4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-18 09:43:30 +08:00
2017-10-28 10:04:39 +08:00

524 lines
18 KiB
C

/*
* Copyright (c) 2017, NXP Semiconductors, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_pxp.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/* The CSC2 coefficient is ###.####_#### */
#define PXP_CSC2_COEF_INT_WIDTH 2
#define PXP_CSC2_COEF_FRAC_WIDTH 8
/* Compatibility map macro. */
#if defined(PXP_PS_CLRKEYLOW_0_PIXEL_MASK) && (!defined(PXP_PS_CLRKEYLOW_PIXEL_MASK))
#define PS_CLRKEYLOW PS_CLRKEYLOW_0
#define PS_CLRKEYHIGH PS_CLRKEYHIGH_0
#endif
#if defined(PXP_AS_CLRKEYLOW_0_PIXEL_MASK) && (!defined(PXP_AS_CLRKEYLOW_PIXEL_MASK))
#define AS_CLRKEYLOW AS_CLRKEYLOW_0
#define AS_CLRKEYHIGH AS_CLRKEYHIGH_0
#endif
typedef union _u32_f32
{
float f32;
uint32_t u32;
} u32_f32_t;
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get the instance from the base address
*
* @param base PXP peripheral base address
*
* @return The PXP module instance
*/
static uint32_t PXP_GetInstance(PXP_Type *base);
#if !(defined(FSL_FEATURE_PXP_HAS_NO_CSC2) && FSL_FEATURE_PXP_HAS_NO_CSC2)
/*!
* @brief Convert IEEE 754 float value to the value could be written to registers.
*
* This function converts the float value to integer value to set the scaler
* and CSC parameters.
*
* This function is an alternative implemention of the following code with no
* MISRA 2004 rule 10.4 error:
*
* @code
return (uint32_t)(floatValue * (float)(1 << fracBits));
@endcode
*
* @param floatValue The float value to convert.
* @param intBits Bits number of integer part in result.
* @param fracBits Bits number of fractional part in result.
* @return The value to set to register.
*/
static uint32_t PXP_ConvertFloat(float floatValue, uint8_t intBits, uint8_t fracBits);
#endif
/*!
* @brief Convert the desired scale fact to DEC and PS_SCALE.
*
* @param inputDimension Input dimension.
* @param outputDimension Output dimension.
* @param dec The decimation filter contr0l value.
* @param scale The scale value set to register PS_SCALE.
*/
static void PXP_GetScalerParam(uint16_t inputDimension, uint16_t outputDimension, uint8_t *dec, uint32_t *scale);
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Pointers to PXP bases for each instance. */
static PXP_Type *const s_pxpBases[] = PXP_BASE_PTRS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to PXP clocks for each PXP submodule. */
static const clock_ip_name_t s_pxpClocks[] = PXP_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*******************************************************************************
* Code
******************************************************************************/
static uint32_t PXP_GetInstance(PXP_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_pxpBases); instance++)
{
if (s_pxpBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_pxpBases));
