indicate = RT_NULL;
serial->parent.tx_complete = RT_NULL;
/* Call the control() API to close the serial device */
serial->ops->control(serial, RT_DEVICE_CTRL_CLOSE, RT_NULL);
dev->flag &= ~RT_DEVICE_FLAG_ACTIVATED;
return RT_EOK;
}
#ifdef RT_USING_POSIX_TERMIOS
struct speed_baudrate_item
{
speed_t speed;
int baudrate;
};
const static struct speed_baudrate_item _tbl[] =
{
{B2400, BAUD_RATE_2400},
{B4800, BAUD_RATE_4800},
{B9600, BAUD_RATE_9600},
{B19200, BAUD_RATE_19200},
{B38400, BAUD_RATE_38400},
{B57600, BAUD_RATE_57600},
{B115200, BAUD_RATE_115200},
{B230400, BAUD_RATE_230400},
{B460800, BAUD_RATE_460800},
{B500000, BAUD_RATE_500000},
{B921600, BAUD_RATE_921600},
{B2000000, BAUD_RATE_2000000},
{B3000000, BAUD_RATE_3000000},
};
static speed_t _get_speed(int baudrate)
{
int index;
for (index = 0; index < sizeof(_tbl)/sizeof(_tbl[0]); index ++)
{
if (_tbl[index].baudrate == baudrate)
return _tbl[index].speed;
}
return B0;
}
static int _get_baudrate(speed_t speed)
{
int index;
for (index = 0; index < sizeof(_tbl)/sizeof(_tbl[0]); index ++)
{
if (_tbl[index].speed == speed)
return _tbl[index].baudrate;
}
return 0;
}
static void _tc_flush(struct rt_serial_device *serial, int queue)
{
rt_base_t level;
int ch = -1;
struct rt_serial_rx_fifo *rx_fifo = RT_NULL;
struct rt_device *device = RT_NULL;
RT_ASSERT(serial != RT_NULL);
device = &(serial->parent);
rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
switch(queue)
{
case TCIFLUSH:
case TCIOFLUSH:
RT_ASSERT(rx_fifo != RT_NULL);
if((device->open_flag & RT_DEVICE_FLAG_INT_RX) || (device->open_flag & RT_DEVICE_FLAG_DMA_RX))
{
RT_ASSERT(RT_NULL != rx_fifo);
level = rt_hw_interrupt_disable();
rx_fifo->rx_cpt_index = 0;
rt_hw_interrupt_enable(level);
}
else
{
while (1)
{
ch = serial->ops->getc(serial);
if (ch == -1) break;
}
}
break;
case TCOFLUSH:
break;
}
}
#endif /* RT_USING_POSIX_TERMIOS */
/**
* @brief Control the serial device.
* @param dev The pointer of device driver structure
* @param cmd The command value that controls the serial device
* @param args The parameter value that controls the serial device
* @return Return the status of the operation.
*/
static rt_err_t rt_serial_control(struct rt_device *dev,
int cmd,
void *args)
{
rt_err_t ret = RT_EOK;
struct rt_serial_device *serial;
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
switch (cmd)
{
case RT_DEVICE_CTRL_SUSPEND:
/* suspend device */
dev->flag |= RT_DEVICE_FLAG_SUSPENDED;
break;
case RT_DEVICE_CTRL_RESUME:
/* resume device */
dev->flag &= ~RT_DEVICE_FLAG_SUSPENDED;
break;
case RT_DEVICE_CTRL_CONFIG:
if (args != RT_NULL)
{
struct serial_configure *pconfig = (struct serial_configure *) args;
if (((pconfig->rx_bufsz != serial->config.rx_bufsz) || (pconfig->tx_bufsz != serial->config.tx_bufsz))
&& serial->parent.ref_count)
{
/*can not change buffer size*/
return -RT_EBUSY;
}
/* set serial configure */
serial->config = *pconfig;
serial->ops->configure(serial, (struct serial_configure *) args);
}
break;
case RT_DEVICE_CTRL_NOTIFY_SET:
if (args)
{
rt_memcpy(&serial->rx_notify, args, sizeof(struct rt_device_notify));
}
break;
case RT_DEVICE_CTRL_CONSOLE_OFLAG:
if (args)
{
*(rt_uint16_t*)args = RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_STREAM;
}
break;
#ifdef RT_USING_POSIX_STDIO
#ifdef RT_USING_POSIX_TERMIOS
