rt-thread-official/bsp/imxrt/libraries/MIMXRT1170/MIMXRT1176/drivers/fsl_enet_qos.c

3663 lines
132 KiB
C

/*
* Copyright 2019-2021 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_enet_qos.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.enet_qos"
#endif
/*! @brief Defines 10^9 nanosecond. */
#define ENET_QOS_NANOSECS_ONESECOND (1000000000U)
/*! @brief Defines 10^6 microsecond.*/
#define ENET_QOS_MICRSECS_ONESECOND (1000000U)
/*! @brief Rx buffer LSB ignore bits. */
#define ENET_QOS_RXBUFF_IGNORELSB_BITS (3U)
/*! @brief ENET FIFO size unit. */
#define ENET_QOS_FIFOSIZE_UNIT (256U)
/*! @brief ENET half-dulpex default IPG. */
#define ENET_QOS_HALFDUPLEX_DEFAULTIPG (4U)
/*! @breif ENET miminum ring length. */
#define ENET_QOS_MIN_RINGLEN (4U)
/*! @breif ENET wakeup filter numbers. */
#define ENET_QOS_WAKEUPFILTER_NUM (8U)
/*! @breif Requried systime timer frequency. */
#define ENET_QOS_SYSTIME_REQUIRED_CLK_MHZ (50U)
/*! @brief Ethernet VLAN tag length. */
#define ENET_QOS_FRAME_VLAN_TAGLEN 4U
/*! @brief AVB TYPE */
#define ENET_QOS_AVBTYPE 0x22F0U
#define ENET_QOS_HEAD_TYPE_OFFSET (12)
#define ENET_QOS_HEAD_AVBTYPE_OFFSET (16)
/*! @brief Defines the macro for converting constants from host byte order to network byte order. */
#define ENET_QOS_HTONS(n) __REV16(n)
#define ENET_QOS_HTONL(n) __REV(n)
#define ENET_QOS_NTOHS(n) __REV16(n)
#define ENET_QOS_NTOHL(n) __REV(n)
#define ENET_QOS_DMA_CHX_RX_CTRL_RBSZ
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Increase the index in the ring.
*
* @param index The current index.
* @param max The size.
* @return the increased index.
*/
static uint16_t ENET_QOS_IncreaseIndex(uint16_t index, uint16_t max);
/*!
* @brief Poll status flag.
*
* @param regAddr The register address to read out status
* @param mask The mask to operate the register value.
* @param readyStatus Indicate readyStatus for the field
* @retval kStatus_Success Poll readyStatus Success.
* @retval kStatus_ENET_QOS_Timeout Poll readyStatus timeout.
*/
static status_t ENET_QOS_PollStatusFlag(volatile uint32_t *regAddr, uint32_t mask, uint32_t readyStatus);
/*!
* @brief Set ENET DMA controller with the configuration.
*
* @param base ENET peripheral base address.
* @param config ENET Mac configuration.
*/
static void ENET_QOS_SetDMAControl(ENET_QOS_Type *base, const enet_qos_config_t *config);
/*!
* @brief Set ENET MAC controller with the configuration.
*
* @param base ENET peripheral base address.
* @param config ENET Mac configuration.
* @param macAddr ENET six-byte mac address.
*/
static void ENET_QOS_SetMacControl(ENET_QOS_Type *base,
const enet_qos_config_t *config,
uint8_t *macAddr,
uint8_t macCount);
/*!
* @brief Set ENET MTL with the configuration.
*
* @param base ENET peripheral base address.
* @param config ENET Mac configuration.
*/
static void ENET_QOS_SetMTL(ENET_QOS_Type *base, const enet_qos_config_t *config);
/*!
* @brief Set ENET DMA transmit buffer descriptors for one channel.
*
* @param base ENET peripheral base address.
* @param bufferConfig ENET buffer configuration.
* @param intTxEnable tx interrupt enable.
* @param channel The channel number, 0 , 1.
*/
static status_t ENET_QOS_TxDescriptorsInit(ENET_QOS_Type *base,
const enet_qos_buffer_config_t *bufferConfig,
bool intTxEnable,
uint8_t channel);
/*!
* @brief Set ENET DMA receive buffer descriptors for one channel.
*
* @param base ENET peripheral base address.
* @param bufferConfig ENET buffer configuration.
* @param intRxEnable tx interrupt enable.
* @param channel The channel number, 0, 1.
*/
static status_t ENET_QOS_RxDescriptorsInit(ENET_QOS_Type *base,
enet_qos_config_t *config,
const enet_qos_buffer_config_t *bufferConfig,
bool intRxEnable,
uint8_t channel);
/*!
* @brief Sets the ENET 1588 feature.
*
* Enable the enhacement 1588 buffer descriptor mode and start
* the 1588 timer.
*
* @param base ENET peripheral base address.
* @param config The ENET configuration.
* @param refClk_Hz The reference clock for ptp 1588.
*/
static status_t ENET_QOS_SetPtp1588(ENET_QOS_Type *base, const enet_qos_config_t *config, uint32_t refClk_Hz);
/*!
* @brief Store the receive time-stamp for event PTP frame in the time-stamp buffer ring.
*
* @param base ENET peripheral base address.
* @param handle ENET handler.
* @param rxDesc The ENET receive descriptor pointer.
* @param channel The rx channel.
* @param ts The timestamp structure pointer.
*/
static void ENET_QOS_StoreRxFrameTime(ENET_QOS_Type *base,
enet_qos_handle_t *handle,
enet_qos_rx_bd_struct_t *rxDesc,
// uint8_t channel,
enet_qos_ptp_time_t *ts);
/*!
* @brief Check if txDirtyRing available.
*
* @param txDirtyRing pointer to txDirtyRing
* @retval txDirty available status.
*/
static inline bool ENET_QOS_TxDirtyRingAvailable(enet_qos_tx_dirty_ring_t *txDirtyRing);
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Pointers to enet bases for each instance. */
static ENET_QOS_Type *const s_enetqosBases[] = ENET_QOS_BASE_PTRS;
/*! @brief Pointers to enet IRQ number for each instance. */
static const IRQn_Type s_enetqosIrqId[] = ENET_QOS_IRQS;
/* ENET ISR for transactional APIs. */
static enet_qos_isr_t s_enetqosIsr;
/*! @brief Pointers to enet handles for each instance. */
static enet_qos_handle_t *s_ENETHandle[ARRAY_SIZE(s_enetqosBases)] = {NULL};
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to enet clocks for each instance. */
const clock_ip_name_t s_enetqosClock[ARRAY_SIZE(s_enetqosBases)] = ENETQOS_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*******************************************************************************
* Code
******************************************************************************/
static status_t ENET_QOS_PollStatusFlag(volatile uint32_t *regAddr, uint32_t mask, uint32_t readyStatus)
{
uint8_t retryTimes = 10U;
status_t result = kStatus_Success;
while ((readyStatus != (*regAddr & mask)) && (0U != retryTimes))
{
retryTimes--;
SDK_DelayAtLeastUs(1U, SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY);
}
if (retryTimes == 0U)
{
result = kStatus_ENET_QOS_Timeout;
}
return result;
}
/*!
* brief Sets the ENET AVB feature.
*
* ENET_QOS AVB feature configuration, set transmit bandwidth.
* This API is called when the AVB feature is required.
*
* param base ENET_QOS peripheral base address.
* param config The ENET_QOS AVB feature configuration structure.
* param queueIndex ENET_QOS queue index.
*/
void ENET_QOS_AVBConfigure(ENET_QOS_Type *base, const enet_qos_cbs_config_t *config, uint8_t queueIndex)
{
assert(config != NULL);
/* Enable AV algorithm */
base->MTL_QUEUE[queueIndex].MTL_TXQX_ETS_CTRL |= ENET_QOS_MTL_TXQX_ETS_CTRL_AVALG_MASK;
/* Configure send slope */
base->MTL_QUEUE[queueIndex].MTL_TXQX_SNDSLP_CRDT = config->sendSlope;
/* Configure idle slope (same register as tx weight) */
base->MTL_QUEUE[queueIndex].MTL_TXQX_QNTM_WGHT = config->idleSlope;
/* Configure high credit */
base->MTL_QUEUE[queueIndex].MTL_TXQX_HI_CRDT = config->highCredit;
/* Configure high credit */
base->MTL_QUEUE[queueIndex].MTL_TXQX_LO_CRDT = config->lowCredit;
}
static uint16_t ENET_QOS_IncreaseIndex(uint16_t index, uint16_t max)
{
/* Increase the index. */
index++;
if (index >= max)
{
index = 0;
}
return index;
}
static uint32_t ENET_QOS_ReverseBits(uint32_t value)
{
value = ((value & 0x55555555UL) << 1U) | ((value >> 1U) & 0x55555555UL);
value = ((value & 0x33333333UL) << 2U) | ((value >> 2U) & 0x33333333UL);
value = ((value & 0x0F0F0F0FUL) << 4U) | ((value >> 4U) & 0x0F0F0F0FUL);
return (value >> 24U) | ((value >> 8U) & 0xFF00UL) | ((value & 0xFF00UL) << 8U) | (value << 24U);
}
static void ENET_QOS_SetDMAControl(ENET_QOS_Type *base, const enet_qos_config_t *config)
{
assert(config != NULL);
uint8_t index;
uint32_t reg;
uint32_t burstLen;
/* Reset first and wait for the complete
* The reset bit will automatically be cleared after complete. */
base->DMA_MODE |= ENET_QOS_DMA_MODE_SWR_MASK;
while ((base->DMA_MODE & ENET_QOS_DMA_MODE_SWR_MASK) != 0U)
{
}
/* Set the burst length. */
for (index = 0; index < ENET_QOS_RING_NUM_MAX; index++)
{
burstLen = (uint32_t)kENET_QOS_BurstLen1;
if (config->multiqueueCfg != NULL)
{
burstLen = (uint32_t)config->multiqueueCfg->burstLen;
}
base->DMA_CH[index].DMA_CHX_CTRL = burstLen & ENET_QOS_DMA_CHX_CTRL_PBLx8_MASK;
reg = base->DMA_CH[index].DMA_CHX_TX_CTRL & ~ENET_QOS_DMA_CHX_TX_CTRL_TxPBL_MASK;
base->DMA_CH[index].DMA_CHX_TX_CTRL = reg | ENET_QOS_DMA_CHX_TX_CTRL_TxPBL(burstLen & 0x3FU);
reg = base->DMA_CH[index].DMA_CHX_RX_CTRL & ~ENET_QOS_DMA_CHX_RX_CTRL_RxPBL_MASK;
base->DMA_CH[index].DMA_CHX_RX_CTRL = reg | ENET_QOS_DMA_CHX_RX_CTRL_RxPBL(burstLen & 0x3FU);
}
}
static void ENET_QOS_SetMTL(ENET_QOS_Type *base, const enet_qos_config_t *config)
{
assert(config != NULL);
uint32_t txqOpreg = 0;
uint32_t rxqOpReg = 0;
enet_qos_multiqueue_config_t *multiqCfg = config->multiqueueCfg;
uint8_t index;
/* Set transmit operation mode. */
if ((config->specialControl & (uint32_t)kENET_QOS_StoreAndForward) != 0U)
{
txqOpreg = ENET_QOS_MTL_TXQX_OP_MODE_TSF_MASK;
rxqOpReg = ENET_QOS_MTL_RXQX_OP_MODE_RSF_MASK;
}
/* Set transmit operation mode. */
txqOpreg |= ENET_QOS_MTL_TXQX_OP_MODE_FTQ_MASK;
/* Set receive operation mode. */
rxqOpReg |= ENET_QOS_MTL_RXQX_OP_MODE_FUP_MASK | ENET_QOS_MTL_RXQX_OP_MODE_RFD(3U) |
ENET_QOS_MTL_RXQX_OP_MODE_RFA(1U) | ENET_QOS_MTL_RXQX_OP_MODE_EHFC_MASK;
if (multiqCfg == NULL)
{
txqOpreg |=
ENET_QOS_MTL_TXQX_OP_MODE_TQS(((uint32_t)ENET_QOS_MTL_TXFIFOSIZE / (uint32_t)ENET_QOS_FIFOSIZE_UNIT - 1U));
rxqOpReg |=
ENET_QOS_MTL_RXQX_OP_MODE_RQS(((uint32_t)ENET_QOS_MTL_RXFIFOSIZE / (uint32_t)ENET_QOS_FIFOSIZE_UNIT - 1U));
base->MTL_QUEUE[0].MTL_TXQX_OP_MODE = txqOpreg | ENET_QOS_MTL_TXQX_OP_MODE_TXQEN((uint32_t)kENET_QOS_DCB_Mode);
base->MTL_QUEUE[0].MTL_RXQX_OP_MODE = rxqOpReg;
}
else
{
/* Set the schedule/arbitration(set for multiple queues). */
base->MTL_OPERATION_MODE = ENET_QOS_MTL_OPERATION_MODE_SCHALG(multiqCfg->mtltxSche) |
ENET_QOS_MTL_OPERATION_MODE_RAA(multiqCfg->mtlrxSche);
for (index = 0; index < multiqCfg->txQueueUse; index++)
{
txqOpreg |= ENET_QOS_MTL_TXQX_OP_MODE_TQS(
((uint32_t)ENET_QOS_MTL_TXFIFOSIZE / ((uint32_t)multiqCfg->txQueueUse * ENET_QOS_FIFOSIZE_UNIT)) - 1U);
base->MTL_QUEUE[index].MTL_TXQX_OP_MODE =
txqOpreg | ENET_QOS_MTL_TXQX_OP_MODE_TXQEN((uint32_t)multiqCfg->txQueueConfig[index].mode);
if (multiqCfg->txQueueConfig[index].mode == kENET_QOS_AVB_Mode)
{
ENET_QOS_AVBConfigure(base, multiqCfg->txQueueConfig[index].cbsConfig, index);
}
else
{
base->MTL_QUEUE[index].MTL_TXQX_QNTM_WGHT = multiqCfg->txQueueConfig[index].weight;
}
}
volatile uint32_t *mtlrxQuemapReg;
uint8_t configIndex;
for (index = 0; index < multiqCfg->rxQueueUse; index++)
{
rxqOpReg |= ENET_QOS_MTL_RXQX_OP_MODE_RQS(
((uint32_t)ENET_QOS_MTL_RXFIFOSIZE / ((uint32_t)multiqCfg->rxQueueUse * ENET_QOS_FIFOSIZE_UNIT)) - 1U);
base->MTL_QUEUE[index].MTL_RXQX_OP_MODE = rxqOpReg;
mtlrxQuemapReg = (index < 4U) ? &base->MTL_RXQ_DMA_MAP0 : &base->MTL_RXQ_DMA_MAP1;
configIndex = (index & 0x3U);
*mtlrxQuemapReg &= ~((uint32_t)ENET_QOS_MTL_RXQ_DMA_MAP0_Q0MDMACH_MASK << (8U * configIndex));
*mtlrxQuemapReg |= (uint32_t)ENET_QOS_MTL_RXQ_DMA_MAP0_Q0MDMACH(multiqCfg->rxQueueConfig[index].mapChannel)
<< (8U * configIndex);
}
}
}
static void ENET_QOS_SetMacControl(ENET_QOS_Type *base,
const enet_qos_config_t *config,
uint8_t *macAddr,
uint8_t macCount)
{
assert(config != NULL);
uint32_t reg = 0;
/* Set Macaddr */
/* The dma channel 0 is set as to which the rx packet
* whose DA matches the MAC address content is routed. */
if (macAddr != NULL)
{
for (uint8_t i = 0; i < macCount; i++)
{
ENET_QOS_SetMacAddr(base, macAddr, i);
}
}
/* Set the receive filter. */
reg =
ENET_QOS_MAC_PACKET_FILTER_PR(((config->specialControl & (uint32_t)kENET_QOS_PromiscuousEnable) != 0U) ? 1U :
0U) |
ENET_QOS_MAC_PACKET_FILTER_DBF(((config->specialControl & (uint32_t)kENET_QOS_BroadCastRxDisable) != 0U) ? 1U :
0U) |
ENET_QOS_MAC_PACKET_FILTER_PM(((config->specialControl & (uint32_t)kENET_QOS_MulticastAllEnable) != 0U) ? 1U :
0U) |
ENET_QOS_MAC_PACKET_FILTER_HMC(((config->specialControl & (uint32_t)kENET_QOS_HashMulticastEnable) != 0U) ? 1U :
0U);
base->MAC_PACKET_FILTER = reg;
/* Flow control. */
if ((config->specialControl & (uint32_t)kENET_QOS_FlowControlEnable) != 0U)
{
base->MAC_RX_FLOW_CTRL = ENET_QOS_MAC_RX_FLOW_CTRL_RFE_MASK | ENET_QOS_MAC_RX_FLOW_CTRL_UP_MASK;
base->MAC_TX_FLOW_CTRL_Q[0] = ENET_QOS_MAC_TX_FLOW_CTRL_Q_PT(config->pauseDuration);
}
/* Set the 1us ticket. */
reg = config->csrClock_Hz / ENET_QOS_MICRSECS_ONESECOND - 1U;
base->MAC_ONEUS_TIC_COUNTER = ENET_QOS_MAC_ONEUS_TIC_COUNTER_TIC_1US_CNTR(reg);
/* Set the speed and duplex. */
reg = ENET_QOS_MAC_CONFIGURATION_DM(config->miiDuplex) | (uint32_t)config->miiSpeed |
ENET_QOS_MAC_CONFIGURATION_S2KP(((config->specialControl & (uint32_t)kENET_QOS_8023AS2KPacket) != 0U) ? 1U :
0U);
if (config->miiDuplex == kENET_QOS_MiiHalfDuplex)
{
reg |= ENET_QOS_MAC_CONFIGURATION_IPG(ENET_QOS_HALFDUPLEX_DEFAULTIPG);
}
base->MAC_CONFIGURATION = reg;
if (config->multiqueueCfg != NULL)
{
reg = 0U;
uint8_t configIndex;
enet_qos_multiqueue_config_t *multiqCfg = config->multiqueueCfg;
uint32_t txQueuePrioMap0 = base->MAC_TXQ_PRTY_MAP0;
uint32_t txQueuePrioMap1 = base->MAC_TXQ_PRTY_MAP1;
uint32_t rxQueuePrioMap0 = base->MAC_RXQ_CTRL[2];
uint32_t rxQueuePrioMap1 = base->MAC_RXQ_CTRL[3];
uint32_t rxCtrlReg1 = base->MAC_RXQ_CTRL[1];
for (uint8_t index = 0U; index < multiqCfg->txQueueUse; index++)
{
configIndex = index & 0x3U;
/* Configure tx queue priority. */
if (index < 4U)
{
txQueuePrioMap0 &= ~((uint32_t)ENET_QOS_MAC_TXQ_PRTY_MAP0_PSTQ0_MASK << (8U * configIndex));
txQueuePrioMap0 |= (uint32_t)ENET_QOS_MAC_TXQ_PRTY_MAP0_PSTQ0(multiqCfg->txQueueConfig[index].priority)
<< (8U * configIndex);
}
else
{
txQueuePrioMap1 &= ~((uint32_t)ENET_QOS_MAC_TXQ_PRTY_MAP0_PSTQ0_MASK << (8U * configIndex));
txQueuePrioMap1 |= (uint32_t)ENET_QOS_MAC_TXQ_PRTY_MAP0_PSTQ0(multiqCfg->txQueueConfig[index].priority)
<< (8U * configIndex);
}
}
for (uint8_t index = 0U; index < multiqCfg->rxQueueUse; index++)
{
configIndex = index & 0x3U;
/* Configure rx queue priority. */
if (index < 4U)
{
rxQueuePrioMap0 &= ~((uint32_t)ENET_QOS_MAC_RXQ_CTRL_PSRQ0_MASK << (8U * configIndex));
rxQueuePrioMap0 |= (uint32_t)ENET_QOS_MAC_RXQ_CTRL_PSRQ0(multiqCfg->rxQueueConfig[index].priority)
<< (8U * configIndex);
}
else
{
rxQueuePrioMap1 &= ~((uint32_t)ENET_QOS_MAC_RXQ_CTRL_PSRQ0_MASK << (8U * configIndex));
rxQueuePrioMap1 |= (uint32_t)ENET_QOS_MAC_RXQ_CTRL_PSRQ0(multiqCfg->rxQueueConfig[index].priority)
<< (8U * configIndex);
}
/* Configure queue enable mode. */
reg |= ENET_QOS_MAC_RXQ_CTRL_RXQ0EN((uint32_t)multiqCfg->rxQueueConfig[index].mode) << (2U * index);
/* Configure rx queue routing */
if (((uint8_t)multiqCfg->rxQueueConfig[index].packetRoute & (uint8_t)kENET_QOS_PacketAVCPQ) != 0U)
{
rxCtrlReg1 &= ~ENET_QOS_MAC_RXQ_CTRL_AVCPQ_MASK;
rxCtrlReg1 |= (ENET_QOS_MAC_RXQ_CTRL_AVCPQ(index) | ENET_QOS_MAC_RXQ_CTRL_TACPQE_MASK);
}
if (((uint8_t)multiqCfg->rxQueueConfig[index].packetRoute & (uint8_t)kENET_QOS_PacketPTPQ) != 0U)
{
rxCtrlReg1 &= ~ENET_QOS_MAC_RXQ_CTRL_PTPQ_MASK;
rxCtrlReg1 |= ENET_QOS_MAC_RXQ_CTRL_PTPQ(index);
}
if (((uint8_t)multiqCfg->rxQueueConfig[index].packetRoute & (uint8_t)kENET_QOS_PacketDCBCPQ) != 0U)
{
rxCtrlReg1 &= ~ENET_QOS_MAC_RXQ_CTRL_DCBCPQ_MASK;
rxCtrlReg1 |= ENET_QOS_MAC_RXQ_CTRL_DCBCPQ(index);
}
if (((uint8_t)multiqCfg->rxQueueConfig[index].packetRoute & (uint8_t)kENET_QOS_PacketUPQ) != 0U)
{
rxCtrlReg1 &= ~ENET_QOS_MAC_RXQ_CTRL_UPQ_MASK;
rxCtrlReg1 |= ENET_QOS_MAC_RXQ_CTRL_UPQ(index);
}
if (((uint8_t)multiqCfg->rxQueueConfig[index].packetRoute & (uint8_t)kENET_QOS_PacketMCBCQ) != 0U)
{
rxCtrlReg1 &= ~ENET_QOS_MAC_RXQ_CTRL_MCBCQ_MASK;
rxCtrlReg1 |= (ENET_QOS_MAC_RXQ_CTRL_MCBCQ(index) | ENET_QOS_MAC_RXQ_CTRL_MCBCQEN_MASK);
}
}
base->MAC_TXQ_PRTY_MAP0 = txQueuePrioMap0;
base->MAC_TXQ_PRTY_MAP1 = txQueuePrioMap1;
base->MAC_RXQ_CTRL[2] = rxQueuePrioMap0;
base->MAC_RXQ_CTRL[3] = rxQueuePrioMap1;
base->MAC_RXQ_CTRL[1] = rxCtrlReg1;
}
else
{
/* Configure queue enable mode. */
reg = ENET_QOS_MAC_RXQ_CTRL_RXQ0EN((uint32_t)kENET_QOS_DCB_Mode);
}
/* Enable queue. */
base->MAC_RXQ_CTRL[0] = reg;
/* Mask MMC counters interrupts as we don't handle
* them in the interrupt handler.