return instance;
}
#if !(defined(FSL_FEATURE_PXP_HAS_NO_CSC2) && FSL_FEATURE_PXP_HAS_NO_CSC2)
static uint32_t PXP_ConvertFloat(float floatValue, uint8_t intBits, uint8_t fracBits)
{
/* One bit reserved for sign bit. */
assert(intBits + fracBits < 32);
u32_f32_t u32_f32;
uint32_t ret;
u32_f32.f32 = floatValue;
uint32_t floatBits = u32_f32.u32;
int32_t expValue = (int32_t)((floatBits & 0x7F800000U) >> 23U) - 127;
ret = (floatBits & 0x007FFFFFU) | 0x00800000U;
expValue += fracBits;
if (expValue < 0)
{
return 0U;
}
else if (expValue > 23)
{
/* should not exceed 31-bit when left shift. */
assert((expValue - 23) <= 7);
ret <<= (expValue - 23);
}
else
{
ret >>= (23 - expValue);
}
/* Set the sign bit. */
if (floatBits & 0x80000000U)
{
ret = ((~ret) + 1U) & ~(((uint32_t)-1) << (intBits + fracBits + 1));
}
return ret;
}
#endif
static void PXP_GetScalerParam(uint16_t inputDimension, uint16_t outputDimension, uint8_t *dec, uint32_t *scale)
{
uint32_t scaleFact = ((uint32_t)inputDimension << 12U) / outputDimension;
if (scaleFact >= (16U << 12U))
{
/* Desired fact is two large, use the largest support value. */
*dec = 3U;
*scale = 0x2000U;
}
else
{
if (scaleFact > (8U << 12U))
{
*dec = 3U;
}
else if (scaleFact > (4U << 12U))
{
*dec = 2U;
}
else if (scaleFact > (2U << 12U))
{
*dec = 1U;
}
else
{
*dec = 0U;
}
*scale = scaleFact >> (*dec);
if (0U == *scale)
{
*scale = 1U;
}
}
}
void PXP_Init(PXP_Type *base)
{
uint32_t ctrl = 0U;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
uint32_t instance = PXP_GetInstance(base);
CLOCK_EnableClock(s_pxpClocks[instance]);
#endif
PXP_Reset(base);
/* Enable the process engine in primary processing flow. */
#if defined(PXP_CTRL_ENABLE_ROTATE0_MASK)
ctrl |= PXP_CTRL_ENABLE_ROTATE0_MASK;
#endif
#if defined(PXP_CTRL_ENABLE_ROTATE1_MASK)
ctrl |= PXP_CTRL_ENABLE_ROTATE1_MASK;
#endif
#if defined(PXP_CTRL_ENABLE_CSC2_MASK)
ctrl |= PXP_CTRL_ENABLE_CSC2_MASK;
#endif
#if defined(PXP_CTRL_ENABLE_LUT_MASK)
ctrl |= PXP_CTRL_ENABLE_LUT_MASK;
#endif
#if defined(PXP_CTRL_ENABLE_PS_AS_OUT_MASK)
ctrl |= PXP_CTRL_ENABLE_PS_AS_OUT_MASK;
#endif
base->CTRL = ctrl;
}
void PXP_Deinit(PXP_Type *base)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
uint32_t instance = PXP_GetInstance(base);
CLOCK_DisableClock(s_pxpClocks[instance]);
#endif
}
void PXP_Reset(PXP_Type *base)
{
base->CTRL_SET = PXP_CTRL_SFTRST_MASK;
base->CTRL_CLR = (PXP_CTRL_SFTRST_MASK | PXP_CTRL_CLKGATE_MASK);
}
void PXP_SetAlphaSurfaceBufferConfig(PXP_Type *base, const pxp_as_buffer_config_t *config)
{
assert(config);
base->AS_CTRL = (base->AS_CTRL & ~PXP_AS_CTRL_FORMAT_MASK) | PXP_AS_CTRL_FORMAT(config->pixelFormat);
base->AS_BUF = config->bufferAddr;
base->AS_PITCH = config->pitchBytes;
}
void PXP_SetAlphaSurfaceBlendConfig(PXP_Type *base, const pxp_as_blend_config_t *config)
{
assert(config);
uint32_t reg;
reg = base->AS_CTRL;
reg &=