case TCGETA:
{
struct termios *tio = (struct termios*)args;
if (tio == RT_NULL) return -RT_EINVAL;
tio->c_iflag = 0;
tio->c_oflag = 0;
tio->c_lflag = 0;
/* update oflag for console device */
if (rt_console_get_device() == dev)
tio->c_oflag = OPOST | ONLCR;
/* set cflag */
tio->c_cflag = 0;
if (serial->config.data_bits == DATA_BITS_5)
tio->c_cflag = CS5;
else if (serial->config.data_bits == DATA_BITS_6)
tio->c_cflag = CS6;
else if (serial->config.data_bits == DATA_BITS_7)
tio->c_cflag = CS7;
else if (serial->config.data_bits == DATA_BITS_8)
tio->c_cflag = CS8;
if (serial->config.stop_bits == STOP_BITS_2)
tio->c_cflag |= CSTOPB;
if (serial->config.parity == PARITY_EVEN)
tio->c_cflag |= PARENB;
else if (serial->config.parity == PARITY_ODD)
tio->c_cflag |= (PARODD | PARENB);
if (serial->config.flowcontrol == RT_SERIAL_FLOWCONTROL_CTSRTS)
tio->c_cflag |= CRTSCTS;
cfsetospeed(tio, _get_speed(serial->config.baud_rate));
}
break;
case TCSETAW:
case TCSETAF:
case TCSETA:
{
int baudrate;
struct serial_configure config;
struct termios *tio = (struct termios*)args;
if (tio == RT_NULL) return -RT_EINVAL;
config = serial->config;
baudrate = _get_baudrate(cfgetospeed(tio));
config.baud_rate = baudrate;
switch (tio->c_cflag & CSIZE)
{
case CS5:
config.data_bits = DATA_BITS_5;
break;
case CS6:
config.data_bits = DATA_BITS_6;
break;
case CS7:
config.data_bits = DATA_BITS_7;
break;
default:
config.data_bits = DATA_BITS_8;
break;
}
if (tio->c_cflag & CSTOPB) config.stop_bits = STOP_BITS_2;
else config.stop_bits = STOP_BITS_1;
if (tio->c_cflag & PARENB)
{
if (tio->c_cflag & PARODD) config.parity = PARITY_ODD;
else config.parity = PARITY_EVEN;
}
else config.parity = PARITY_NONE;
if (tio->c_cflag & CRTSCTS) config.flowcontrol = RT_SERIAL_FLOWCONTROL_CTSRTS;
else config.flowcontrol = RT_SERIAL_FLOWCONTROL_NONE;
/* set serial configure */
serial->config = config;
serial->ops->configure(serial, &config);
}
break;
case TCFLSH:
{
int queue = (int)args;
_tc_flush(serial, queue);
}
break;
case TCXONC:
break;
#endif /*RT_USING_POSIX_TERMIOS*/
case TIOCSWINSZ:
{
struct winsize* p_winsize;
p_winsize = (struct winsize*)args;
rt_kprintf("\x1b[8;%d;%dt", p_winsize->ws_col, p_winsize->ws_row);
}
break;
case TIOCGWINSZ:
{
struct winsize* p_winsize;
p_winsize = (struct winsize*)args;
if(rt_thread_self() != rt_thread_find(FINSH_THREAD_NAME))
{
/* only can be used in tshell thread; otherwise, return default size */
p_winsize->ws_col = 80;
p_winsize->ws_row = 24;
}
else
{
#include <shell.h>
#define _TIO_BUFLEN 20
char _tio_buf[_TIO_BUFLEN];
unsigned char cnt1, cnt2, cnt3, i;
char row_s[4], col_s[4];
char *p;
rt_memset(_tio_buf, 0, _TIO_BUFLEN);
/* send the command to terminal for getting the window size of the terminal */
rt_kprintf("\033[18t");
/* waiting for the response from the terminal */
i = 0;
while(i < _TIO_BUFLEN)
{
_tio_buf[i] = finsh_getchar();
if(_tio_buf[i] != 't')
{
i ++;
}
else
{
break;
}
}
if(i == _TIO_BUFLEN)
{
/* buffer overloaded, and return default size */
p_winsize->ws_col = 80;
p_winsize->ws_row = 24;
break;
}
/* interpreting data eg: "\033[8;1;15t" which means row is 1 and col is 15 (unit: size of ONE character) */
rt_memset(row_s,0,4);
rt_memset(col_s,0,4);
cnt1 = 0;
while(cnt1 < _TIO_BUFLEN && _tio_buf[cnt1] != ';')
{
cnt1++;
}