*/
base->MAC_MMC_RX_INTERRUPT_MASK = 0xFFFFFFFFU;
base->MAC_MMC_TX_INTERRUPT_MASK = 0xFFFFFFFFU;
base->MAC_MMC_IPC_RX_INTERRUPT_MASK = 0xFFFFFFFFU;
base->MAC_MMC_FPE_RX_INTERRUPT_MASK = 0xFFFFFFFFU;
base->MAC_MMC_FPE_TX_INTERRUPT_MASK = 0xFFFFFFFFU;
}
static status_t ENET_QOS_TxDescriptorsInit(ENET_QOS_Type *base,
const enet_qos_buffer_config_t *bufferConfig,
bool intTxEnable,
uint8_t channel)
{
uint16_t j;
enet_qos_tx_bd_struct_t *txbdPtr;
uint32_t control = intTxEnable ? ENET_QOS_TXDESCRIP_RD_IOC_MASK : 0U;
const enet_qos_buffer_config_t *buffCfg = bufferConfig;
if (buffCfg == NULL)
{
return kStatus_InvalidArgument;
}
/* Check the ring length. */
if (buffCfg->txRingLen < ENET_QOS_MIN_RINGLEN)
{
return kStatus_InvalidArgument;
}
/* Set the tx descriptor start/tail pointer, shall be word aligned. */
base->DMA_CH[channel].DMA_CHX_TXDESC_LIST_ADDR =
(uint32_t)buffCfg->txDescStartAddrAlign & ENET_QOS_DMA_CHX_TXDESC_LIST_ADDR_TDESLA_MASK;
base->DMA_CH[channel].DMA_CHX_TXDESC_TAIL_PTR =
(uint32_t)buffCfg->txDescTailAddrAlign & ENET_QOS_DMA_CHX_TXDESC_TAIL_PTR_TDTP_MASK;
/* Set the tx ring length. */
base->DMA_CH[channel].DMA_CHX_TXDESC_RING_LENGTH =
((uint32_t)buffCfg->txRingLen - 1U) & ENET_QOS_DMA_CHX_TXDESC_RING_LENGTH_TDRL_MASK;
/* Init the txbdPtr to the transmit descriptor start address. */
txbdPtr = (enet_qos_tx_bd_struct_t *)(buffCfg->txDescStartAddrAlign);
for (j = 0; j < buffCfg->txRingLen; j++)
{
txbdPtr->buff1Addr = 0;
txbdPtr->buff2Addr = 0;
txbdPtr->buffLen = control;
txbdPtr->controlStat = 0;
txbdPtr++;
}
return kStatus_Success;
}
static status_t ENET_QOS_RxDescriptorsInit(ENET_QOS_Type *base,
enet_qos_config_t *config,
const enet_qos_buffer_config_t *bufferConfig,
bool intRxEnable,
uint8_t channel)
{
uint16_t j;
uint32_t reg;
enet_qos_rx_bd_struct_t *rxbdPtr;
uint16_t index;
bool doubleBuffEnable = ((config->specialControl & (uint32_t)kENET_QOS_DescDoubleBuffer) != 0U) ? true : false;
const enet_qos_buffer_config_t *buffCfg = bufferConfig;
uint32_t control = ENET_QOS_RXDESCRIP_RD_BUFF1VALID_MASK;
if (buffCfg == NULL)
{
return kStatus_InvalidArgument;
}
if (intRxEnable)
{
control |= ENET_QOS_RXDESCRIP_RD_IOC_MASK;
}
if (doubleBuffEnable)
{
control |= ENET_QOS_RXDESCRIP_RD_BUFF2VALID_MASK;
}
/* Not give ownership to DMA before Rx buffer is ready */
if ((config->rxBuffAlloc == NULL) || (config->rxBuffFree == NULL))
{
control |= ENET_QOS_RXDESCRIP_WR_OWN_MASK;
}
/* Check the ring length. */
if (buffCfg->rxRingLen < ENET_QOS_MIN_RINGLEN)
{
return kStatus_InvalidArgument;
}
/* Set the rx descriptor start/tail pointer, shall be word aligned. */
base->DMA_CH[channel].DMA_CHX_RXDESC_LIST_ADDR =
(uint32_t)buffCfg->rxDescStartAddrAlign & ENET_QOS_DMA_CHX_RXDESC_LIST_ADDR_RDESLA_MASK;
base->DMA_CH[channel].DMA_CHX_RXDESC_TAIL_PTR =
(uint32_t)buffCfg->rxDescTailAddrAlign & ENET_QOS_DMA_CHX_RXDESC_TAIL_PTR_RDTP_MASK;
base->DMA_CH[channel].DMA_CHX_RXDESC_RING_LENGTH =
((uint32_t)buffCfg->rxRingLen - 1U) & ENET_QOS_DMA_CHX_RXDESC_RING_LENGTH_RDRL_MASK;
reg = base->DMA_CH[channel].DMA_CHX_RX_CTRL & ~ENET_QOS_DMA_CHX_RX_CTRL_RBSZ_13_y_MASK;
reg |= ENET_QOS_DMA_CHX_RX_CTRL_RBSZ_13_y(buffCfg->rxBuffSizeAlign >> ENET_QOS_RXBUFF_IGNORELSB_BITS);
base->DMA_CH[channel].DMA_CHX_RX_CTRL = reg;
/* Init the rxbdPtr to the receive descriptor start address. */
rxbdPtr = (enet_qos_rx_bd_struct_t *)(buffCfg->rxDescStartAddrAlign);
for (j = 0U; j < buffCfg->rxRingLen; j++)
{
if ((config->rxBuffAlloc == NULL) || (config->rxBuffFree == NULL))
{
if (doubleBuffEnable)
{
index = 2U * j;
}
else
{
index = j;
}
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
buffCfg->rxBufferStartAddr[index] =
MEMORY_ConvertMemoryMapAddress((uint32_t)buffCfg->rxBufferStartAddr[index], kMEMORY_Local2DMA);
#endif
rxbdPtr->buff1Addr = buffCfg->rxBufferStartAddr[index];
/* The second buffer is set with 0 because it is not required for normal case. */
if (doubleBuffEnable)
{
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
buffCfg->rxBufferStartAddr[index + 1U] =
MEMORY_ConvertMemoryMapAddress((uint32_t)buffCfg->rxBufferStartAddr[index + 1U], kMEMORY_Local2DMA);
#endif
rxbdPtr->buff2Addr = buffCfg->rxBufferStartAddr[index + 1U];
}
else
{
rxbdPtr->buff2Addr = 0;
}
}
/* Set the valid and DMA own flag.*/
rxbdPtr->control = control;
rxbdPtr++;
}
return kStatus_Success;
}
static status_t ENET_QOS_SetPtp1588(ENET_QOS_Type *base, const enet_qos_config_t *config, uint32_t refClk_Hz)
{
assert(config != NULL);
assert(config->ptpConfig != NULL);
assert(refClk_Hz != 0U);
uint32_t control = 0U;
status_t result = kStatus_Success;
enet_qos_ptp_config_t *ptpConfig = config->ptpConfig;
uint32_t ptpClk_Hz = refClk_Hz;
uint32_t ssInc, snsSinc;
/* Clear the timestamp interrupt first. */
base->MAC_INTERRUPT_ENABLE &= ~ENET_QOS_MAC_INTERRUPT_ENABLE_TSIE_MASK;
if (ptpConfig->fineUpdateEnable)
{
control |= ENET_QOS_MAC_TIMESTAMP_CONTROL_TSCFUPDT_MASK;
ptpClk_Hz = ptpConfig->systemTimeClock_Hz; /* PTP clock 50MHz. */
}
/* Enable the IEEE 1588 timestamping and snapshot for event message. */
control |= ENET_QOS_MAC_TIMESTAMP_CONTROL_TSENA_MASK | ENET_QOS_MAC_TIMESTAMP_CONTROL_TSIPV4ENA_MASK |
ENET_QOS_MAC_TIMESTAMP_CONTROL_TSIPV6ENA_MASK | ENET_QOS_MAC_TIMESTAMP_CONTROL_TSENALL_MASK |
ENET_QOS_MAC_TIMESTAMP_CONTROL_TSEVNTENA_MASK | ENET_QOS_MAC_TIMESTAMP_CONTROL_SNAPTYPSEL_MASK |
ENET_QOS_MAC_TIMESTAMP_CONTROL_TSCTRLSSR(ptpConfig->tsRollover);
if (ptpConfig->ptp1588V2Enable)
{
control |= ENET_QOS_MAC_TIMESTAMP_CONTROL_TSVER2ENA_MASK | ENET_QOS_MAC_TIMESTAMP_CONTROL_TSIPENA_MASK;
}
/* Initialize the sub-second increment register. */
if (ptpConfig->tsRollover == kENET_QOS_DigitalRollover)
{
ssInc = (uint32_t)(((uint64_t)ENET_QOS_NANOSECS_ONESECOND << 8U) / ptpClk_Hz);
}
else
{
ssInc = (uint32_t)((((uint64_t)ENET_QOS_MAC_SYSTEM_TIME_NANOSECONDS_TSSS_MASK + 1U) << 8U) / ptpClk_Hz);
}
snsSinc = ssInc & 0xFFU;
ssInc = (ssInc >> 8U) & 0xFFU;
base->MAC_TIMESTAMP_CONTROL = control;
/* Initialize the system timer. */
base->MAC_SYSTEM_TIME_NANOSECONDS_UPDATE = 0;
/* Set the second.*/
base->MAC_SYSTEM_TIME_SECONDS_UPDATE = 0;
base->MAC_SYSTEM_TIME_HIGHER_WORD_SECONDS = 0;
/* Initialize the system timer. */
base->MAC_TIMESTAMP_CONTROL |= ENET_QOS_MAC_TIMESTAMP_CONTROL_TSINIT_MASK;
while ((base->MAC_TIMESTAMP_CONTROL & ENET_QOS_MAC_TIMESTAMP_CONTROL_TSINIT_MASK) != 0U)
{
}
base->MAC_SUB_SECOND_INCREMENT =
ENET_QOS_MAC_SUB_SECOND_INCREMENT_SSINC(ssInc) | ENET_QOS_MAC_SUB_SECOND_INCREMENT_SNSINC(snsSinc);
/* Set the initial added value for the fine update. */
if (ptpConfig->fineUpdateEnable)
{
result = ENET_QOS_Ptp1588CorrectTimerInFine(base, ptpConfig->defaultAddend);
}
return result;
}
static inline bool ENET_QOS_TxDirtyRingAvailable(enet_qos_tx_dirty_ring_t *txDirtyRing)
{
return !txDirtyRing->isFull;
}
static void ENET_QOS_StoreRxFrameTime(ENET_QOS_Type *base,
enet_qos_handle_t *handle,
enet_qos_rx_bd_struct_t *rxDesc,
enet_qos_ptp_time_t *ts)
{
assert(ts != NULL);
uint32_t nanosecond;
/* Get transmit time stamp second. */
nanosecond = rxDesc->buff1Addr;
if ((base->MAC_TIMESTAMP_CONTROL & ENET_QOS_MAC_TIMESTAMP_CONTROL_TSCTRLSSR_MASK) == 0U)
{
/* Binary rollover, 0.465ns accuracy. */
nanosecond = (uint32_t)(((uint64_t)nanosecond * 465U) / 1000U);
}
ts->second = rxDesc->reserved;
ts->nanosecond = nanosecond;
}
uint32_t ENET_QOS_GetInstance(ENET_QOS_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_enetqosBases); instance++)
{
if (s_enetqosBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_enetqosBases));
return instance;
}
/*!
* brief Gets the ENET default configuration structure.
*
* The purpose of this API is to get the default ENET configure
* structure for ENET_QOS_Init(). User may use the initialized
* structure unchanged in ENET_QOS_Init(), or modify some fields of the
* structure before calling ENET_QOS_Init().
* Example:
code
enet_qos_config_t config;
ENET_QOS_GetDefaultConfig(&config);
endcode
* param config The ENET mac controller configuration structure pointer.
*/
void ENET_QOS_GetDefaultConfig(enet_qos_config_t *config)
{
/* Checks input parameter. */
assert(config != NULL);
/* Initializes the configure structure to zero. */
(void)memset(config, 0, sizeof(*config));
/* Sets RGMII mode, full duplex, 1000Mbps for MAC and PHY data interface. */
config->miiMode = kENET_QOS_RgmiiMode;
config->miiSpeed = kENET_QOS_MiiSpeed1000M;
config->miiDuplex = kENET_QOS_MiiFullDuplex;
/* Sets default configuration for other options. */
config->specialControl = 0;
config->multiqueueCfg = NULL;
config->pauseDuration = 0;
config->ptpConfig = NULL;
}
/*!
* brief Initializes the ENET module.
*
* This function set up the with ENET basic configuration.
*
* param base ENET peripheral base address.
* param config ENET mac configuration structure pointer.
* The "enet_qos_config_t" type mac configuration return from ENET_QOS_GetDefaultConfig
* can be used directly. It is also possible to verify the Mac configuration using other methods.
* param macAddr ENET mac address of Ethernet device. This MAC address should be
* provided.
* param refclkSrc_Hz ENET input reference clock.
*/
status_t ENET_QOS_Up(
ENET_QOS_Type *base, const enet_qos_config_t *config, uint8_t *macAddr, uint8_t macCount, uint32_t refclkSrc_Hz)
{
assert(config != NULL);
status_t result = kStatus_Success;
/* Initializes the ENET MTL with basic function. */
ENET_QOS_SetMTL(base, config);
/* Initializes the ENET MAC with basic function. */
ENET_QOS_SetMacControl(base, config, macAddr, macCount);
return result;
}
/*!