~(PXP_AS_CTRL_ALPHA0_INVERT_MASK | PXP_AS_CTRL_ROP_MASK | PXP_AS_CTRL_ALPHA_MASK | PXP_AS_CTRL_ALPHA_CTRL_MASK);
reg |= (PXP_AS_CTRL_ROP(config->ropMode) | PXP_AS_CTRL_ALPHA(config->alpha) |
PXP_AS_CTRL_ALPHA_CTRL(config->alphaMode));
if (config->invertAlpha)
{
reg |= PXP_AS_CTRL_ALPHA0_INVERT_MASK;
}
base->AS_CTRL = reg;
}
void PXP_SetAlphaSurfacePosition(
PXP_Type *base, uint16_t upperLeftX, uint16_t upperLeftY, uint16_t lowerRightX, uint16_t lowerRightY)
{
base->OUT_AS_ULC = PXP_OUT_AS_ULC_Y(upperLeftY) | PXP_OUT_AS_ULC_X(upperLeftX);
base->OUT_AS_LRC = PXP_OUT_AS_LRC_Y(lowerRightY) | PXP_OUT_AS_LRC_X(lowerRightX);
}
void PXP_SetAlphaSurfaceOverlayColorKey(PXP_Type *base, uint32_t colorKeyLow, uint32_t colorKeyHigh)
{
base->AS_CLRKEYLOW = colorKeyLow;
base->AS_CLRKEYHIGH = colorKeyHigh;
}
void PXP_SetProcessSurfaceBufferConfig(PXP_Type *base, const pxp_ps_buffer_config_t *config)
{
assert(config);
base->PS_CTRL = ((base->PS_CTRL & ~(PXP_PS_CTRL_FORMAT_MASK | PXP_PS_CTRL_WB_SWAP_MASK)) |
PXP_PS_CTRL_FORMAT(config->pixelFormat) | PXP_PS_CTRL_WB_SWAP(config->swapByte));
base->PS_BUF = config->bufferAddr;
base->PS_UBUF = config->bufferAddrU;
base->PS_VBUF = config->bufferAddrV;
base->PS_PITCH = config->pitchBytes;
}
void PXP_SetProcessSurfaceScaler(
PXP_Type *base, uint16_t inputWidth, uint16_t inputHeight, uint16_t outputWidth, uint16_t outputHeight)
{
uint8_t decX, decY;
uint32_t scaleX, scaleY;
PXP_GetScalerParam(inputWidth, outputWidth, &decX, &scaleX);
PXP_GetScalerParam(inputHeight, outputHeight, &decY, &scaleY);
base->PS_CTRL = (base->PS_CTRL & ~(PXP_PS_CTRL_DECX_MASK | PXP_PS_CTRL_DECY_MASK)) | PXP_PS_CTRL_DECX(decX) |
PXP_PS_CTRL_DECY(decY);
base->PS_SCALE = PXP_PS_SCALE_XSCALE(scaleX) | PXP_PS_SCALE_YSCALE(scaleY);
}
void PXP_SetProcessSurfacePosition(
PXP_Type *base, uint16_t upperLeftX, uint16_t upperLeftY, uint16_t lowerRightX, uint16_t lowerRightY)
{
base->OUT_PS_ULC = PXP_OUT_PS_ULC_Y(upperLeftY) | PXP_OUT_PS_ULC_X(upperLeftX);
base->OUT_PS_LRC = PXP_OUT_PS_LRC_Y(lowerRightY) | PXP_OUT_PS_LRC_X(lowerRightX);
}
void PXP_SetProcessSurfaceColorKey(PXP_Type *base, uint32_t colorKeyLow, uint32_t colorKeyHigh)
{
base->PS_CLRKEYLOW = colorKeyLow;
base->PS_CLRKEYHIGH = colorKeyHigh;
}
void PXP_SetOutputBufferConfig(PXP_Type *base, const pxp_output_buffer_config_t *config)
{
assert(config);
base->OUT_CTRL = (base->OUT_CTRL & ~(PXP_OUT_CTRL_FORMAT_MASK | PXP_OUT_CTRL_INTERLACED_OUTPUT_MASK)) |
PXP_OUT_CTRL_FORMAT(config->pixelFormat) | PXP_OUT_CTRL_INTERLACED_OUTPUT(config->interlacedMode);
base->OUT_BUF = config->buffer0Addr;
base->OUT_BUF2 = config->buffer1Addr;
base->OUT_PITCH = config->pitchBytes;
base->OUT_LRC = PXP_OUT_LRC_Y(config->height - 1U) | PXP_OUT_LRC_X(config->width - 1U);
/*
* The dither store size must be set to the same with the output buffer size,
* otherwise the dither engine could not work.