cnt2 = ++cnt1;
while(cnt2 < _TIO_BUFLEN && _tio_buf[cnt2] != ';')
{
cnt2++;
}
p = row_s;
while(cnt1 < cnt2)
{
*p++ = _tio_buf[cnt1++];
}
p = col_s;
cnt2++;
cnt3 = rt_strlen(_tio_buf) - 1;
while(cnt2 < cnt3)
{
*p++ = _tio_buf[cnt2++];
}
/* load the window size date */
p_winsize->ws_col = atoi(col_s);
p_winsize->ws_row = atoi(row_s);
#undef _TIO_BUFLEN
}
p_winsize->ws_xpixel = 0;/* unused */
p_winsize->ws_ypixel = 0;/* unused */
}
break;
case FIONREAD:
{
rt_size_t recved = 0;
rt_base_t level;
struct rt_serial_rx_fifo * rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
level = rt_hw_interrupt_disable();
recved = rt_ringbuffer_data_len(&(rx_fifo->rb));
rt_hw_interrupt_enable(level);
*(rt_size_t *)args = recved;
}
break;
#endif /* RT_USING_POSIX_STDIO */
default :
/* control device */
ret = serial->ops->control(serial, cmd, args);
break;
}
return ret;
}
#ifdef RT_USING_DEVICE_OPS
static rt_ssize_t rt_serial_read(struct rt_device *dev,
rt_off_t pos,
void *buffer,
rt_size_t size)
{
struct rt_serial_device *serial;
RT_ASSERT(dev != RT_NULL);
if (size == 0) return 0;
serial = (struct rt_serial_device *)dev;
if (serial->config.rx_bufsz)
{
return _serial_fifo_rx(dev, pos, buffer, size);
}
return _serial_poll_rx(dev, pos, buffer, size);
}
static rt_ssize_t rt_serial_write(struct rt_device *dev,
rt_off_t pos,
const void *buffer,
rt_size_t size)
{
struct rt_serial_device *serial;
struct rt_serial_tx_fifo *tx_fifo;
RT_ASSERT(dev != RT_NULL);
if (size == 0) return 0;
serial = (struct rt_serial_device *)dev;
RT_ASSERT((serial != RT_NULL) && (buffer != RT_NULL));
tx_fifo = (struct rt_serial_tx_fifo *) serial->serial_tx;
if (serial->config.tx_bufsz == 0)
{
return _serial_poll_tx(dev, pos, buffer, size);
}
if (dev->open_flag & RT_SERIAL_TX_BLOCKING)
{
if ((tx_fifo->rb.buffer_ptr) == RT_NULL)
{
return _serial_fifo_tx_blocking_nbuf(dev, pos, buffer, size);
}
return _serial_fifo_tx_blocking_buf(dev, pos, buffer, size);
}
return _serial_fifo_tx_nonblocking(dev, pos, buffer, size);
}
const static struct rt_device_ops serial_ops =
{
rt_serial_init,
rt_serial_open,
rt_serial_close,
rt_serial_read,
rt_serial_write,
rt_serial_control
};
#endif
/**
* @brief Register the serial device.
* @param serial RT-thread serial device.
* @param name The device driver's name
* @param flag The capabilities flag of device.
* @param data The device driver's data.
* @return Return the status of the operation.
*/
rt_err_t rt_hw_serial_register(struct rt_serial_device *serial,
const char *name,
rt_uint32_t flag,
void *data)
{
rt_err_t ret;
struct rt_device *device;
RT_ASSERT(serial != RT_NULL);
device = &(serial->parent);
device->type = RT_Device_Class_Char;
device->rx_indicate = RT_NULL;
device->tx_complete = RT_NULL;
#ifdef RT_USING_DEVICE_OPS
device->ops = &serial_ops;
#else
device->init = rt_serial_init;
device->open = rt_serial_open;
device->close = rt_serial_close;
device->read = RT_NULL;
device->write = RT_NULL;
device->control = rt_serial_control;
#endif
device->user_data = data;
/* register a character device */
ret = rt_device_register(device, name, flag);
#ifdef RT_USING_POSIX_STDIO
/* set fops */
device->fops = &_serial_fops;
#endif
return ret;
}
/**
* @brief ISR for serial interrupt
* @param serial RT-thread serial device.
* @param event ISR event type.