* brief Initializes the ENET module.
*
* This function ungates the module clock and initializes it with the ENET basic
* configuration.
*
* param base ENET peripheral base address.
* param config ENET mac configuration structure pointer.
* The "enet_qos_config_t" type mac configuration return from ENET_QOS_GetDefaultConfig
* can be used directly. It is also possible to verify the Mac configuration using other methods.
* param macAddr ENET mac address of Ethernet device. This MAC address should be
* provided.
* param refclkSrc_Hz ENET input reference clock.
*/
status_t ENET_QOS_Init(
ENET_QOS_Type *base, const enet_qos_config_t *config, uint8_t *macAddr, uint8_t macCount, uint32_t refclkSrc_Hz)
{
assert(config != NULL);
status_t result = kStatus_Success;
uint32_t instance = ENET_QOS_GetInstance(base);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Ungate ENET clock. */
(void)CLOCK_EnableClock(s_enetqosClock[instance]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* System configure fistly. */
ENET_QOS_SetSYSControl(config->miiMode);
/* Initializes the ENET DMA with basic function. */
ENET_QOS_SetDMAControl(base, config);
(void)ENET_QOS_Up(base, config, macAddr, macCount, refclkSrc_Hz);
if (config->ptpConfig != NULL)
{
result = ENET_QOS_SetPtp1588(base, config, refclkSrc_Hz);
}
return result;
}
/*!
* brief Stops the ENET module.
* This function disables the ENET module.
*
* param base ENET peripheral base address.
*/
void ENET_QOS_Down(ENET_QOS_Type *base)
{
enet_qos_handle_t *handle = s_ENETHandle[ENET_QOS_GetInstance(base)];
enet_qos_tx_bd_struct_t *txbdPtr;
uint8_t index;
uint32_t primask, j;
/* Disable all interrupts */
ENET_QOS_DisableInterrupts(base, 0xFF);
for (index = 0; index < handle->txQueueUse; index++)
{
enet_qos_tx_bd_ring_t *txBdRing = &handle->txBdRing[index];
enet_qos_tx_dirty_ring_t *txDirtyRing = (enet_qos_tx_dirty_ring_t *)&handle->txDirtyRing[index];
/* Clear pending descriptors */
if (handle->callback != NULL)
{
while (txBdRing->txDescUsed > 0U)
{
enet_qos_frame_info_t *txDirty = &txDirtyRing->txDirtyBase[txDirtyRing->txConsumIdx];
txDirty->isTsAvail = false;
handle->callback(base, handle, kENET_QOS_TxIntEvent, index, handle->userData);
primask = DisableGlobalIRQ();
txBdRing->txDescUsed--;
EnableGlobalIRQ(primask);
}
}
/* Disable Tx DMA */
base->DMA_CH[index].DMA_CHX_TX_CTRL &= ~ENET_QOS_DMA_CHX_TX_CTRL_ST_MASK;
/* Flush Tx Queue */
base->MTL_QUEUE[index].MTL_TXQX_OP_MODE |= ENET_QOS_MTL_TXQX_OP_MODE_FTQ_MASK;
/* Wait until Tx Queue is empty */
while ((base->MTL_QUEUE[index].MTL_TXQX_DBG &
(ENET_QOS_MTL_TXQX_DBG_TXQSTS_MASK | ENET_QOS_MTL_TXQX_DBG_PTXQ_MASK)) != 0U)
{
}
/* Reset hardware ring buffer */
base->DMA_CH[index].DMA_CHX_TXDESC_LIST_ADDR =
(uint32_t)handle->txBdRing[index].txBdBase & ENET_QOS_DMA_CHX_TXDESC_LIST_ADDR_TDESLA_MASK;
/* Reset software ring buffer */
handle->txBdRing[index].txGenIdx = 0;
handle->txBdRing[index].txConsumIdx = 0;
handle->txBdRing[index].txDescUsed = 0;
handle->txDirtyRing[index].txGenIdx = 0;
handle->txDirtyRing[index].txConsumIdx = 0;
handle->txDirtyRing[index].isFull = false;
txbdPtr = (enet_qos_tx_bd_struct_t *)(handle->txBdRing[index].txBdBase);
for (j = 0; j < handle->txBdRing[index].txRingLen; j++)
{
txbdPtr->buff1Addr = 0;
txbdPtr->buff2Addr = 0;
txbdPtr->buffLen = 0;
txbdPtr->controlStat = 0;
txbdPtr++;
}
}
/* Disable MAC Rx/Tx */
base->MAC_CONFIGURATION &= ~(ENET_QOS_MAC_CONFIGURATION_TE_MASK | ENET_QOS_MAC_CONFIGURATION_RE_MASK);
/* Disable Rx DMA */
for (index = 0; index < handle->rxQueueUse; index++)
{
base->DMA_CH[index].DMA_CHX_RX_CTRL &= ~ENET_QOS_DMA_CHX_RX_CTRL_SR_MASK;
}
}
/*!
* brief Deinitializes the ENET module.
* This function gates the module clock and disables the ENET module.
*
* param base ENET peripheral base address.
*/
void ENET_QOS_Deinit(ENET_QOS_Type *base)
{
/* Reset first and wait for the complete
* The reset bit will automatically be cleared after complete. */
base->DMA_MODE |= ENET_QOS_DMA_MODE_SWR_MASK;
while ((base->DMA_MODE & ENET_QOS_DMA_MODE_SWR_MASK) != 0U)
{
}
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Disables the clock source. */
(void)CLOCK_DisableClock(s_enetqosClock[ENET_QOS_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
/*!
* brief Initialize for all ENET descriptors.
*
* note This function is do all tx/rx descriptors initialization. Because this API
* read all interrupt registers first and then set the interrupt flag for all descriptos,
* if the interrupt register is set. so the descriptor initialization should be called
* after ENET_QOS_Init(), ENET_QOS_EnableInterrupts() and ENET_QOS_CreateHandle()(if transactional APIs
* are used).
*
* param base ENET peripheral base address.
* param config The configuration for ENET.
* param bufferConfig All buffers configuration.
*/
status_t ENET_QOS_DescriptorInit(ENET_QOS_Type *base, enet_qos_config_t *config, enet_qos_buffer_config_t *bufferConfig)
{
assert(config != NULL);
assert(bufferConfig != NULL);
bool intTxEnable = false;
bool intRxEnable = false;
uint8_t ringNum = 1;
uint8_t txQueueUse = 1;
uint8_t rxQueueUse = 1;
uint8_t channel;
if (config->multiqueueCfg != NULL)
{
ringNum = MAX(config->multiqueueCfg->txQueueUse, config->multiqueueCfg->rxQueueUse);
txQueueUse = config->multiqueueCfg->txQueueUse;
rxQueueUse = config->multiqueueCfg->rxQueueUse;
}
for (channel = 0; channel < ringNum; channel++)
{
intRxEnable = ((base->DMA_CH[channel].DMA_CHX_INT_EN & ENET_QOS_DMA_CHX_INT_EN_RIE_MASK) != 0U) ? true : false;
intTxEnable = ((base->DMA_CH[channel].DMA_CHX_INT_EN & ENET_QOS_DMA_CHX_INT_EN_TIE_MASK) != 0U) ? true : false;
if (channel < txQueueUse)
{
if ((ENET_QOS_TxDescriptorsInit(base, bufferConfig, intTxEnable, channel) != kStatus_Success))
{
return kStatus_Fail;
}
}
if (channel < rxQueueUse)
{
if ((ENET_QOS_RxDescriptorsInit(base, config, bufferConfig, intRxEnable, channel) != kStatus_Success))
{
return kStatus_Fail;
}
}
bufferConfig++;
}
return kStatus_Success;
}
/*!
* brief Allocates Rx buffers for all BDs.
* It's used for zero copy Rx. In zero copy Rx case, Rx buffers are dynamic. This function
* will populate initial buffers in all BDs for receiving. Then ENET_QOS_GetRxFrame() is used
* to get Rx frame with zero copy, it will allocate new buffer to replace the buffer in BD taken
* by application application should free those buffers after they're used.
*
* note This function should be called after ENET_QOS_CreateHandler() and buffer allocating callback
* function should be ready.
*
* param base ENET_QOS peripheral base address.
* param handle The ENET_QOS handler structure. This is the same handler pointer used in the ENET_QOS_Init.
*/
status_t ENET_QOS_RxBufferAllocAll(ENET_QOS_Type *base, enet_qos_handle_t *handle)
{
status_t result = kStatus_Success;
enet_qos_rx_bd_struct_t *rxbdPtr;
uint32_t buffAddr;
uint8_t channel;
uint16_t index;
uint16_t j;
if ((handle->rxBuffAlloc == NULL) || (handle->rxBuffFree == NULL))
{
return kStatus_ENET_QOS_InitMemoryFail;
}
for (channel = 0; channel < handle->rxQueueUse; channel++)
{
/* Init the rxbdPtr to the receive descriptor start address. */
rxbdPtr = handle->rxBdRing[channel].rxBdBase;
for (j = 0U; j < handle->rxBdRing[channel].rxRingLen; j++)
{
if (handle->doubleBuffEnable)
{
index = 2U * j;
}
else
{
index = j;
}
buffAddr = (uint32_t)(uint32_t *)handle->rxBuffAlloc(base, handle->userData, channel);
if (buffAddr == 0U)
{
result = kStatus_ENET_QOS_InitMemoryFail;
break;
}
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
buffAddr = MEMORY_ConvertMemoryMapAddress(buffAddr, kMEMORY_Local2DMA);
#endif
rxbdPtr->buff1Addr = buffAddr;
handle->rxBufferStartAddr[channel][index] = buffAddr;
/* The second buffer is set with 0 because it is not required for normal case. */
if (handle->doubleBuffEnable)
{
buffAddr = (uint32_t)(uint32_t *)handle->rxBuffAlloc(base, handle->userData, channel);
if (buffAddr == 0U)
{
result = kStatus_ENET_QOS_InitMemoryFail;
break;
}
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
buffAddr = MEMORY_ConvertMemoryMapAddress(buffAddr, kMEMORY_Local2DMA);
#endif
rxbdPtr->buff2Addr = buffAddr;
handle->rxBufferStartAddr[channel][index + 1U] = buffAddr;
}
else
{
rxbdPtr->buff2Addr = 0;
}
/* Set the valid and DMA own flag.*/
rxbdPtr->control |= ENET_QOS_RXDESCRIP_WR_OWN_MASK;
rxbdPtr++;
}
}
if (result == kStatus_ENET_QOS_InitMemoryFail)
{
ENET_QOS_RxBufferFreeAll(base, handle);
}
return result;
}
/*!
* brief Frees Rx buffers in all BDs.
* It's used for zero copy Rx. In zero copy Rx case, Rx buffers are dynamic. This function
* will free left buffers in all BDs.
*
* param base ENET_QOS peripheral base address.
* param handle The ENET_QOS handler structure. This is the same handler pointer used in the ENET_QOS_Init.
*/
void ENET_QOS_RxBufferFreeAll(ENET_QOS_Type *base, enet_qos_handle_t *handle)
{
uint32_t buffAddr;
uint8_t channel;
uint16_t index;
uint16_t j;
if (handle->rxBuffFree != NULL)
{
for (channel = 0; channel < handle->rxQueueUse; channel++)
{
for (j = 0U; j < handle->rxBdRing[channel].rxRingLen; j++)
{
if (handle->doubleBuffEnable)
{
index = 2U * j;
}
else
{
index = j;
}
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
buffAddr = MEMORY_ConvertMemoryMapAddress((uint32_t)handle->rxBufferStartAddr[channel][index],
kMEMORY_DMA2Local);
#else
buffAddr = (uint32_t)handle->rxBufferStartAddr[channel][index];
#endif
if (buffAddr != 0U)
{
handle->rxBuffFree(base, (void *)(uint32_t *)buffAddr, handle->userData, channel);
}
/* The second buffer is set with 0 because it is not required for normal case. */
if (handle->doubleBuffEnable)
{
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
buffAddr = MEMORY_ConvertMemoryMapAddress((uint32_t)handle->rxBufferStartAddr[channel][index + 1],
kMEMORY_DMA2Local);
#else
buffAddr = (uint32_t)handle->rxBufferStartAddr[channel][index + 1U];
#endif
if (buffAddr != 0U)
{
handle->rxBuffFree(base, (void *)(uint32_t *)buffAddr, handle->userData, channel);
}
}
}
}
}
}
/*!
* brief Starts the ENET rx/tx.
* This function enable the tx/rx and starts the rx/tx DMA.
* This shall be set after ENET initialization and before
* starting to receive the data.
*
* param base ENET peripheral base address.
* param rxRingNum The number of the used rx rings. It shall not be
* larger than the ENET_QOS_RING_NUM_MAX(2). If the ringNum is set with
* 1, the ring 0 will be used.
* param txRingNum The number of the used tx rings. It shall not be
* larger than the ENET_QOS_RING_NUM_MAX(2). If the ringNum is set with
* 1, the ring 0 will be used.
*
* note This must be called after all the ENET initilization.
* And should be called when the ENET receive/transmit is required.
*/
void ENET_QOS_StartRxTx(ENET_QOS_Type *base, uint8_t txRingNum, uint8_t rxRingNum)
{
assert(txRingNum != 0U);
assert(rxRingNum != 0U);
uint8_t index;
if (txRingNum > ENET_QOS_RING_NUM_MAX)
{
txRingNum = ENET_QOS_RING_NUM_MAX;
}
if (rxRingNum > ENET_QOS_RING_NUM_MAX)
{
rxRingNum = ENET_QOS_RING_NUM_MAX;
}
/* Start/Acive the DMA first. */
for (index = 0; index < rxRingNum; index++)
{
base->DMA_CH[index].DMA_CHX_RX_CTRL |= ENET_QOS_DMA_CHX_RX_CTRL_SR_MASK;
}
for (index = 0; index < txRingNum; index++)
{
base->DMA_CH[index].DMA_CHX_TX_CTRL |= ENET_QOS_DMA_CHX_TX_CTRL_ST_MASK;
}
/* Enable the RX and TX at same time. */
base->MAC_CONFIGURATION |= (ENET_QOS_MAC_CONFIGURATION_TE_MASK | ENET_QOS_MAC_CONFIGURATION_RE_MASK);
}
/*!
* brief Enables the ENET DMA and MAC interrupts.
*
* This function enables the ENET interrupt according to the provided mask. The mask
* is a logical OR of enet_qos_dma_interrupt_enable_t and enet_qos_mac_interrupt_enable_t.
* For example, to enable the dma and mac interrupt, do the following.
* code
* ENET_QOS_EnableInterrupts(ENET, kENET_QOS_DmaRx | kENET_QOS_DmaTx | kENET_QOS_MacPmt);
* endcode
*
* param base ENET peripheral base address.
* param mask ENET interrupts to enable. This is a logical OR of both
* enumeration :: enet_qos_dma_interrupt_enable_t and enet_qos_mac_interrupt_enable_t.
*/
void ENET_QOS_EnableInterrupts(ENET_QOS_Type *base, uint32_t mask)
{
uint32_t interrupt = mask & 0xFFFFU;
uint8_t index;
/* For dma interrupt. */
if (interrupt != 0U)
{
for (index = 0; index < ENET_QOS_RING_NUM_MAX; index++)
{
/* Set for all abnormal interrupts. */
if ((ENET_QOS_ABNORM_INT_MASK & interrupt) != 0U)
{
interrupt |= ENET_QOS_DMA_CHX_INT_EN_AIE_MASK;
}
/* Set for all normal interrupts. */
if ((ENET_QOS_NORM_INT_MASK & interrupt) != 0U)
{
interrupt |= ENET_QOS_DMA_CHX_INT_EN_NIE_MASK;
}
base->DMA_CH[index].DMA_CHX_INT_EN = interrupt;
}
}
interrupt = mask >> ENET_QOS_MACINT_ENUM_OFFSET;
if (interrupt != 0U)
{
/* MAC interrupt */
base->MAC_INTERRUPT_ENABLE |= interrupt;
}
}
/*!
* brief Clears the ENET mac interrupt events status flag.
*
* This function clears enabled ENET interrupts according to the provided mask. The mask
* is a logical OR of enumeration members. See the ref enet_qos_mac_interrupt_enable_t.
* For example, to clear the TX frame interrupt and RX frame interrupt, do the following.
* code
* ENET_QOS_ClearMacInterruptStatus(ENET, kENET_QOS_MacPmt);
* endcode
*
* param base ENET peripheral base address.
* param mask ENET interrupt source to be cleared.
* This is the logical OR of members of the enumeration :: enet_qos_mac_interrupt_enable_t.
*/
void ENET_QOS_ClearMacInterruptStatus(ENET_QOS_Type *base, uint32_t mask)
{
volatile uint32_t dummy;
if ((mask & (uint32_t)kENET_QOS_MacTimestamp) != 0U)
{
dummy = base->MAC_TIMESTAMP_STATUS;
}
else if ((mask & (uint32_t)kENET_QOS_MacPmt) != 0U)
{
dummy = base->MAC_PMT_CONTROL_STATUS;
}
else
{
/* Add for avoid the misra 2004 rule 14.10 */
}
(void)dummy;
}
/*!
* brief Disables the ENET DMA and MAC interrupts.
*
* This function disables the ENET interrupt according to the provided mask. The mask
* is a logical OR of enet_qos_dma_interrupt_enable_t and enet_qos_mac_interrupt_enable_t.
* For example, to disable the dma and mac interrupt, do the following.
* code
* ENET_QOS_DisableInterrupts(ENET, kENET_QOS_DmaRx | kENET_QOS_DmaTx | kENET_QOS_MacPmt);
* endcode
*
* param base ENET peripheral base address.
* param mask ENET interrupts to disables. This is a logical OR of both
* enumeration :: enet_qos_dma_interrupt_enable_t and enet_qos_mac_interrupt_enable_t.