*/
#if defined(PXP_DITHER_STORE_SIZE_CH0_OUT_WIDTH_MASK)
base->DITHER_STORE_SIZE_CH0 = PXP_DITHER_STORE_SIZE_CH0_OUT_WIDTH(config->width - 1U) |
PXP_DITHER_STORE_SIZE_CH0_OUT_HEIGHT(config->height - 1U);
#endif
}
#if !(defined(FSL_FEATURE_PXP_HAS_NO_CSC2) && FSL_FEATURE_PXP_HAS_NO_CSC2)
void PXP_SetCsc2Config(PXP_Type *base, const pxp_csc2_config_t *config)
{
assert(config);
base->CSC2_CTRL = (base->CSC2_CTRL & ~PXP_CSC2_CTRL_CSC_MODE_MASK) | PXP_CSC2_CTRL_CSC_MODE(config->mode);
base->CSC2_COEF0 =
(PXP_ConvertFloat(config->A1, PXP_CSC2_COEF_INT_WIDTH, PXP_CSC2_COEF_FRAC_WIDTH) << PXP_CSC2_COEF0_A1_SHIFT) |
(PXP_ConvertFloat(config->A2, PXP_CSC2_COEF_INT_WIDTH, PXP_CSC2_COEF_FRAC_WIDTH) << PXP_CSC2_COEF0_A2_SHIFT);
base->CSC2_COEF1 =
(PXP_ConvertFloat(config->A3, PXP_CSC2_COEF_INT_WIDTH, PXP_CSC2_COEF_FRAC_WIDTH) << PXP_CSC2_COEF1_A3_SHIFT) |
(PXP_ConvertFloat(config->B1, PXP_CSC2_COEF_INT_WIDTH, PXP_CSC2_COEF_FRAC_WIDTH) << PXP_CSC2_COEF1_B1_SHIFT);
base->CSC2_COEF2 =
(PXP_ConvertFloat(config->B2, PXP_CSC2_COEF_INT_WIDTH, PXP_CSC2_COEF_FRAC_WIDTH) << PXP_CSC2_COEF2_B2_SHIFT) |
(PXP_ConvertFloat(config->B3, PXP_CSC2_COEF_INT_WIDTH, PXP_CSC2_COEF_FRAC_WIDTH) << PXP_CSC2_COEF2_B3_SHIFT);
base->CSC2_COEF3 =
(PXP_ConvertFloat(config->C1, PXP_CSC2_COEF_INT_WIDTH, PXP_CSC2_COEF_FRAC_WIDTH) << PXP_CSC2_COEF3_C1_SHIFT) |
(PXP_ConvertFloat(config->C2, PXP_CSC2_COEF_INT_WIDTH, PXP_CSC2_COEF_FRAC_WIDTH) << PXP_CSC2_COEF3_C2_SHIFT);
base->CSC2_COEF4 =
(PXP_ConvertFloat(config->C3, PXP_CSC2_COEF_INT_WIDTH, PXP_CSC2_COEF_FRAC_WIDTH) << PXP_CSC2_COEF4_C3_SHIFT) |
PXP_CSC2_COEF4_D1(config->D1);
base->CSC2_COEF5 = PXP_CSC2_COEF5_D2(config->D2) | PXP_CSC2_COEF5_D3(config->D3);
}
#endif
void PXP_SetCsc1Mode(PXP_Type *base, pxp_csc1_mode_t mode)
{
/*
* The equations used for Colorspace conversion are:
*
* R = C0*(Y+Y_OFFSET) + C1(V+UV_OFFSET)
* G = C0*(Y+Y_OFFSET) + C3(U+UV_OFFSET) + C2(V+UV_OFFSET)
* B = C0*(Y+Y_OFFSET) + C4(U+UV_OFFSET)
*/
if (kPXP_Csc1YUV2RGB == mode)
{
base->CSC1_COEF0 = (base->CSC1_COEF0 &
~(PXP_CSC1_COEF0_C0_MASK | PXP_CSC1_COEF0_Y_OFFSET_MASK | PXP_CSC1_COEF0_UV_OFFSET_MASK |
PXP_CSC1_COEF0_YCBCR_MODE_MASK)) |
PXP_CSC1_COEF0_C0(0x100U) /* 1.00. */