*/
void rt_hw_serial_isr(struct rt_serial_device *serial, int event)
{
RT_ASSERT(serial != RT_NULL);
switch (event & 0xff)
{
/* Interrupt receive event */
case RT_SERIAL_EVENT_RX_IND:
case RT_SERIAL_EVENT_RX_DMADONE:
{
struct rt_serial_rx_fifo *rx_fifo;
rt_size_t rx_length = 0;
rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
rt_base_t level;
RT_ASSERT(rx_fifo != RT_NULL);
/* If the event is RT_SERIAL_EVENT_RX_IND, rx_length is equal to 0 */
rx_length = (event & (~0xff)) >> 8;
if (rx_length)
{ /* RT_SERIAL_EVENT_RX_DMADONE MODE */
level = rt_hw_interrupt_disable();
rt_serial_update_write_index(&(rx_fifo->rb), rx_length);
rt_hw_interrupt_enable(level);
}
/* Get the length of the data from the ringbuffer */
rx_length = rt_ringbuffer_data_len(&rx_fifo->rb);
if (rx_length == 0) break;
if (serial->parent.open_flag & RT_SERIAL_RX_BLOCKING)
{
if (rx_fifo->rx_cpt_index && rx_length >= rx_fifo->rx_cpt_index )
{
rx_fifo->rx_cpt_index = 0;
rt_completion_done(&(rx_fifo->rx_cpt));
}
}
/* Trigger the receiving completion callback */
if (serial->parent.rx_indicate != RT_NULL)
serial->parent.rx_indicate(&(serial->parent), rx_length);
if (serial->rx_notify.notify)
{
serial->rx_notify.notify(serial->rx_notify.dev);
}
break;
}
/* Interrupt transmit event */
case RT_SERIAL_EVENT_TX_DONE:
{
struct rt_serial_tx_fifo *tx_fifo;
rt_size_t tx_length = 0;
tx_fifo = (struct rt_serial_tx_fifo *)serial->serial_tx;
RT_ASSERT(tx_fifo != RT_NULL);
/* Get the length of the data from the ringbuffer */
tx_length = rt_ringbuffer_data_len(&tx_fifo->rb);
/* If there is no data in tx_ringbuffer,
* then the transmit completion callback is triggered*/
if (tx_length == 0)
{
/* Trigger the transmit completion callback */
if (serial->parent.tx_complete != RT_NULL)
serial->parent.tx_complete(&serial->parent, RT_NULL);
/* Maybe some datas left in the buffer still need to be sent in block mode,
* so tx_fifo->activated should be RT_TRUE */
if (serial->parent.open_flag & RT_SERIAL_TX_BLOCKING)
{
rt_completion_done(&(tx_fifo->tx_cpt));
}
else
{
tx_fifo->activated = RT_FALSE;
}
break;
}
/* Call the transmit interface for transmission again */
/* Note that in interrupt mode, tx_fifo->buffer and tx_length
* are inactive parameters */
serial->ops->transmit(serial,
tx_fifo->buffer,
tx_length,
serial->parent.open_flag & ( \
RT_SERIAL_TX_BLOCKING | \
RT_SERIAL_TX_NON_BLOCKING));
break;
}
case RT_SERIAL_EVENT_TX_DMADONE:
{
struct rt_serial_tx_fifo *tx_fifo;
tx_fifo = (struct rt_serial_tx_fifo *)serial->serial_tx;
RT_ASSERT(tx_fifo != RT_NULL);
tx_fifo->activated = RT_FALSE;
/* Trigger the transmit completion callback */
if (serial->parent.tx_complete != RT_NULL)
serial->parent.tx_complete(&serial->parent, RT_NULL);
if (serial->parent.open_flag & RT_SERIAL_TX_BLOCKING)
{
rt_completion_done(&(tx_fifo->tx_cpt));
break;
}
rt_serial_update_read_index(&tx_fifo->rb, tx_fifo->put_size);
/* Get the length of the data from the ringbuffer.
* If there is some data in tx_ringbuffer,
* then call the transmit interface for transmission again */
if (rt_ringbuffer_data_len(&tx_fifo->rb))
{
tx_fifo->activated = RT_TRUE;
rt_uint8_t *put_ptr = RT_NULL;
/* Get the linear length buffer from rinbuffer */
tx_fifo->put_size = rt_serial_get_linear_buffer(&(tx_fifo->rb), &put_ptr);
/* Call the transmit interface for transmission again */
serial->ops->transmit(serial,
put_ptr,
tx_fifo->put_size,
RT_SERIAL_TX_NON_BLOCKING);
}
break;
}
default:
break;
}
}