*/
void ENET_QOS_DisableInterrupts(ENET_QOS_Type *base, uint32_t mask)
{
uint32_t interrupt = mask & 0xFFFFU;
uint8_t index;
/* For dma interrupt. */
if (interrupt != 0U)
{
for (index = 0; index < ENET_QOS_RING_NUM_MAX; index++)
{
/* Set for all abnormal interrupts. */
if ((ENET_QOS_ABNORM_INT_MASK & interrupt) != 0U)
{
interrupt |= ENET_QOS_DMA_CHX_INT_EN_AIE_MASK;
}
/* Set for all normal interrupts. */
if ((ENET_QOS_NORM_INT_MASK & interrupt) != 0U)
{
interrupt |= ENET_QOS_DMA_CHX_INT_EN_NIE_MASK;
}
base->DMA_CH[index].DMA_CHX_INT_EN &= ~interrupt;
}
}
interrupt = mask >> ENET_QOS_MACINT_ENUM_OFFSET;
if (interrupt != 0U)
{
/* MAC interrupt */
base->MAC_INTERRUPT_ENABLE &= ~interrupt;
}
}
/*!
* @brief Set the second level IRQ handler, allow user to overwrite the default
* second level weak IRQ handler.
*
* @param ISRHandler he handler to install.
*/
void ENET_QOS_SetISRHandler(ENET_QOS_Type *base, enet_qos_isr_t ISRHandler)
{
/* Update IRQ entry. */
s_enetqosIsr = ISRHandler;
/* Enable NVIC. */
(void)EnableIRQ(s_enetqosIrqId[ENET_QOS_GetInstance(base)]);
}
/*!
* brief Create ENET Handler
*
* This is a transactional API and it's provided to store all datas which are needed
* during the whole transactional process. This API should not be used when you use
* functional APIs to do data tx/rx. This is funtion will store many data/flag for
* transactional use, so all configure API such as ENET_QOS_Init(), ENET_QOS_DescriptorInit(),
* ENET_QOS_EnableInterrupts() etc.
*
* note as our transactional transmit API use the zero-copy transmit buffer.
* so there are two thing we emphasize here:
* 1. tx buffer free/requeue for application should be done in the tx
* interrupt handler. Please set callback: kENET_QOS_TxIntEvent with tx buffer free/requeue
* process APIs.
* 2. the tx interrupt is forced to open.
*
* param base ENET peripheral base address.
* param handle ENET handler.
* param config ENET configuration.
* param bufferConfig ENET buffer configuration.
* param callback The callback function.
* param userData The application data.
*/
void ENET_QOS_CreateHandler(ENET_QOS_Type *base,
enet_qos_handle_t *handle,
enet_qos_config_t *config,
enet_qos_buffer_config_t *bufferConfig,
enet_qos_callback_t callback,
void *userData)
{
assert(config != NULL);
assert(bufferConfig != NULL);
assert(callback != NULL);
uint8_t ringNum = 1;
uint8_t count = 0;
uint32_t rxIntEnable = 0;
uint8_t txQueueUse = 1;
uint8_t rxQueueUse = 1;
enet_qos_buffer_config_t *buffConfig = bufferConfig;
/* Store transfer parameters in handle pointer. */
(void)memset(handle, 0, sizeof(enet_qos_handle_t));
if (config->multiqueueCfg != NULL)
{
txQueueUse = config->multiqueueCfg->txQueueUse;
rxQueueUse = config->multiqueueCfg->rxQueueUse;
ringNum = MAX(txQueueUse, rxQueueUse);
}
handle->txQueueUse = txQueueUse;
handle->rxQueueUse = rxQueueUse;
if ((config->specialControl & (uint32_t)kENET_QOS_DescDoubleBuffer) != 0U)
{
handle->doubleBuffEnable = true;
}
for (count = 0; count < ringNum; count++)
{
if (count < txQueueUse)
{
handle->txBdRing[count].txBdBase = buffConfig->txDescStartAddrAlign;
handle->txBdRing[count].txRingLen = buffConfig->txRingLen;
handle->txBdRing[count].txGenIdx = 0;
handle->txBdRing[count].txConsumIdx = 0;
handle->txBdRing[count].txDescUsed = 0;
handle->txDirtyRing[count].txDirtyBase = buffConfig->txDirtyStartAddr;
handle->txDirtyRing[count].txRingLen = buffConfig->txRingLen;
handle->txDirtyRing[count].txGenIdx = 0;
handle->txDirtyRing[count].txConsumIdx = 0;
/* Enable tx interrupt for use transactional API to do tx buffer free/requeue. */
base->DMA_CH[count].DMA_CHX_INT_EN |= ENET_QOS_DMA_CHX_INT_EN_TIE_MASK | ENET_QOS_DMA_CHX_INT_EN_NIE_MASK;
}
if (count < rxQueueUse)
{
handle->rxBdRing[count].rxBdBase = buffConfig->rxDescStartAddrAlign;
handle->rxBdRing[count].rxGenIdx = 0;
handle->rxBdRing[count].rxRingLen = buffConfig->rxRingLen;
handle->rxBdRing[count].rxBuffSizeAlign = buffConfig->rxBuffSizeAlign;
/* Record rx buffer address for re-init Rx buffer descriptor */
handle->rxBufferStartAddr[count] = buffConfig->rxBufferStartAddr;
/* Record rx buffer need cache maintain */
handle->rxMaintainEnable[count] = buffConfig->rxBuffNeedMaintain;
/* Check if the rx interrrupt is enabled. */
rxIntEnable |= (base->DMA_CH[count].DMA_CHX_INT_EN & ENET_QOS_DMA_CHX_INT_EN_RIE_MASK);
}
buffConfig++;
}
handle->rxintEnable = (rxIntEnable != 0U) ? true : false;
/* Save the handle pointer in the global variables. */
s_ENETHandle[ENET_QOS_GetInstance(base)] = handle;
/* Set Rx alloc/free callback. */
handle->rxBuffAlloc = config->rxBuffAlloc;
handle->rxBuffFree = config->rxBuffFree;
/* Set callback and userData. */
handle->callback = callback;
handle->userData = userData;
/* Use default ENET_QOS_CommonIRQHandler as default weak IRQ handler. */
ENET_QOS_SetISRHandler(base, ENET_QOS_CommonIRQHandler);
}
/*!
* brief Gets the ENET module Mac address.
*
* param base ENET peripheral base address.
* param macAddr The six-byte Mac address pointer.
* The pointer is allocated by application and input into the API.
*/
void ENET_QOS_GetMacAddr(ENET_QOS_Type *base, uint8_t *macAddr, uint8_t index)
{
assert(macAddr != NULL);
uint32_t address = base->MAC_ADDRESS[index].LOW;
/* Get from physical address lower register. */
macAddr[2] = (uint8_t)(0xFFU & (address >> 24U));
macAddr[3] = (uint8_t)(0xFFU & (address >> 16U));
macAddr[4] = (uint8_t)(0xFFU & (address >> 8U));
macAddr[5] = (uint8_t)(0xFFU & address);
/* Get from physical address high register. */
address = base->MAC_ADDRESS[index].HIGH;
macAddr[0] = (uint8_t)(0xFFU & (address >> 8U));
macAddr[1] = (uint8_t)(0xFFU & address);
}
/*!
* brief Adds the ENET_QOS device to a multicast group.
*
* param base ENET_QOS peripheral base address.
* param address The six-byte multicast group address which is provided by application.
*/
void ENET_QOS_AddMulticastGroup(ENET_QOS_Type *base, uint8_t *address)
{
assert(address != NULL);
enet_qos_handle_t *handle = s_ENETHandle[ENET_QOS_GetInstance(base)];
uint32_t crc = 0xFFFFFFFFU;
uint32_t count1 = 0;
uint32_t count2 = 0;
/* Calculates the CRC-32 polynomial on the multicast group address. */
for (count1 = 0; count1 < 6U; count1++)
{
uint8_t c = address[count1];
for (count2 = 0; count2 < 0x08U; count2++)
{
if (((c ^ crc) & 1U) != 0U)
{
crc >>= 1U;
c >>= 1U;
crc ^= 0xEDB88320U;
}
else
{
crc >>= 1U;
c >>= 1U;
}
}
}
/* Calculate bitwise reverse value. */
crc = ENET_QOS_ReverseBits(~crc);
/* Get highest 6 bits*/
crc = crc >> 26U;
handle->multicastCount[crc]++;
if (0U != (crc & 0x20U))
{
base->MAC_HASH_TABLE_REG1 |= (1UL << (crc & 0x1FU));
}
else
{
base->MAC_HASH_TABLE_REG0 |= (1UL << (crc & 0x1FU));
}
}
/*!
* brief Moves the ENET_QOS device from a multicast group.
*
* param base ENET_QOS peripheral base address.
* param address The six-byte multicast group address which is provided by application.
*/
void ENET_QOS_LeaveMulticastGroup(ENET_QOS_Type *base, uint8_t *address)
{
assert(address != NULL);
enet_qos_handle_t *handle = s_ENETHandle[ENET_QOS_GetInstance(base)];
uint32_t crc = 0xFFFFFFFFU;
uint32_t count1 = 0;
uint32_t count2 = 0;
/* Calculates the CRC-32 polynomial on the multicast group address. */
for (count1 = 0; count1 < 6U; count1++)
{
uint8_t c = address[count1];
for (count2 = 0; count2 < 0x08U; count2++)
{
if (((c ^ crc) & 1U) != 0U)
{
crc >>= 1U;
c >>= 1U;
crc ^= 0xEDB88320U;
}
else
{
crc >>= 1U;
c >>= 1U;
}
}
}
/* Calculate bitwise reverse value. */
crc = ENET_QOS_ReverseBits(~crc);
/* Get highest 6 bits*/
crc = crc >> 26U;
handle->multicastCount[crc]--;
/* Set the hash table if no collisions */
if (0U == handle->multicastCount[crc])
{
if (0U != (crc & 0x20U))
{
base->MAC_HASH_TABLE_REG1 &= ~((1UL << (crc & 0x1FU)));
}
else
{
base->MAC_HASH_TABLE_REG0 &= ~((1UL << (crc & 0x1FU)));
}
}
}
/*!
* brief Sets the ENET SMI(serial management interface)- MII management interface.
*
* param base ENET peripheral base address.
*/
void ENET_QOS_SetSMI(ENET_QOS_Type *base, uint32_t csrClock_Hz)
{
uint32_t crDiv = 0;
uint32_t srcClock_Hz = csrClock_Hz / 1000000U;
assert((srcClock_Hz >= 20U) && (srcClock_Hz < 800U));
if (srcClock_Hz < 35U)
{
crDiv = 2;
}
else if (srcClock_Hz < 60U)
{
crDiv = 3;
}
else if (srcClock_Hz < 100U)
{
crDiv = 0;
}
else if (srcClock_Hz < 150U)
{
crDiv = 1;
}
else if (srcClock_Hz < 250U)
{
crDiv = 4;
}
else if (srcClock_Hz < 300U)
{
crDiv = 5;
}
else if (srcClock_Hz < 500U)
{
crDiv = 6;
}
else if (srcClock_Hz < 800U)
{
crDiv = 7;
}
else
{
/* Empty else */
}
base->MAC_MDIO_ADDRESS = ENET_QOS_MAC_MDIO_ADDRESS_CR(crDiv);
}
/*!
* brief Starts a SMI write command.
* It supports MDIO IEEE802.3 Clause 22.
* After send command, user needs to check whether the transmission is over
* with ENET_QOS_IsSMIBusy().
*
* param base ENET peripheral base address.
* param phyAddr The PHY address.
* param phyReg The PHY register.
* param data The data written to PHY.
*/
void ENET_QOS_StartSMIWrite(ENET_QOS_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t data)
{
uint32_t reg = base->MAC_MDIO_ADDRESS & ENET_QOS_MAC_MDIO_ADDRESS_CR_MASK;
/* Build MII write command. */
base->MAC_MDIO_ADDRESS = reg | (uint32_t)kENET_QOS_MiiWriteFrame | ENET_QOS_MAC_MDIO_ADDRESS_PA(phyAddr) |
ENET_QOS_MAC_MDIO_ADDRESS_RDA(phyReg);
base->MAC_MDIO_DATA = data;
base->MAC_MDIO_ADDRESS |= ENET_QOS_MAC_MDIO_ADDRESS_GB_MASK;
}
/*!
* brief Starts an SMI read command.
* It supports MDIO IEEE802.3 Clause 22.
* After send command, user needs to check whether the transmission is over
* with ENET_QOS_IsSMIBusy().
*
* param base ENET peripheral base address.
* param phyAddr The PHY address.
* param phyReg The PHY register.
*/
void ENET_QOS_StartSMIRead(ENET_QOS_Type *base, uint32_t phyAddr, uint32_t phyReg)
{
uint32_t reg = base->MAC_MDIO_ADDRESS & ENET_QOS_MAC_MDIO_ADDRESS_CR_MASK;
/* Build MII read command. */
base->MAC_MDIO_ADDRESS = reg | (uint32_t)kENET_QOS_MiiReadFrame | ENET_QOS_MAC_MDIO_ADDRESS_PA(phyAddr) |
ENET_QOS_MAC_MDIO_ADDRESS_RDA(phyReg);
base->MAC_MDIO_ADDRESS |= ENET_QOS_MAC_MDIO_ADDRESS_GB_MASK;
}
/*!
* brief Starts a SMI write command.
* It supports MDIO IEEE802.3 Clause 45.
* After send command, user needs to check whether the transmission is over
* with ENET_QOS_IsSMIBusy().
*
* param base ENET peripheral base address.
* param phyAddr The PHY address.
* param device The PHY device type.
* param phyReg The PHY register address.
* param data The data written to PHY.
*/
void ENET_QOS_StartExtC45SMIWrite(
ENET_QOS_Type *base, uint32_t phyAddr, uint32_t device, uint32_t phyReg, uint32_t data)
{
uint32_t reg = base->MAC_MDIO_ADDRESS & ENET_QOS_MAC_MDIO_ADDRESS_CR_MASK;
/* Build MII write command. */
base->MAC_MDIO_ADDRESS = reg | ENET_QOS_MAC_MDIO_ADDRESS_C45E_MASK | (uint32_t)kENET_QOS_MiiWriteFrame |
ENET_QOS_MAC_MDIO_ADDRESS_PA(phyAddr) | ENET_QOS_MAC_MDIO_ADDRESS_RDA(device);
base->MAC_MDIO_DATA = data | ENET_QOS_MAC_MDIO_DATA_RA(phyReg);
base->MAC_MDIO_ADDRESS |= ENET_QOS_MAC_MDIO_ADDRESS_GB_MASK;
}
/*!
* brief Starts a SMI write command.
* It supports MDIO IEEE802.3 Clause 45.
* After send command, user needs to check whether the transmission is over
* with ENET_QOS_IsSMIBusy().
*
* param base ENET peripheral base address.
* param phyAddr The PHY address.
* param device The PHY device type.
* param phyReg The PHY register address.
*/
void ENET_QOS_StartExtC45SMIRead(ENET_QOS_Type *base, uint32_t phyAddr, uint32_t device, uint32_t phyReg)
{
uint32_t reg = base->MAC_MDIO_ADDRESS & ENET_QOS_MAC_MDIO_ADDRESS_CR_MASK;
/* Build MII read command. */
base->MAC_MDIO_ADDRESS = reg | ENET_QOS_MAC_MDIO_ADDRESS_C45E_MASK | (uint32_t)kENET_QOS_MiiReadFrame |
ENET_QOS_MAC_MDIO_ADDRESS_PA(phyAddr) | ENET_QOS_MAC_MDIO_ADDRESS_RDA(device);
base->MAC_MDIO_DATA = ENET_QOS_MAC_MDIO_DATA_RA(phyReg);
base->MAC_MDIO_ADDRESS |= ENET_QOS_MAC_MDIO_ADDRESS_GB_MASK;
}
/*!
* brief Set the MAC to enter into power down mode.
* the remote power wake up frame and magic frame can wake up
* the ENET from the power down mode.
*
* param base ENET peripheral base address.
* param wakeFilter The wakeFilter provided to configure the wake up frame fitlter.
* Set the wakeFilter to NULL is not required. But if you have the filter requirement,
* please make sure the wakeFilter pointer shall be eight continous
* 32-bits configuration.
*/
void ENET_QOS_EnterPowerDown(ENET_QOS_Type *base, uint32_t *wakeFilter)
{
uint8_t index;
uint32_t *reg = wakeFilter;
/* Disable the tx dma. */
base->DMA_CH[0].DMA_CHX_TX_CTRL &= ~ENET_QOS_DMA_CHX_TX_CTRL_ST_MASK;
base->DMA_CH[1].DMA_CHX_TX_CTRL &= ~ENET_QOS_DMA_CHX_TX_CTRL_ST_MASK;
/* Disable the mac tx/rx. */
base->MAC_CONFIGURATION &= ~(ENET_QOS_MAC_CONFIGURATION_RE_MASK | ENET_QOS_MAC_CONFIGURATION_TE_MASK);
/* Enable the remote wakeup packet and enable the power down mode. */
if (wakeFilter != NULL)
{
for (index = 0; index < ENET_QOS_WAKEUPFILTER_NUM; index++)
{
base->MAC_RWK_PACKET_FILTER = *reg;
reg++;
}
}
base->MAC_PMT_CONTROL_STATUS = ENET_QOS_MAC_PMT_CONTROL_STATUS_MGKPKTEN_MASK |
ENET_QOS_MAC_PMT_CONTROL_STATUS_RWKPKTEN_MASK |
ENET_QOS_MAC_PMT_CONTROL_STATUS_PWRDWN_MASK;
/* Enable the MAC rx. */
base->MAC_CONFIGURATION |= ENET_QOS_MAC_CONFIGURATION_RE_MASK;
}
/*!
* brief Enable/Disable Rx parser, please notice that for enable/disable Rx Parser,
* should better disable Receive first.
*
* param base ENET_QOS peripheral base address.
* param enable Enable/Disable Rx parser function
*/
status_t ENET_QOS_EnableRxParser(ENET_QOS_Type *base, bool enable)
{
status_t result = kStatus_Success;
if (enable)
{
base->MTL_OPERATION_MODE |= ENET_QOS_MTL_OPERATION_MODE_FRPE_MASK;
}
else
{
base->MTL_OPERATION_MODE &= ~ENET_QOS_MTL_OPERATION_MODE_FRPE_MASK;
result = ENET_QOS_PollStatusFlag(&(base->MTL_RXP_CONTROL_STATUS), ENET_QOS_MTL_RXP_CONTROL_STATUS_RXPI_MASK,
ENET_QOS_MTL_RXP_CONTROL_STATUS_RXPI_MASK);
}
return result;
}
/*!
* brief Gets the size of the read frame.
* This function gets a received frame size from the ENET buffer descriptors.
* note The FCS of the frame is automatically removed by MAC and the size is the length without the FCS.
* After calling ENET_QOS_GetRxFrameSize, ENET_QOS_ReadFrame() should be called to update the
* receive buffers If the result is not "kStatus_ENET_QOS_RxFrameEmpty".
*
* param handle The ENET handler structure. This is the same handler pointer used in the ENET_QOS_Init.
* param length The length of the valid frame received.
* param channel The DMAC channel for the rx.
* retval kStatus_ENET_QOS_RxFrameEmpty No frame received. Should not call ENET_QOS_ReadFrame to read frame.
* retval kStatus_ENET_QOS_RxFrameError Data error happens. ENET_QOS_ReadFrame should be called with NULL data
* and NULL length to update the receive buffers.
* retval kStatus_Success Receive a frame Successfully then the ENET_QOS_ReadFrame
* should be called with the right data buffer and the captured data length input.
*/
status_t ENET_QOS_GetRxFrameSize(ENET_QOS_Type *base, enet_qos_handle_t *handle, uint32_t *length, uint8_t channel)
{
assert(handle != NULL);
assert(length != NULL);
enet_qos_rx_bd_ring_t *rxBdRing = (enet_qos_rx_bd_ring_t *)&handle->rxBdRing[channel];
enet_qos_rx_bd_struct_t *rxDesc = &rxBdRing->rxBdBase[rxBdRing->rxGenIdx];
uint16_t index = rxBdRing->rxGenIdx;
uint32_t control = rxDesc->control;
/* Reset the length to zero. */
*length = 0;
if ((control & ENET_QOS_RXDESCRIP_WR_OWN_MASK) != 0U)
{
return kStatus_ENET_QOS_RxFrameEmpty;
}
else
{
do
{
/* Application owns the buffer descriptor, get the length. */
if ((control & ENET_QOS_RXDESCRIP_WR_LD_MASK) != 0U)
{
if ((control & ENET_QOS_RXDESCRIP_WR_ERRSUM_MASK) != 0U)
{
return kStatus_ENET_QOS_RxFrameError;
}
*length = (control & ENET_QOS_RXDESCRIP_WR_PACKETLEN_MASK) - ENET_QOS_FCS_LEN;
return kStatus_Success;
}
index = ENET_QOS_IncreaseIndex(index, rxBdRing->rxRingLen);
rxDesc = &rxBdRing->rxBdBase[index];
control = rxDesc->control;
} while (index != rxBdRing->rxGenIdx);
return kStatus_ENET_QOS_RxFrameError;
}
}
static void ENET_QOS_DropFrame(ENET_QOS_Type *base, enet_qos_handle_t *handle, uint8_t channel)
{
enet_qos_rx_bd_ring_t *rxBdRing = (enet_qos_rx_bd_ring_t *)&handle->rxBdRing[channel];
enet_qos_rx_bd_struct_t *rxDesc;
uint16_t index = rxBdRing->rxGenIdx;
bool tsAvailable = false;
uint32_t buff1Addr = 0;
uint32_t buff2Addr = 0;
/* Not check DMA ownership here, assume there's at least one valid frame left in BD ring */
do
{
/* Get the control flag. */
rxDesc = &rxBdRing->rxBdBase[rxBdRing->rxGenIdx];
if (!handle->doubleBuffEnable)
{
buff1Addr = handle->rxBufferStartAddr[channel][rxBdRing->rxGenIdx];
ENET_QOS_UpdateRxDescriptor(rxDesc, (void *)(uint8_t *)buff1Addr, NULL, handle->rxintEnable,
handle->doubleBuffEnable);
}
else
{
buff1Addr = handle->rxBufferStartAddr[channel][2U * rxBdRing->rxGenIdx];
buff2Addr = handle->rxBufferStartAddr[channel][2U * rxBdRing->rxGenIdx + 1U];
ENET_QOS_UpdateRxDescriptor(rxDesc, (void *)(uint8_t *)buff1Addr, (void *)(uint8_t *)buff2Addr,
handle->rxintEnable, handle->doubleBuffEnable);
}
rxBdRing->rxGenIdx = ENET_QOS_IncreaseIndex(rxBdRing->rxGenIdx, rxBdRing->rxRingLen);
/* Find the last buffer descriptor for the frame. */
if ((rxDesc->control & ENET_QOS_RXDESCRIP_WR_LD_MASK) != 0U)
{
if ((rxDesc->control & ENET_QOS_RXDESCRIP_WR_RS1V_MASK) != 0U)
{
if ((rxDesc->reserved & ENET_QOS_RXDESCRIP_WR_PTPTSA_MASK) != 0U)
{
tsAvailable = true;
}
}
/* Reinit for the context descriptor which has been updated by DMA. */
rxDesc = &rxBdRing->rxBdBase[rxBdRing->rxGenIdx];
if (tsAvailable && ((rxDesc->control & ENET_QOS_RXDESCRIP_WR_CTXT_MASK) != 0U))
{
if (!handle->doubleBuffEnable)
{
buff1Addr = handle->rxBufferStartAddr[channel][rxBdRing->rxGenIdx];
ENET_QOS_UpdateRxDescriptor(rxDesc, (void *)(uint8_t *)buff1Addr, NULL, handle->rxintEnable,
handle->doubleBuffEnable);
}
else
{
buff1Addr = handle->rxBufferStartAddr[channel][2U * rxBdRing->rxGenIdx];
buff2Addr = handle->rxBufferStartAddr[channel][2U * rxBdRing->rxGenIdx + 1U];
ENET_QOS_UpdateRxDescriptor(rxDesc, (void *)(uint8_t *)buff1Addr, (void *)(uint8_t *)buff2Addr,
handle->rxintEnable, handle->doubleBuffEnable);
}
rxBdRing->rxGenIdx = ENET_QOS_IncreaseIndex(rxBdRing->rxGenIdx, rxBdRing->rxRingLen);
}
break;
}
} while (rxBdRing->rxGenIdx != index);
/* Always try to start receive, in case it had stopped */
base->DMA_CH[channel].DMA_CHX_RXDESC_TAIL_PTR = (uint32_t)(uint8_t *)&rxBdRing->rxBdBase[rxBdRing->rxRingLen];
}
/*!
* brief Reads a frame from the ENET device.
* This function reads a frame from the ENET DMA descriptors.
* The ENET_QOS_GetRxFrameSize should be used to get the size of the prepared data buffer.
* For example use rx dma channel 0:
* code
* uint32_t length;
* enet_qos_handle_t g_handle;
* enet_qos_ptp_time_t ts;
* status = ENET_QOS_GetRxFrameSize(&g_handle, &length, 0);
* if (length != 0)
* {
* uint8_t *data = memory allocate interface;
* if (!data)
* {
* ENET_QOS_ReadFrame(ENET, &g_handle, NULL, 0, 0, &ts);
* }
* else
* {
* status = ENET_QOS_ReadFrame(ENET, &g_handle, data, length, 0, &ts);
* }
* }
* else if (status == kStatus_ENET_QOS_RxFrameError)
* {
* ENET_QOS_ReadFrame(ENET, &g_handle, NULL, 0, 0, &ts);
* }
* endcode
* param base ENET peripheral base address.
* param handle The ENET handler structure. This is the same handler pointer used in the ENET_QOS_Init.
* param data The data buffer provided by user to store the frame which memory size should be at least "length".
* param length The size of the data buffer which is still the length of the received frame.
* param channel The rx DMA channel. shall not be larger than 2.
* return The execute status, successful or failure.
*/
status_t ENET_QOS_ReadFrame(ENET_QOS_Type *base,
enet_qos_handle_t *handle,
uint8_t *data,
uint32_t length,
uint8_t channel,
enet_qos_ptp_time_t *ts)
{
assert(handle != NULL);
assert(channel < handle->rxQueueUse);
uint32_t len = 0;
uint32_t offset = 0;
uint32_t control;
bool isLastBuff = false;
enet_qos_rx_bd_ring_t *rxBdRing = (enet_qos_rx_bd_ring_t *)&handle->rxBdRing[channel];
enet_qos_rx_bd_struct_t *rxDesc;
status_t result = kStatus_Fail;
uint32_t buff1Addr = 0; /*!< Buffer 1 address */
uint32_t buff2Addr = 0; /*!< Buffer 2 or next descriptor address */
bool tsAvailable = false;
/* For data-NULL input, only update the buffer descriptor. */
if (data == NULL)
{
ENET_QOS_DropFrame(base, handle, channel);
result = kStatus_Success;
}
else
{
while ((!isLastBuff))
{
/* The last buffer descriptor of a frame. */
rxDesc = &rxBdRing->rxBdBase[rxBdRing->rxGenIdx];
control = rxDesc->control;
if (!handle->doubleBuffEnable)
{
buff1Addr = handle->rxBufferStartAddr[channel][rxBdRing->rxGenIdx];
if (handle->rxMaintainEnable[channel])
{
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
/* Add the cache invalidate maintain. */
DCACHE_InvalidateByRange(MEMORY_ConvertMemoryMapAddress(buff1Addr, kMEMORY_DMA2Local),
rxBdRing->rxBuffSizeAlign);
#else
/* Add the cache invalidate maintain. */
DCACHE_InvalidateByRange(buff1Addr, rxBdRing->rxBuffSizeAlign);
#endif
}
}
else
{
buff1Addr = handle->rxBufferStartAddr[channel][2U * rxBdRing->rxGenIdx];
buff2Addr = handle->rxBufferStartAddr[channel][2U * rxBdRing->rxGenIdx + 1U];
if (handle->rxMaintainEnable[channel])
{
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
/* Add the cache invalidate maintain. */
DCACHE_InvalidateByRange(MEMORY_ConvertMemoryMapAddress(buff1Addr, kMEMORY_DMA2Local),
rxBdRing->rxBuffSizeAlign);
/* Add the cache invalidate maintain. */
DCACHE_InvalidateByRange(MEMORY_ConvertMemoryMapAddress(buff2Addr, kMEMORY_DMA2Local),
rxBdRing->rxBuffSizeAlign);
#else
/* Add the cache invalidate maintain. */
DCACHE_InvalidateByRange(buff1Addr, rxBdRing->rxBuffSizeAlign);
/* Add the cache invalidate maintain. */
DCACHE_InvalidateByRange(buff2Addr, rxBdRing->rxBuffSizeAlign);
#endif
}
}
rxBdRing->rxGenIdx = ENET_QOS_IncreaseIndex(rxBdRing->rxGenIdx, rxBdRing->rxRingLen);
if ((control & ENET_QOS_RXDESCRIP_WR_LD_MASK) != 0U)
{
/* This is a valid frame. */
isLastBuff = true;
/* Remove FCS */
len = (control & ENET_QOS_RXDESCRIP_WR_PACKETLEN_MASK) - ENET_QOS_FCS_LEN;
if (length == len)
{
/* Copy the frame to user's buffer. */
len -= offset;
if (len > rxBdRing->rxBuffSizeAlign)
{
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
(void)memcpy((void *)&data[offset],
(void *)(uint8_t *)MEMORY_ConvertMemoryMapAddress(buff1Addr, kMEMORY_DMA2Local),
rxBdRing->rxBuffSizeAlign);
#else
(void)memcpy((void *)&data[offset], (void *)(uint8_t *)buff1Addr, rxBdRing->rxBuffSizeAlign);
#endif
offset += rxBdRing->rxBuffSizeAlign;
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
(void)memcpy((void *)&data[offset],
(void *)(uint8_t *)MEMORY_ConvertMemoryMapAddress(buff2Addr, kMEMORY_DMA2Local),
len - rxBdRing->rxBuffSizeAlign);
#else
(void)memcpy((void *)&data[offset], (void *)(uint8_t *)buff2Addr,
len - rxBdRing->rxBuffSizeAlign);
#endif
}
else
{
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
(void)memcpy((void *)&data[offset],
(void *)(uint8_t *)MEMORY_ConvertMemoryMapAddress(buff1Addr, kMEMORY_DMA2Local),
len);
#else
(void)memcpy((void *)&data[offset], (void *)(uint8_t *)buff1Addr, len);
#endif
}
result = kStatus_Success;
}
if ((rxDesc->reserved & ENET_QOS_RXDESCRIP_WR_PTPTSA_MASK) != 0U)
{
tsAvailable = true;
}
/* Updates the receive buffer descriptors. */
ENET_QOS_UpdateRxDescriptor(rxDesc, (void *)(uint8_t *)buff1Addr, (void *)(uint8_t *)buff2Addr,
handle->rxintEnable, handle->doubleBuffEnable);
/* Store the rx timestamp which is in the next buffer descriptor of the last
* descriptor of a frame. */
rxDesc = &rxBdRing->rxBdBase[rxBdRing->rxGenIdx];
control = rxDesc->control;
/* If tsAvailable is true, a context descriptor is expected but might not be yet
* available.
*/
if (tsAvailable)
{
uint8_t retryTimes = 10;
while (((control & ENET_QOS_RXDESCRIP_WR_OWN_MASK) != 0U) ||
((control & ENET_QOS_RXDESCRIP_WR_CTXT_MASK) == 0U))
{
SDK_DelayAtLeastUs(1U, SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY);
if (0U == retryTimes--)
{
assert(false);
}
control = rxDesc->control;
}
}
/* Reinit for the context descritor which has been updated by DMA. */
if ((control & ENET_QOS_RXDESCRIP_WR_CTXT_MASK) != 0U)
{
if (tsAvailable && (NULL != ts))
{
ENET_QOS_StoreRxFrameTime(base, handle, rxDesc, ts);
}
if (!handle->doubleBuffEnable)
{
buff1Addr = handle->rxBufferStartAddr[channel][rxBdRing->rxGenIdx];
ENET_QOS_UpdateRxDescriptor(rxDesc, (void *)(uint8_t *)buff1Addr, NULL, handle->rxintEnable,
handle->doubleBuffEnable);
}
else
{
buff1Addr = handle->rxBufferStartAddr[channel][2U * rxBdRing->rxGenIdx];
buff2Addr = handle->rxBufferStartAddr[channel][2U * rxBdRing->rxGenIdx + 1U];
ENET_QOS_UpdateRxDescriptor(rxDesc, (void *)(uint8_t *)buff1Addr, (void *)(uint8_t *)buff2Addr,
handle->rxintEnable, handle->doubleBuffEnable);
}
rxBdRing->rxGenIdx = ENET_QOS_IncreaseIndex(rxBdRing->rxGenIdx, rxBdRing->rxRingLen);
}
}
else
{
/* Store a frame on several buffer descriptors. */
isLastBuff = false;
/* Length check. */
if (offset >= length)
{
/* Updates the receive buffer descriptors. */
ENET_QOS_UpdateRxDescriptor(rxDesc, (void *)(uint8_t *)buff1Addr, (void *)(uint8_t *)buff2Addr,
handle->rxintEnable, handle->doubleBuffEnable);
break;
}
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
(void)memcpy((void *)&data[offset],
(void *)(uint8_t *)MEMORY_ConvertMemoryMapAddress(buff1Addr, kMEMORY_DMA2Local),
rxBdRing->rxBuffSizeAlign);
#else
(void)memcpy((void *)&data[offset], (void *)(uint8_t *)buff1Addr, rxBdRing->rxBuffSizeAlign);
#endif
offset += rxBdRing->rxBuffSizeAlign;
if (buff2Addr != 0U)
{
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
(void)memcpy((void *)&data[offset],
(void *)(uint8_t *)MEMORY_ConvertMemoryMapAddress(buff2Addr, kMEMORY_DMA2Local),
rxBdRing->rxBuffSizeAlign);
#else
(void)memcpy((void *)&data[offset], (void *)(uint8_t *)buff2Addr, rxBdRing->rxBuffSizeAlign);
#endif
offset += rxBdRing->rxBuffSizeAlign;
}
ENET_QOS_UpdateRxDescriptor(rxDesc, (void *)(uint8_t *)buff1Addr, (void *)(uint8_t *)buff2Addr,
handle->rxintEnable, handle->doubleBuffEnable);
}
}
/* Always try to start receive, in case it had stopped */
base->DMA_CH[channel].DMA_CHX_RXDESC_TAIL_PTR = (uint32_t)(uint8_t *)&rxBdRing->rxBdBase[rxBdRing->rxRingLen];
}
return result;
}
/*!
* brief Updates the buffers and the own status for a given rx descriptor.
* This function is a low level functional API to Updates the
* buffers and the own status for a given rx descriptor.
*
* param rxDesc The given rx descriptor.
* param buffer1 The first buffer address in the descriptor.
* param buffer2 The second buffer address in the descriptor.
* param intEnable Interrupt enable flag.
* param doubleBuffEnable The double buffer enable flag.
*
* note This must be called after all the ENET initilization.
* And should be called when the ENET receive/transmit is required.
*/
void ENET_QOS_UpdateRxDescriptor(
enet_qos_rx_bd_struct_t *rxDesc, void *buffer1, void *buffer2, bool intEnable, bool doubleBuffEnable)
{
assert(rxDesc != NULL);
uint32_t control = ENET_QOS_RXDESCRIP_RD_OWN_MASK | ENET_QOS_RXDESCRIP_RD_BUFF1VALID_MASK;
if (intEnable)
{
control |= ENET_QOS_RXDESCRIP_RD_IOC_MASK;
}
if (doubleBuffEnable)
{
control |= ENET_QOS_RXDESCRIP_RD_BUFF2VALID_MASK;
}
/* Update the buffer if needed. */
if (buffer1 != NULL)
{
rxDesc->buff1Addr = (uint32_t)(uint8_t *)buffer1;
}
if (buffer2 != NULL)
{
rxDesc->buff2Addr = (uint32_t)(uint8_t *)buffer2;
}
else
{
rxDesc->buff2Addr = 0;
}
rxDesc->reserved = 0;
/* Add a data barrier to be sure that the address is written before the
ownership bit status. */
__DMB();
rxDesc->control = control;
}
/*!
* brief Setup a given tx descriptor.
* This function is a low level functional API to setup or prepare
* a given tx descriptor.
*
* param txDesc The given tx descriptor.
* param buffer1 The first buffer address in the descriptor.
* param bytes1 The bytes in the fist buffer.
* param buffer2 The second buffer address in the descriptor.
* param bytes1 The bytes in the second buffer.
* param framelen The length of the frame to be transmitted.
* param intEnable Interrupt enable flag.
* param tsEnable The timestamp enable.
* param flag The flag of this tx desciriptor, see "enet_qos_desc_flag" .
* param slotNum The slot num used for AV only.
*
* note This must be called after all the ENET initilization.
* And should be called when the ENET receive/transmit is required.
* Transmit buffers are 'zero-copy' buffers, so the buffer must remain in
* memory until the packet has been fully transmitted. The buffers
* should be free or requeued in the transmit interrupt irq handler.
*/
void ENET_QOS_SetupTxDescriptor(enet_qos_tx_bd_struct_t *txDesc,
void *buffer1,
uint32_t bytes1,
void *buffer2,
uint32_t bytes2,
uint32_t framelen,
bool intEnable,
bool tsEnable,
enet_qos_desc_flag flag,
uint8_t slotNum)
{
uint32_t control = ENET_QOS_TXDESCRIP_RD_BL1(bytes1) | ENET_QOS_TXDESCRIP_RD_BL2(bytes2);
if (tsEnable)
{
control |= ENET_QOS_TXDESCRIP_RD_TTSE_MASK;
}
else
{
control &= ~ENET_QOS_TXDESCRIP_RD_TTSE_MASK;
}
if (intEnable)
{
control |= ENET_QOS_TXDESCRIP_RD_IOC_MASK;
}
else
{
control &= ~ENET_QOS_TXDESCRIP_RD_IOC_MASK;
}
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
buffer1 = (void *)(uint32_t *)MEMORY_ConvertMemoryMapAddress((uint32_t)(uint32_t *)buffer1, kMEMORY_Local2DMA);
buffer2 = (void *)(uint32_t *)MEMORY_ConvertMemoryMapAddress((uint32_t)(uint32_t *)buffer2, kMEMORY_Local2DMA);
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
/* Preare the descriptor for transmit. */
txDesc->buff1Addr = (uint32_t)(uint8_t *)buffer1;
txDesc->buff2Addr = (uint32_t)(uint8_t *)buffer2;
txDesc->buffLen = control;
/* Make sure all fields of descriptor are written before setting ownership */
__DMB();
control = ENET_QOS_TXDESCRIP_RD_FL(framelen) | ENET_QOS_TXDESCRIP_RD_LDFD(flag) | ENET_QOS_TXDESCRIP_RD_OWN_MASK;
txDesc->controlStat = control;
/* Make sure the descriptor is written in memory (before MAC starts checking it) */
__DSB();
}
/*!
* brief Reclaim tx descriptors.
* This function is used to update the tx descriptor status and
* store the tx timestamp when the 1588 feature is enabled.
* This is called by the transmit interupt IRQ handler after the
* complete of a frame transmission.
*
* param base ENET peripheral base address.
* param handle The ENET handler pointer. This is the same handler pointer used in the ENET_QOS_Init.
* param channel The tx DMA channnel.
*
*/
void ENET_QOS_ReclaimTxDescriptor(ENET_QOS_Type *base, enet_qos_handle_t *handle, uint8_t channel)
{
enet_qos_tx_bd_ring_t *txBdRing = &handle->txBdRing[channel];
enet_qos_tx_bd_struct_t *txDesc = &txBdRing->txBdBase[txBdRing->txConsumIdx];
enet_qos_tx_dirty_ring_t *txDirtyRing = (enet_qos_tx_dirty_ring_t *)&handle->txDirtyRing[channel];
enet_qos_frame_info_t *txDirty = NULL;
uint32_t control, primask;
control = txDesc->controlStat;
/* Need to update the first index for transmit buffer free. */
while ((txBdRing->txDescUsed > 0U) && (0U == (control & ENET_QOS_TXDESCRIP_RD_OWN_MASK)))
{
if ((control & ENET_QOS_TXDESCRIP_RD_LD_MASK) != 0U)
{
if (ENET_QOS_TxDirtyRingAvailable(txDirtyRing))
{
txDirty = &txDirtyRing->txDirtyBase[txBdRing->txConsumIdx];
txDirtyRing->txGenIdx = ENET_QOS_IncreaseIndex(txDirtyRing->txGenIdx, txDirtyRing->txRingLen);
if (txDirtyRing->txGenIdx == txDirtyRing->txConsumIdx)
{
txDirtyRing->isFull = true;
}
if ((control & ENET_QOS_TXDESCRIP_WB_TTSS_MASK) != 0U)
{
enet_qos_ptp_time_t *ts = &txDirty->timeStamp;
uint32_t nanosecond;
/* Get transmit time stamp second. */
nanosecond = txDesc->buff1Addr;
txDirty->isTsAvail = true;
if (0U == (base->MAC_TIMESTAMP_CONTROL & ENET_QOS_MAC_TIMESTAMP_CONTROL_TSCTRLSSR_MASK))
{
/* Binary rollover, 0.465ns accuracy. */
nanosecond = (nanosecond * 465U) / 1000U;
}
ts->second = txDesc->buff2Addr;
ts->nanosecond = nanosecond;
}
else
{
txDirty->isTsAvail = false;
}
}
}
/* For tx buffer free or requeue for each descriptor.
* The tx interrupt callback should free/requeue the tx buffer. */
if (handle->callback != NULL)
{
handle->callback(base, handle, kENET_QOS_TxIntEvent, channel, handle->userData);
}
primask = DisableGlobalIRQ();
txBdRing->txDescUsed--;
EnableGlobalIRQ(primask);
/* Update the txConsumIdx/txDesc. */
txBdRing->txConsumIdx = ENET_QOS_IncreaseIndex(txBdRing->txConsumIdx, txBdRing->txRingLen);
txDesc = &txBdRing->txBdBase[txBdRing->txConsumIdx];
control = txDesc->controlStat;
}
}
/*!
* brief Transmits an ENET frame.
* note The CRC is automatically appended to the data. Input the data
* to send without the CRC.
*
* param base ENET peripheral base address.
* param handle The ENET handler pointer. This is the same handler pointer used in the ENET_QOS_Init.
* param data The data buffer provided by user to be send.
* param length The length of the data to be send.
* param channel Channel to send the frame, same with queue index.
* param isNeedTs True means save timestamp
* param context pointer to user context to be kept in the tx dirty frame information.
* retval kStatus_Success Send frame succeed.
* retval kStatus_ENET_QOS_TxFrameBusy Transmit buffer descriptor is busy under transmission.
* The transmit busy happens when the data send rate is over the MAC capacity.
* The waiting mechanism is recommended to be added after each call return with
* kStatus_ENET_QOS_TxFrameBusy.
*/
status_t ENET_QOS_SendFrame(ENET_QOS_Type *base,
enet_qos_handle_t *handle,
uint8_t *data,
uint32_t length,
uint8_t channel,
bool isNeedTs,
void *context)
{
assert(handle != NULL);
assert(data != NULL);
assert(channel < handle->txQueueUse);
enet_qos_tx_bd_ring_t *txBdRing;
enet_qos_tx_bd_struct_t *txDesc;
enet_qos_tx_dirty_ring_t *txDirtyRing;
enet_qos_frame_info_t *txDirty;
uint32_t primask;
if (length > 2U * ENET_QOS_TXDESCRIP_RD_BL1_MASK)
{
return kStatus_ENET_QOS_TxFrameOverLen;
}
/* Check if the DMA owns the descriptor. */
txBdRing = (enet_qos_tx_bd_ring_t *)&handle->txBdRing[channel];
txDesc = &txBdRing->txBdBase[txBdRing->txGenIdx];
if (txBdRing->txRingLen == txBdRing->txDescUsed)
{
return kStatus_ENET_QOS_TxFrameBusy;
}
txDirtyRing = (enet_qos_tx_dirty_ring_t *)&handle->txDirtyRing[channel];
txDirty = &txDirtyRing->txDirtyBase[txBdRing->txGenIdx];
txDirty->context = context;
/* Fill the descriptor. */
if (length <= ENET_QOS_TXDESCRIP_RD_BL1_MASK)
{
ENET_QOS_SetupTxDescriptor(txDesc, data, length, NULL, 0, length, true, isNeedTs, kENET_QOS_FirstLastFlag, 0);
}
else
{
ENET_QOS_SetupTxDescriptor(txDesc, data, ENET_QOS_TXDESCRIP_RD_BL1_MASK, &data[ENET_QOS_TXDESCRIP_RD_BL1_MASK],
(length - ENET_QOS_TXDESCRIP_RD_BL1_MASK), length, true, isNeedTs,
kENET_QOS_FirstLastFlag, 0);
}
/* Increase the index. */
txBdRing->txGenIdx = ENET_QOS_IncreaseIndex(txBdRing->txGenIdx, txBdRing->txRingLen);
/* Disable interrupt first and then enable interrupt to avoid the race condition. */
primask = DisableGlobalIRQ();
txBdRing->txDescUsed++;
EnableGlobalIRQ(primask);
/* Update the transmit tail address. */
txDesc = &txBdRing->txBdBase[txBdRing->txGenIdx];
if (txBdRing->txGenIdx == 0U)
{
txDesc = &txBdRing->txBdBase[txBdRing->txRingLen];
}
base->DMA_CH[channel].DMA_CHX_TXDESC_TAIL_PTR = (uint32_t)txDesc & ~ENET_QOS_ADDR_ALIGNMENT;
return kStatus_Success;
}
/*!
* brief Gets the sent frame.
*
* This function is used to get the sent frame for timestamp and buffer clean operation.
*
* param handle The ENET handler pointer.This is the same state pointer used in
* ENET_QOS_Init.
* param txFrame Input parameter, pointer to enet_qos_frame_info_t for saving read out frame information.
* param channel Read out frame from specified channel.
*/
void ENET_QOS_GetTxFrame(enet_qos_handle_t *handle, enet_qos_frame_info_t *txFrame, uint8_t channel)
{
assert(handle != NULL);
assert(channel < handle->txQueueUse);
enet_qos_tx_dirty_ring_t *txDirtyRing = (enet_qos_tx_dirty_ring_t *)&handle->txDirtyRing[channel];
enet_qos_frame_info_t *txDirty = &txDirtyRing->txDirtyBase[txDirtyRing->txConsumIdx];
(void)memcpy(txFrame, txDirty, sizeof(enet_qos_frame_info_t));
txDirtyRing->isFull = false;
txDirtyRing->txConsumIdx = ENET_QOS_IncreaseIndex(txDirtyRing->txConsumIdx, txDirtyRing->txRingLen);
}
static inline void ENET_QOS_GetRxFrameErr(enet_qos_rx_bd_struct_t *rxDesc, enet_qos_rx_frame_error_t *rxFrameError)
{
uint32_t rdes2 = rxDesc->buff2Addr;
uint32_t rdes3 = rxDesc->control;
(void)memset(rxFrameError, 0, sizeof(enet_qos_rx_frame_error_t));
if ((rdes2 & ENET_QOS_RXDESCRIP_WR_SA_FAILURE_MASK) != 0U)
{
rxFrameError->rxSrcAddrFilterErr = true;
}
if ((rdes2 & ENET_QOS_RXDESCRIP_WR_DA_FAILURE_MASK) != 0U)
{
rxFrameError->rxDstAddrFilterErr = true;
}
if ((rdes3 & ENET_QOS_RXDESCRIP_WR_DE_MASK) != 0U)
{
rxFrameError->rxDstAddrFilterErr = true;
}
if ((rdes3 & ENET_QOS_RXDESCRIP_WR_RE_MASK) != 0U)
{
rxFrameError->rxReceiveErr = true;
}
if ((rdes3 & ENET_QOS_RXDESCRIP_WR_OE_MASK) != 0U)
{
rxFrameError->rxOverFlowErr = true;
}
if ((rdes3 & ENET_QOS_RXDESCRIP_WR_RWT_MASK) != 0U)
{
rxFrameError->rxWatchDogErr = true;
}
if ((rdes3 & ENET_QOS_RXDESCRIP_WR_GP_MASK) != 0U)
{
rxFrameError->rxGaintPacketErr = true;
}
if ((rdes3 & ENET_QOS_RXDESCRIP_WR_CRC_MASK) != 0U)
{
rxFrameError->rxCrcErr = true;
}
}
/*!
* brief Receives one frame in specified BD ring with zero copy.
*
* This function will use the user-defined allocate and free callback. Every time application gets one frame through
* this function, driver will allocate new buffers for the BDs whose buffers have been taken by application.
* note This function will drop current frame and update related BDs as available for DMA if new buffers allocating
* fails. Application must provide a memory pool including at least BD number + 1 buffers(+2 if enable double buffer)
* to make this function work normally. If user calls this function in Rx interrupt handler, be careful that this
* function makes Rx BD ready with allocating new buffer(normal) or updating current BD(out of memory). If there's
* always new Rx frame input, Rx interrupt will be triggered forever. Application need to disable Rx interrupt according
* to specific design in this case.
*
* param base ENET peripheral base address.
* param handle The ENET handler pointer. This is the same handler pointer used in the ENET_Init.
* param rxFrame The received frame information structure provided by user.
* param ringId The ring index or ring number.
* retval kStatus_Success Succeed to get one frame and allocate new memory for Rx buffer.
* retval kStatus_ENET_QOS_RxFrameEmpty There's no Rx frame in the BD.
* retval kStatus_ENET_QOS_RxFrameError There's issue in this receiving.
* retval kStatus_ENET_QOS_RxFrameDrop There's no new buffer memory for BD, drop this frame.
*/
status_t ENET_QOS_GetRxFrame(ENET_QOS_Type *base,
enet_qos_handle_t *handle,
enet_qos_rx_frame_struct_t *rxFrame,
uint8_t channel)
{
assert(handle != NULL);
assert(channel < handle->rxQueueUse);
enet_qos_rx_bd_ring_t *rxBdRing = (enet_qos_rx_bd_ring_t *)&handle->rxBdRing[channel];
enet_qos_rx_bd_struct_t *rxDesc = &rxBdRing->rxBdBase[rxBdRing->rxGenIdx];
uint16_t index = rxBdRing->rxGenIdx;
status_t result = kStatus_Success;
uint32_t buff1Addr = 0;
uint32_t buff2Addr = 0;
uint16_t buff1Len = 0;
uint16_t buff2Len = 0;
uint16_t offset = 0;
void *newBuff1 = NULL;
void *newBuff2 = NULL;
bool isDrop = false;
bool isLastBuff = false;
bool tsAvailable = false;
/* Check the frame status. */
do
{
if ((rxDesc->control & ENET_QOS_RXDESCRIP_WR_OWN_MASK) != 0U)
{
result = kStatus_ENET_QOS_RxFrameEmpty;
break;
}
/* Check timestamp and error. */
if ((rxDesc->control & ENET_QOS_RXDESCRIP_WR_LD_MASK) != 0U)
{
if ((rxDesc->control & ENET_QOS_RXDESCRIP_WR_RS1V_MASK) != 0U)
{
if ((rxDesc->reserved & ENET_QOS_RXDESCRIP_WR_PTPTSA_MASK) != 0U)
{
/* Context descriptor is expected but might not be yet available. */
uint8_t retryTimes = 10;
while (((rxDesc->control & ENET_QOS_RXDESCRIP_WR_OWN_MASK) != 0U) ||
((rxDesc->control & ENET_QOS_RXDESCRIP_WR_CTXT_MASK) == 0U))
{
/* Timsstamp value is not corrupted. */
if ((rxDesc->buff1Addr != 0xFFFFFFFFU) && (rxDesc->buff2Addr != 0xFFFFFFFFU))
{
break;
}
if (retryTimes-- == 0U)
{
break;
}
}
if (retryTimes != 0U)
{
tsAvailable = true;
}
else
{
result = kStatus_ENET_QOS_RxFrameEmpty;
break;
}
}
}
/* Get the frame error if there is. */
if ((rxDesc->control & ENET_QOS_RXDESCRIP_WR_ERRSUM_MASK) != 0U)
{
ENET_QOS_GetRxFrameErr(rxDesc, &rxFrame->rxFrameError);
result = kStatus_ENET_QOS_RxFrameError;
}
else if ((rxDesc->control & ENET_QOS_RXDESCRIP_WR_PACKETLEN_MASK) == 0U)
{
result = kStatus_ENET_QOS_RxFrameEmpty;
}
else
{
/* Intentional empty */
}
break;
}
index = ENET_QOS_IncreaseIndex(index, rxBdRing->rxRingLen);
if (index == rxBdRing->rxGenIdx)
{
result = kStatus_ENET_QOS_RxFrameEmpty;
break;
}
rxDesc = &rxBdRing->rxBdBase[index];
} while (index != rxBdRing->rxGenIdx);
/* Drop the error frame and return error. */
if (result != kStatus_Success)
{
if (result == kStatus_ENET_QOS_RxFrameError)
{
ENET_QOS_DropFrame(base, handle, channel);
}
return result;
}
/* Get the valid frame */
index = 0;
do
{
rxDesc = &rxBdRing->rxBdBase[rxBdRing->rxGenIdx];
/* Caculate the buffer and frame length. */
if ((rxDesc->control & ENET_QOS_RXDESCRIP_WR_LD_MASK) != 0U)
{
isLastBuff = true;
rxFrame->totLen = (uint16_t)(rxDesc->control & ENET_QOS_RXDESCRIP_WR_PACKETLEN_MASK);
if (rxFrame->totLen - offset > (uint16_t)rxBdRing->rxBuffSizeAlign)
{
buff1Len = (uint16_t)rxBdRing->rxBuffSizeAlign;
if (handle->doubleBuffEnable)
{
buff2Len = rxFrame->totLen - offset - (uint16_t)rxBdRing->rxBuffSizeAlign - ENET_QOS_FCS_LEN;
}
}
else
{
buff1Len = rxFrame->totLen - offset - ENET_QOS_FCS_LEN;
}
rxFrame->totLen -= ENET_QOS_FCS_LEN;
}
else
{
if (!handle->doubleBuffEnable)
{
buff1Len = (uint16_t)rxBdRing->rxBuffSizeAlign;
offset += buff1Len;
}
else
{
buff1Len = (uint16_t)rxBdRing->rxBuffSizeAlign;
buff2Len = (uint16_t)rxBdRing->rxBuffSizeAlign;
offset += buff1Len + buff2Len;
}
}
/* Allocate new buffer to replace the buffer taken by application */
newBuff1 = handle->rxBuffAlloc(base, handle->userData, channel);
if (newBuff1 == NULL)
{
isDrop = true;
}
else if (handle->doubleBuffEnable && (buff2Len != 0U))
{
newBuff2 = handle->rxBuffAlloc(base, handle->userData, channel);
if (newBuff2 == NULL)
{
handle->rxBuffFree(base, newBuff1, handle->userData, channel);
isDrop = true;
}
}
else
{
/* Intentional empty */
}
if (!isDrop)
{
/* Get the frame data information into Rx frame structure. */
if (!handle->doubleBuffEnable)
{
buff1Addr = handle->rxBufferStartAddr[channel][rxBdRing->rxGenIdx];
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
buff1Addr = MEMORY_ConvertMemoryMapAddress(buff1Addr, kMEMORY_DMA2Local);
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
if (handle->rxMaintainEnable[channel])
{
DCACHE_InvalidateByRange(buff1Addr, rxBdRing->rxBuffSizeAlign);
}
rxFrame->rxBuffArray[index].buffer = (void *)(uint32_t *)buff1Addr;
rxFrame->rxBuffArray[index].length = buff1Len;
index++;
}
else
{
buff1Addr = handle->rxBufferStartAddr[channel][2U * rxBdRing->rxGenIdx];
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
buff1Addr = MEMORY_ConvertMemoryMapAddress(buff1Addr, kMEMORY_DMA2Local);
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
if (handle->rxMaintainEnable[channel])
{
DCACHE_InvalidateByRange(buff1Addr, rxBdRing->rxBuffSizeAlign);
}
rxFrame->rxBuffArray[index].buffer = (void *)(uint32_t *)buff1Addr;
rxFrame->rxBuffArray[index].length = buff1Len;
index++;
/* If there's no data in buffer2, not add it into rxFrame */
if (buff2Len != 0U)
{
buff2Addr = handle->rxBufferStartAddr[channel][2U * rxBdRing->rxGenIdx + 1U];
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
buff2Addr = MEMORY_ConvertMemoryMapAddress(buff2Addr, kMEMORY_DMA2Local);
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
if (handle->rxMaintainEnable[channel])
{
DCACHE_InvalidateByRange(buff2Addr, rxBdRing->rxBuffSizeAlign);
}
rxFrame->rxBuffArray[index].buffer = (void *)(uint32_t *)buff2Addr;
rxFrame->rxBuffArray[index].length = buff2Len;
index++;
}
}
/* Give new buffer from application to BD */
if (!handle->doubleBuffEnable)
{
if (handle->rxMaintainEnable[channel])
{
DCACHE_InvalidateByRange((uint32_t)(uint32_t *)newBuff1, rxBdRing->rxBuffSizeAlign);
}
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
buff1Addr = MEMORY_ConvertMemoryMapAddress((uint32_t)(uint32_t *)newBuff1, kMEMORY_Local2DMA);
#else
buff1Addr = (uint32_t)(uint32_t *)newBuff1;
#endif
handle->rxBufferStartAddr[channel][rxBdRing->rxGenIdx] = buff1Addr;
ENET_QOS_UpdateRxDescriptor(rxDesc, (void *)(uint32_t *)buff1Addr, NULL, handle->rxintEnable,
handle->doubleBuffEnable);
}
else
{
if (handle->rxMaintainEnable[channel])
{
DCACHE_InvalidateByRange((uint32_t)(uint32_t *)newBuff1, rxBdRing->rxBuffSizeAlign);
}
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
buff1Addr = MEMORY_ConvertMemoryMapAddress((uint32_t)(uint32_t *)newBuff1, kMEMORY_Local2DMA);
#else
buff1Addr = (uint32_t)(uint32_t *)newBuff1;
#endif
handle->rxBufferStartAddr[channel][2U * rxBdRing->rxGenIdx] = buff1Addr;
if (buff2Len != 0U)
{
if (handle->rxMaintainEnable[channel])
{
DCACHE_InvalidateByRange((uint32_t)(uint32_t *)newBuff2, rxBdRing->rxBuffSizeAlign);
}
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
buff2Addr = MEMORY_ConvertMemoryMapAddress((uint32_t)(uint32_t *)newBuff2, kMEMORY_Local2DMA);
#else
buff2Addr = (uint32_t)(uint32_t *)newBuff2;
#endif
handle->rxBufferStartAddr[channel][2U * rxBdRing->rxGenIdx + 1U] = buff2Addr;
}
else
{
/* If there's no data in buffer2, keep it */
buff2Addr = handle->rxBufferStartAddr[channel][2U * rxBdRing->rxGenIdx + 1U];
}
ENET_QOS_UpdateRxDescriptor(rxDesc, (void *)(uint32_t *)buff1Addr, (void *)(uint32_t *)buff2Addr,
handle->rxintEnable, handle->doubleBuffEnable);
}
rxBdRing->rxGenIdx = ENET_QOS_IncreaseIndex(rxBdRing->rxGenIdx, rxBdRing->rxRingLen);
/* Update context BD if there is */
if (isLastBuff && tsAvailable)
{
rxDesc = &rxBdRing->rxBdBase[rxBdRing->rxGenIdx];
if ((rxDesc->control & ENET_QOS_RXDESCRIP_WR_CTXT_MASK) != 0U)
{
ENET_QOS_StoreRxFrameTime(base, handle, rxDesc, &rxFrame->rxAttribute.timestamp);
rxFrame->rxAttribute.isTsAvail = true;
if (!handle->doubleBuffEnable)
{
buff1Addr = handle->rxBufferStartAddr[channel][rxBdRing->rxGenIdx];
ENET_QOS_UpdateRxDescriptor(rxDesc, (void *)(uint8_t *)buff1Addr, NULL, handle->rxintEnable,
handle->doubleBuffEnable);
}
else
{
buff1Addr = handle->rxBufferStartAddr[channel][2U * rxBdRing->rxGenIdx];
buff2Addr = handle->rxBufferStartAddr[channel][2U * rxBdRing->rxGenIdx + 1U];
ENET_QOS_UpdateRxDescriptor(rxDesc, (void *)(uint8_t *)buff1Addr, (void *)(uint8_t *)buff2Addr,
handle->rxintEnable, handle->doubleBuffEnable);
}
rxBdRing->rxGenIdx = ENET_QOS_IncreaseIndex(rxBdRing->rxGenIdx, rxBdRing->rxRingLen);
}
}
/* Always try to start receive, in case it had stopped */
base->DMA_CH[channel].DMA_CHX_RXDESC_TAIL_PTR =
(uint32_t)(uint8_t *)&rxBdRing->rxBdBase[rxBdRing->rxRingLen];
}
else
{
/* Drop frame if there's no new buffer memory */
/* Free the incomplete frame buffers. */
while (index-- != 0U)
{
handle->rxBuffFree(base, &rxFrame->rxBuffArray[index].buffer, handle->userData, channel);
}
/* Update all left BDs of this frame from current index. */
ENET_QOS_DropFrame(base, handle, channel);
result = kStatus_ENET_QOS_RxFrameDrop;
break;
}
} while (!isLastBuff);
return result;
}
/*!
* brief Gets the current ENET time from the PTP 1588 timer without IRQ disable.
*
* param base ENET peripheral base address.
* param second The PTP 1588 system timer second.
* param nanosecond The PTP 1588 system timer nanosecond.
* For the unit of the nanosecond is 1ns. so the nanosecond is the real nanosecond.
*/
void ENET_QOS_Ptp1588GetTimerNoIRQDisable(ENET_QOS_Type *base, uint64_t *second, uint32_t *nanosecond)
{
assert(second != NULL);
assert(nanosecond != NULL);
uint32_t high_sec[2];
uint32_t sec[2];
/* Get the current PTP time. */
/* Since register reads are not atomic, we need to check for wraps during the read */
high_sec[1] = base->MAC_SYSTEM_TIME_HIGHER_WORD_SECONDS & ENET_QOS_MAC_SYSTEM_TIME_HIGHER_WORD_SECONDS_TSHWR_MASK;
do
{
high_sec[0] = high_sec[1];
sec[1] = base->MAC_SYSTEM_TIME_SECONDS;
do
{
sec[0] = sec[1];
*nanosecond = base->MAC_SYSTEM_TIME_NANOSECONDS & ENET_QOS_MAC_SYSTEM_TIME_NANOSECONDS_TSSS_MASK;
sec[1] = base->MAC_SYSTEM_TIME_SECONDS;
} while (sec[1] != sec[0]);
high_sec[1] =
base->MAC_SYSTEM_TIME_HIGHER_WORD_SECONDS & ENET_QOS_MAC_SYSTEM_TIME_HIGHER_WORD_SECONDS_TSHWR_MASK;
} while (high_sec[1] != high_sec[0]);
*second = ((uint64_t)high_sec[1] << 32U) | sec[1];
if ((base->MAC_TIMESTAMP_CONTROL & ENET_QOS_MAC_TIMESTAMP_CONTROL_TSCTRLSSR_MASK) == 0U)
{
/* Binary rollover, the unit of the increment is ~ 0.465 ns. */
*nanosecond = (*nanosecond * 465U) / 1000U;
}
}
/*!
* brief Gets the current ENET time from the PTP 1588 timer, get a more accurate value
* with IRQ disabled during get timer.
*
* param base ENET peripheral base address.
* param second The PTP 1588 system timer second.
* param nanosecond The PTP 1588 system timer nanosecond.
* For the unit of the nanosecond is 1ns. so the nanosecond is the real nanosecond.
*/
void ENET_QOS_Ptp1588GetTimer(ENET_QOS_Type *base, uint64_t *second, uint32_t *nanosecond)
{
uint32_t primask;
/* Disables the interrupt. */
primask = DisableGlobalIRQ();
ENET_QOS_Ptp1588GetTimerNoIRQDisable(base, second, nanosecond);
/* Enables the interrupt. */
EnableGlobalIRQ(primask);
}
/*!
* brief Coreect the ENET PTP 1588 timer in coarse method.
*
* param base ENET peripheral base address.
* param operation The system time operation, refer to "enet_qos_systime_op"
* param second The correction second.
* param nanosecond The correction nanosecond.
*/
status_t ENET_QOS_Ptp1588CorrectTimerInCoarse(ENET_QOS_Type *base,
enet_qos_systime_op operation,
uint32_t second,
uint32_t nanosecond)
{
uint32_t corrSecond = second;
uint32_t corrNanosecond;
status_t result = kStatus_Success;
/* Set the system timer. */
if ((base->MAC_TIMESTAMP_CONTROL & ENET_QOS_MAC_TIMESTAMP_CONTROL_TSCTRLSSR_MASK) != 0U)
{
if (operation == kENET_QOS_SystimeSubtract)
{
/* Set with the complement of the sub-second. */
corrSecond = ENET_QOS_MAC_SYSTEM_TIME_SECONDS_UPDATE_TSS_MASK - (second - 1U);
corrNanosecond = ENET_QOS_MAC_SYSTEM_TIME_NANOSECONDS_UPDATE_ADDSUB_MASK |
ENET_QOS_MAC_SYSTEM_TIME_NANOSECONDS_UPDATE_TSSS(ENET_QOS_NANOSECS_ONESECOND - nanosecond);
}
else
{
corrNanosecond = ENET_QOS_MAC_SYSTEM_TIME_NANOSECONDS_UPDATE_TSSS(nanosecond);
}
}
else
{
nanosecond = ENET_QOS_MAC_SYSTEM_TIME_NANOSECONDS_UPDATE_TSSS_MASK / ENET_QOS_NANOSECS_ONESECOND * nanosecond;
if (operation == kENET_QOS_SystimeSubtract)
{
/* Set with the complement of the sub-second. */
corrSecond = ENET_QOS_MAC_SYSTEM_TIME_SECONDS_UPDATE_TSS_MASK - (second - 1U);
corrNanosecond = ENET_QOS_MAC_SYSTEM_TIME_NANOSECONDS_UPDATE_ADDSUB_MASK |
ENET_QOS_MAC_SYSTEM_TIME_NANOSECONDS_UPDATE_TSSS(
ENET_QOS_MAC_SYSTEM_TIME_NANOSECONDS_UPDATE_TSSS_MASK + 1U - nanosecond);
}
else
{
corrNanosecond = ENET_QOS_MAC_SYSTEM_TIME_NANOSECONDS_UPDATE_TSSS(nanosecond);
}
}
base->MAC_SYSTEM_TIME_SECONDS_UPDATE = corrSecond;
base->MAC_SYSTEM_TIME_NANOSECONDS_UPDATE = corrNanosecond;
/* Update the timer. */
base->MAC_TIMESTAMP_CONTROL |= ENET_QOS_MAC_TIMESTAMP_CONTROL_TSUPDT_MASK;
/* Wait for update finish */
result = ENET_QOS_PollStatusFlag(&(base->MAC_TIMESTAMP_CONTROL), ENET_QOS_MAC_TIMESTAMP_CONTROL_TSUPDT_MASK, 0U);
return result;
}
/*!
* brief Correct the ENET PTP 1588 timer in fine method.
*
*
* param base ENET peripheral base address.
* param addend The addend value to be set in the fine method
* note Should take refer to the chapter "System time correction" and
* see the description for the "fine correction method".
*/
status_t ENET_QOS_Ptp1588CorrectTimerInFine(ENET_QOS_Type *base, uint32_t addend)
{
status_t result = kStatus_Success;
base->MAC_TIMESTAMP_ADDEND = addend;
base->MAC_TIMESTAMP_CONTROL |= ENET_QOS_MAC_TIMESTAMP_CONTROL_TSADDREG_MASK;
result = ENET_QOS_PollStatusFlag(&(base->MAC_TIMESTAMP_CONTROL), ENET_QOS_MAC_TIMESTAMP_CONTROL_TSADDREG_MASK, 0U);
return result;
}
/*!
* @brief Sets the ENET OQS PTP 1588 PPS target time registers.
*
* param base ENET QOS peripheral base address.
* param instance The ENET QOS PTP PPS instance.
* param seconds The target seconds.
* param nanoseconds The target nanoseconds.
*/
status_t ENET_QOS_Ptp1588PpsSetTrgtTime(ENET_QOS_Type *base,
enet_qos_ptp_pps_instance_t instance,
uint32_t seconds,
uint32_t nanoseconds)
{
uint32_t *mac_pps_trgt_ns;
uint32_t *mac_pps_trgt_s;
mac_pps_trgt_ns = (uint32_t *)((uint32_t)&base->MAC_PPS0_TARGET_TIME_NANOSECONDS + 0x10U * (uint32_t)instance);
mac_pps_trgt_s = (uint32_t *)((uint32_t)&base->MAC_PPS0_TARGET_TIME_SECONDS + 0x10U * (uint32_t)instance);
if ((*mac_pps_trgt_ns & ENET_QOS_MAC_PPS0_TARGET_TIME_NANOSECONDS_TRGTBUSY0_MASK) != 0U)
{
return kStatus_ENET_QOS_TrgtBusy;
}
*mac_pps_trgt_ns = ENET_QOS_MAC_PPS0_TARGET_TIME_NANOSECONDS_TTSL0(nanoseconds);
*mac_pps_trgt_s = ENET_QOS_MAC_PPS0_TARGET_TIME_SECONDS_TSTRH0(seconds);
return kStatus_Success;
}
static status_t ENET_QOS_EstReadWriteWord(
ENET_QOS_Type *base, uint32_t addr, uint32_t *data, uint8_t gcrr, uint8_t read, uint8_t dbgm)
{
uint32_t ctrl;
int retry = 10;
ctrl = ENET_QOS_MTL_EST_GCL_CONTROL_ADDR(addr) | ENET_QOS_MTL_EST_GCL_CONTROL_SRWO(1) |
ENET_QOS_MTL_EST_GCL_CONTROL_DBGM(dbgm) | ENET_QOS_MTL_EST_GCL_CONTROL_GCRR(gcrr);
if (read != 0U)
{
ctrl |= ENET_QOS_MTL_EST_GCL_CONTROL_R1W0(1);
}
else
{
base->MTL_EST_GCL_DATA = *data;
}
base->MTL_EST_GCL_CONTROL = ctrl;
while ((base->MTL_EST_GCL_CONTROL & ENET_QOS_MTL_EST_GCL_CONTROL_SRWO_MASK) != 0U)
{
if (retry-- < 0)
{
return kStatus_Timeout;
}
SDK_DelayAtLeastUs(1, SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY);
}
if (read != 0U)
{
*data = base->MTL_EST_GCL_DATA;
}
if ((base->MTL_EST_GCL_CONTROL & ENET_QOS_MTL_EST_GCL_CONTROL_ERR0_MASK) != 0U)
{
return kStatus_ENET_QOS_Est_SwListWriteAbort;
}
return kStatus_Success;
}
static status_t ENET_QOS_EstProgramWord(ENET_QOS_Type *base, uint32_t addr, uint32_t *data, uint8_t gcrr)
{
return ENET_QOS_EstReadWriteWord(base, addr, data, gcrr, 0, 0);
}
static status_t ENET_QOS_EstReadWord(ENET_QOS_Type *base, uint32_t addr, uint32_t *data, uint8_t gcrr, uint8_t dbgm)
{
return ENET_QOS_EstReadWriteWord(base, addr, data, gcrr, 1, dbgm);
}
/*!
* @brief Program Gate Control List.
*
* This function is used to program the Enhanced Scheduled Transmisson. (IEEE802.1Qbv)
*
* @param base ENET peripheral base address..
* @param gcl Pointer to the Gate Control List structure.
* @param ptpClk_Hz frequency of the PTP clock.
*/
status_t ENET_QOS_EstProgramGcl(ENET_QOS_Type *base, enet_qos_est_gcl_t *gcl, uint32_t ptpClk_Hz)
{
assert(gcl != NULL);
uint32_t i, control, data;
enet_qos_est_gate_op_t *gateOp;
status_t rc;
#define EST_MAX_INTERVAL ((1UL << ENET_QOS_EST_WID) - 1U)
#define EST_MAX_GATE ((1UL << (32U - ENET_QOS_EST_WID)) - 1U)
if (!gcl->enable)
{
goto exit;
}
/* Sanity checks */
if (gcl->numEntries > ENET_QOS_EST_DEP)
{
return kStatus_ENET_QOS_Est_InvalidParameter;
}
if (gcl->opList == NULL)
{
return kStatus_ENET_QOS_Est_InvalidParameter;
}
gateOp = gcl->opList;
for (i = 0; i < gcl->numEntries; i++)
{
if (gateOp->interval > EST_MAX_INTERVAL)
{
return kStatus_ENET_QOS_Est_InvalidParameter;
}
if (gateOp->gate > EST_MAX_GATE)
{
return kStatus_ENET_QOS_Est_InvalidParameter;
}
gateOp++;
}
/* Check if sw list is busy */
if ((base->MTL_EST_CONTROL & ENET_QOS_MTL_EST_CONTROL_SSWL_MASK) != 0U)
{
return kStatus_ENET_QOS_Est_SwListBusy;
}
gateOp = gcl->opList;
for (i = 0; i < gcl->numEntries; i++)
{
data = gateOp->interval | (gateOp->gate << ENET_QOS_EST_WID);
rc = ENET_QOS_EstProgramWord(base, i, &data, 0);
if (rc != kStatus_Success)
{
return rc;
}
gateOp++;
}
/* BTR High */
data = (uint32_t)(gcl->baseTime >> 32U);
rc = ENET_QOS_EstProgramWord(base, (uint32_t)kENET_QOS_Ets_btr_high, &data, 1U);
if (rc != kStatus_Success)
{
return rc;
}
/* BTR Low */
data = (uint32_t)gcl->baseTime;
rc = ENET_QOS_EstProgramWord(base, (uint32_t)kENET_QOS_Ets_btr_low, &data, 1);
if (rc != kStatus_Success)
{
return rc;
}
/* CTR High */
data = (uint32_t)(gcl->cycleTime >> 32U);
rc = ENET_QOS_EstProgramWord(base, (uint32_t)kENET_QOS_Ets_ctr_high, &data, 1);
if (rc != kStatus_Success)
{
return rc;
}
/* CTR Low */
data = (uint32_t)gcl->cycleTime;
rc = ENET_QOS_EstProgramWord(base, (uint32_t)kENET_QOS_Ets_ctr_low, &data, 1);
if (rc != kStatus_Success)
{
return rc;
}
/* TER */
data = gcl->extTime;
rc = ENET_QOS_EstProgramWord(base, (uint32_t)kENET_QOS_Ets_ter, &data, 1);
if (rc != kStatus_Success)
{
return rc;
}
/* LLR */
data = gcl->numEntries;
rc = ENET_QOS_EstProgramWord(base, (uint32_t)kENET_QOS_Ets_llr, &data, 1);
if (rc != kStatus_Success)
{
return rc;
}
exit:
control = base->MTL_EST_CONTROL;
if (gcl->enable)
{
control &= ~ENET_QOS_MTL_EST_CONTROL_PTOV_MASK;
control |= ENET_QOS_MTL_EST_CONTROL_SSWL_MASK | ENET_QOS_MTL_EST_CONTROL_EEST_MASK |
ENET_QOS_MTL_EST_CONTROL_PTOV((1000000000U / ptpClk_Hz) * 6U);
}
else
{
control &= ~ENET_QOS_MTL_EST_CONTROL_EEST_MASK;
}
base->MTL_EST_CONTROL = control;
return kStatus_Success;
}
/*!
* @brief Read Gate Control List.
*
* This function is used to read the Enhanced Scheduled Transmisson list. (IEEE802.1Qbv)
*
* @param base ENET peripheral base address..
* @param gcl Pointer to the Gate Control List structure.
* @param listLen length of the provided opList array in gcl structure.
* @param hwList Boolean if True read HW list, false read SW list.
*/
status_t ENET_QOS_EstReadGcl(ENET_QOS_Type *base, enet_qos_est_gcl_t *gcl, uint32_t listLen, bool hwList)
{
assert(gcl != NULL);
assert(gcl->opList != NULL);
uint8_t dbgm = 0;
uint32_t data, i;
enet_qos_est_gate_op_t *gateOp;
status_t rc;
if (hwList == true)
{
dbgm = 1;
}
/* LLR */
rc = ENET_QOS_EstReadWord(base, (uint32_t)kENET_QOS_Ets_llr, &data, 1, dbgm);
if (rc != kStatus_Success)
{
return rc;
}
gcl->numEntries = data;
if (gcl->numEntries > listLen)
{
return kStatus_ENET_QOS_Est_InvalidParameter;
}
/* BTR High */
rc = ENET_QOS_EstReadWord(base, (uint32_t)kENET_QOS_Ets_btr_high, &data, 1, dbgm);
if (rc != kStatus_Success)
{
return rc;
}
gcl->baseTime = (uint64_t)data << 32U;
/* BTR Low */
rc = ENET_QOS_EstReadWord(base, (uint32_t)kENET_QOS_Ets_btr_low, &data, 1, dbgm);
if (rc != kStatus_Success)
{
return rc;
}
gcl->baseTime |= data;
/* CTR High */
rc = ENET_QOS_EstReadWord(base, (uint32_t)kENET_QOS_Ets_ctr_high, &data, 1, dbgm);
if (rc != kStatus_Success)
{
return rc;
}
gcl->cycleTime = (uint64_t)data << 32U;
/* CTR Low */
rc = ENET_QOS_EstReadWord(base, (uint32_t)kENET_QOS_Ets_ctr_low, &data, 1, dbgm);
if (rc != kStatus_Success)
{
return rc;
}
gcl->cycleTime |= data;
/* TER */
rc = ENET_QOS_EstReadWord(base, (uint32_t)kENET_QOS_Ets_ter, &data, 1, dbgm);
if (rc != kStatus_Success)
{
return rc;
}
gcl->extTime = data;
gateOp = gcl->opList;
for (i = 0; i < gcl->numEntries; i++)
{
rc = ENET_QOS_EstReadWord(base, i, &data, 0, dbgm);
if (rc != kStatus_Success)
{
return rc;
}
gateOp->interval = data & (EST_MAX_INTERVAL);
gateOp->gate = data >> ENET_QOS_EST_WID;
gateOp++;
}
return kStatus_Success;
}
/*!
* brief Read flexible rx parser configuration at specified index.
*
* This function is used to read flexible rx parser configuration at specified index.
*
* param base ENET peripheral base address..
* param rxpConfig The rx parser configuration pointer.
* param entryIndex The rx parser entry index to read, start from 0.
* retval kStatus_Success Configure rx parser success.
* retval kStatus_ENET_QOS_Timeout Poll status flag timeout.
*/
status_t ENET_QOS_ReadRxParser(ENET_QOS_Type *base, enet_qos_rxp_config_t *rxpConfig, uint16_t entryIndex)
{
assert(rxpConfig != NULL);
assert(entryIndex < ENET_QOS_RXP_ENTRY_COUNT);
uint32_t *dataPtr;
uint8_t entrySize = sizeof(enet_qos_rxp_config_t) / sizeof(uint32_t);
uint32_t value = 0U;
status_t result = kStatus_Success;
/* Wait hardware not busy */
result = ENET_QOS_PollStatusFlag(&(base->MTL_RXP_INDIRECT_ACC_CONTROL_STATUS),
ENET_QOS_MTL_RXP_INDIRECT_ACC_CONTROL_STATUS_STARTBUSY_MASK, 0U);
if (kStatus_Success != result)
{
return result;
}
for (uint8_t i = 0; i < entrySize; i++)
{
/* Read address. */
value = ENET_QOS_MTL_RXP_INDIRECT_ACC_CONTROL_STATUS_ADDR((uint32_t)entrySize * entryIndex + i);
/* Issue read command. */
value &= ~ENET_QOS_MTL_RXP_INDIRECT_ACC_CONTROL_STATUS_WRRDN_MASK;
base->MTL_RXP_INDIRECT_ACC_CONTROL_STATUS = value;
/* Start Read */
value |= ENET_QOS_MTL_RXP_INDIRECT_ACC_CONTROL_STATUS_STARTBUSY_MASK;
base->MTL_RXP_INDIRECT_ACC_CONTROL_STATUS = value;
/* Wait hardware not busy */
result = ENET_QOS_PollStatusFlag(&base->MTL_RXP_INDIRECT_ACC_CONTROL_STATUS,
ENET_QOS_MTL_RXP_INDIRECT_ACC_CONTROL_STATUS_STARTBUSY_MASK, 0U);
if (kStatus_Success != result)
{
return result;
}
dataPtr = (uint32_t *)(void *)&rxpConfig[entryIndex];
dataPtr = &dataPtr[i];
/* Read data */
*dataPtr = base->MTL_RXP_INDIRECT_ACC_DATA;
}
return result;
}
/*!
* brief Configure flexible rx parser.
*
* This function is used to configure the flexible rx parser table.
*
* param base ENET peripheral base address..
* param rxpConfig The rx parser configuration pointer.
* param entryCount The rx parser entry count.
* retval kStatus_Success Configure rx parser success.
* retval kStatus_ENET_QOS_Timeout Poll status flag timeout.
*/
status_t ENET_QOS_ConfigureRxParser(ENET_QOS_Type *base, enet_qos_rxp_config_t *rxpConfig, uint16_t entryCount)
{
assert(rxpConfig != NULL);
assert(entryCount <= ENET_QOS_RXP_ENTRY_COUNT);
uint32_t *dataPtr;
uint32_t entrySize = sizeof(enet_qos_rxp_config_t) / sizeof(uint32_t);
uint32_t value = 0U;
status_t result = kStatus_Success;
bool enableRx = false;
/* Disable the MAC rx. */
if (0U != (base->MAC_CONFIGURATION & ENET_QOS_MAC_CONFIGURATION_RE_MASK))
{
base->MAC_CONFIGURATION &= ~ENET_QOS_MAC_CONFIGURATION_RE_MASK;
enableRx = true;
}
/* Disable frame parser. */
result = ENET_QOS_EnableRxParser(base, false);
if (kStatus_Success != result)
{
return result;
}
for (uint8_t count = 0; count < entryCount; count++)
{
for (uint8_t i = 0; i < entrySize; i++)
{
/* Wait hardware not busy */
result = ENET_QOS_PollStatusFlag(&base->MTL_RXP_INDIRECT_ACC_CONTROL_STATUS,
ENET_QOS_MTL_RXP_INDIRECT_ACC_CONTROL_STATUS_STARTBUSY_MASK, 0U);
if (kStatus_Success != result)
{
return result;
}
dataPtr = (uint32_t *)(void *)&rxpConfig[count];
dataPtr = &dataPtr[i];
/* Write data before issue write command */
base->MTL_RXP_INDIRECT_ACC_DATA = *dataPtr;
/* Write address and issue write command */
value = ENET_QOS_MTL_RXP_INDIRECT_ACC_CONTROL_STATUS_ADDR(entrySize * count + i);
// base->MTL_RXP_INDIRECT_ACC_CONTROL_STATUS = value;
value |= ENET_QOS_MTL_RXP_INDIRECT_ACC_CONTROL_STATUS_WRRDN_MASK;
base->MTL_RXP_INDIRECT_ACC_CONTROL_STATUS = value;
/* Start write */
value |= ENET_QOS_MTL_RXP_INDIRECT_ACC_CONTROL_STATUS_STARTBUSY_MASK;
base->MTL_RXP_INDIRECT_ACC_CONTROL_STATUS = value;
}
}
/* Wait hardware not busy */
result = ENET_QOS_PollStatusFlag(&(base->MTL_RXP_INDIRECT_ACC_CONTROL_STATUS),
ENET_QOS_MTL_RXP_INDIRECT_ACC_CONTROL_STATUS_STARTBUSY_MASK, 0U);
if (kStatus_Success != result)
{
return result;
}
/* Program NVE and NPE. */
value = base->MTL_RXP_CONTROL_STATUS;
value &= ~(ENET_QOS_MTL_RXP_CONTROL_STATUS_NVE_MASK | ENET_QOS_MTL_RXP_CONTROL_STATUS_NPE_MASK);
value |= ENET_QOS_MTL_RXP_CONTROL_STATUS_NPE((uint32_t)entryCount - 1U);
if (entryCount < 3U)
{
value |= ENET_QOS_MTL_RXP_CONTROL_STATUS_NVE(2U);
}
else
{
value |= ENET_QOS_MTL_RXP_CONTROL_STATUS_NVE((uint32_t)entryCount - 1U);
}
base->MTL_RXP_CONTROL_STATUS = value;
/* Enable frame parser. */
result = ENET_QOS_EnableRxParser(base, true);
/* Enable Receive */
if (enableRx)
{
base->MAC_CONFIGURATION |= ENET_QOS_MAC_CONFIGURATION_RE_MASK;
}
return result;
}
/*!
* brief Gets statistical data in transfer.
*
* param base ENET_QOS peripheral base address.
* param statistics The statistics structure pointer.
*/
void ENET_QOS_GetStatistics(ENET_QOS_Type *base, enet_qos_transfer_stats_t *statistics)
{
/* Rx statistics */
statistics->statsRxFrameCount = base->MAC_RX_PACKETS_COUNT_GOOD_BAD;
statistics->statsRxCrcErr = base->MAC_RX_CRC_ERROR_PACKETS;
statistics->statsRxAlignErr = base->MAC_RX_ALIGNMENT_ERROR_PACKETS;
statistics->statsRxLengthErr = base->MAC_RX_LENGTH_ERROR_PACKETS;
statistics->statsRxFifoOverflowErr = base->MAC_RX_FIFO_OVERFLOW_PACKETS;
/* Tx statistics */
statistics->statsTxFrameCount = base->MAC_TX_PACKET_COUNT_GOOD_BAD;
statistics->statsTxFifoUnderRunErr = base->MAC_TX_UNDERFLOW_ERROR_PACKETS;
}
/*!
* brief The ENET IRQ handler.
*
* param base ENET peripheral base address.
* param handle The ENET handler pointer.
*/
void ENET_QOS_CommonIRQHandler(ENET_QOS_Type *base, enet_qos_handle_t *handle)
{
/* Check for the interrupt source type. */
/* DMA CHANNEL 0. */
if ((base->DMA_INTERRUPT_STATUS & ENET_QOS_DMA_INTERRUPT_STATUS_DC0IS_MASK) != 0U)
{
uint32_t flag = base->DMA_CH[0].DMA_CHX_STAT;
if ((flag & ENET_QOS_DMA_CHX_STAT_RI_MASK) != 0U)
{
base->DMA_CH[0].DMA_CHX_STAT = ENET_QOS_DMA_CHX_STAT_RI_MASK | ENET_QOS_DMA_CHX_STAT_NIS_MASK;
if (handle->callback != NULL)
{
handle->callback(base, handle, kENET_QOS_RxIntEvent, 0, handle->userData);
}
}
if ((flag & ENET_QOS_DMA_CHX_STAT_TI_MASK) != 0U)
{
base->DMA_CH[0].DMA_CHX_STAT = ENET_QOS_DMA_CHX_STAT_TI_MASK | ENET_QOS_DMA_CHX_STAT_NIS_MASK;
ENET_QOS_ReclaimTxDescriptor(base, handle, 0);
}
}
/* DMA CHANNEL 1. */
if ((base->DMA_INTERRUPT_STATUS & ENET_QOS_DMA_INTERRUPT_STATUS_DC1IS_MASK) != 0U)
{
uint32_t flag = base->DMA_CH[1].DMA_CHX_STAT;
if ((flag & ENET_QOS_DMA_CHX_STAT_RI_MASK) != 0U)
{
base->DMA_CH[1].DMA_CHX_STAT = ENET_QOS_DMA_CHX_STAT_RI_MASK | ENET_QOS_DMA_CHX_STAT_NIS_MASK;
if (handle->callback != NULL)
{
handle->callback(base, handle, kENET_QOS_RxIntEvent, 1, handle->userData);
}
}
if ((flag & ENET_QOS_DMA_CHX_STAT_TI_MASK) != 0U)
{
base->DMA_CH[1].DMA_CHX_STAT = ENET_QOS_DMA_CHX_STAT_TI_MASK | ENET_QOS_DMA_CHX_STAT_NIS_MASK;
ENET_QOS_ReclaimTxDescriptor(base, handle, 1);
}
}
/* DMA CHANNEL 2. */
if ((base->DMA_INTERRUPT_STATUS & ENET_QOS_DMA_INTERRUPT_STATUS_DC2IS_MASK) != 0U)
{
uint32_t flag = base->DMA_CH[2].DMA_CHX_STAT;
if ((flag & ENET_QOS_DMA_CHX_STAT_RI_MASK) != 0U)
{
base->DMA_CH[2].DMA_CHX_STAT = ENET_QOS_DMA_CHX_STAT_RI_MASK | ENET_QOS_DMA_CHX_STAT_NIS_MASK;
if (handle->callback != NULL)
{
handle->callback(base, handle, kENET_QOS_RxIntEvent, 2, handle->userData);
}
}
if ((flag & ENET_QOS_DMA_CHX_STAT_TI_MASK) != 0U)
{
base->DMA_CH[2].DMA_CHX_STAT = ENET_QOS_DMA_CHX_STAT_TI_MASK | ENET_QOS_DMA_CHX_STAT_NIS_MASK;
ENET_QOS_ReclaimTxDescriptor(base, handle, 2);
}
}
/* DMA CHANNEL 3. */
if ((base->DMA_INTERRUPT_STATUS & ENET_QOS_DMA_INTERRUPT_STATUS_DC3IS_MASK) != 0U)
{
uint32_t flag = base->DMA_CH[3].DMA_CHX_STAT;
if ((flag & ENET_QOS_DMA_CHX_STAT_RI_MASK) != 0U)
{
base->DMA_CH[3].DMA_CHX_STAT = ENET_QOS_DMA_CHX_STAT_RI_MASK | ENET_QOS_DMA_CHX_STAT_NIS_MASK;
if (handle->callback != NULL)
{
handle->callback(base, handle, kENET_QOS_RxIntEvent, 3, handle->userData);
}
}
if ((flag & ENET_QOS_DMA_CHX_STAT_TI_MASK) != 0U)
{
base->DMA_CH[3].DMA_CHX_STAT = ENET_QOS_DMA_CHX_STAT_TI_MASK | ENET_QOS_DMA_CHX_STAT_NIS_MASK;
ENET_QOS_ReclaimTxDescriptor(base, handle, 3);
}
}
/* MAC TIMESTAMP. */
if ((base->DMA_INTERRUPT_STATUS & ENET_QOS_DMA_INTERRUPT_STATUS_MACIS_MASK) != 0U)
{
if ((base->MAC_INTERRUPT_STATUS & ENET_QOS_MAC_INTERRUPT_STATUS_TSIS_MASK) != 0U)
{
if (handle->callback != NULL)
{
handle->callback(base, handle, kENET_QOS_TimeStampIntEvent, 0, handle->userData);
}
}
}
SDK_ISR_EXIT_BARRIER;
}
#if defined(ENET_QOS)
void ENET_QOS_DriverIRQHandler(void);
void ENET_QOS_DriverIRQHandler(void)
{
s_enetqosIsr(ENET_QOS, s_ENETHandle[0]);
}
#endif
#if defined(CONNECTIVITY__ENET_QOS)
void CONNECTIVITY_EQOS_INT_DriverIRQHandler(void);
void CONNECTIVITY_EQOS_INT_DriverIRQHandler(void)
{
s_enetqosIsr(CONNECTIVITY__ENET_QOS, s_ENETHandle[0]);
}
#endif