| PXP_CSC1_COEF0_Y_OFFSET(0x0U) /* 0. */
| PXP_CSC1_COEF0_UV_OFFSET(0x0U); /* 0. */
base->CSC1_COEF1 = PXP_CSC1_COEF1_C1(0x0123U) /* 1.140. */
| PXP_CSC1_COEF1_C4(0x0208U); /* 2.032. */
base->CSC1_COEF2 = PXP_CSC1_COEF2_C2(0x076BU) /* -0.851. */
| PXP_CSC1_COEF2_C3(0x079BU); /* -0.394. */
}
else
{
base->CSC1_COEF0 = (base->CSC1_COEF0 &
~(PXP_CSC1_COEF0_C0_MASK | PXP_CSC1_COEF0_Y_OFFSET_MASK | PXP_CSC1_COEF0_UV_OFFSET_MASK)) |
PXP_CSC1_COEF0_YCBCR_MODE_MASK | PXP_CSC1_COEF0_C0(0x12AU) /* 1.164. */
| PXP_CSC1_COEF0_Y_OFFSET(0x1F0U) /* -16. */
| PXP_CSC1_COEF0_UV_OFFSET(0x180U); /* -128. */
base->CSC1_COEF1 = PXP_CSC1_COEF1_C1(0x0198U) /* 1.596. */
| PXP_CSC1_COEF1_C4(0x0204U); /* 2.017. */
base->CSC1_COEF2 = PXP_CSC1_COEF2_C2(0x0730U) /* -0.813. */
| PXP_CSC1_COEF2_C3(0x079CU); /* -0.392. */
}
}
#if !(defined(FSL_FEATURE_PXP_HAS_NO_LUT) && FSL_FEATURE_PXP_HAS_NO_LUT)
void PXP_SetLutConfig(PXP_Type *base, const pxp_lut_config_t *config)
{
base->LUT_CTRL = (base->LUT_CTRL & ~(PXP_LUT_CTRL_OUT_MODE_MASK | PXP_LUT_CTRL_LOOKUP_MODE_MASK)) |
PXP_LUT_CTRL_LRU_UPD_MASK | /* Use Least Recently Used Policy Update Control. */
PXP_LUT_CTRL_OUT_MODE(config->outMode) | PXP_LUT_CTRL_LOOKUP_MODE(config->lookupMode);
if (kPXP_LutOutRGBW4444CFA == config->outMode)
{
base->CFA = config->cfaValue;
}
}
status_t PXP_LoadLutTable(
PXP_Type *base, pxp_lut_lookup_mode_t lookupMode, uint32_t bytesNum, uint32_t memAddr, uint16_t lutStartAddr)
{
if (kPXP_LutCacheRGB565 == lookupMode)
{
/* Make sure the previous memory write is finished, especially the LUT data memory. */
__DSB();
base->LUT_EXTMEM = memAddr;
/* Invalid cache. */
base->LUT_CTRL |= PXP_LUT_CTRL_INVALID_MASK;
}
else
{
/* Number of bytes must be divisable by 8. */
if ((bytesNum & 0x07U) || (bytesNum < 8U) || (lutStartAddr & 0x07U) ||
(bytesNum + lutStartAddr > PXP_LUT_TABLE_BYTE))
{
return kStatus_InvalidArgument;
}
base->LUT_EXTMEM = memAddr;
base->LUT_ADDR = PXP_LUT_ADDR_ADDR(lutStartAddr) | PXP_LUT_ADDR_NUM_BYTES(bytesNum);
base->STAT_CLR = PXP_STAT_LUT_DMA_LOAD_DONE_IRQ_MASK;
/* Start DMA transfer. */
base->LUT_CTRL |= PXP_LUT_CTRL_DMA_START_MASK;
__DSB();
/* Wait for transfer completed. */
while (!(base->STAT & PXP_STAT_LUT_DMA_LOAD_DONE_IRQ_MASK))
{
}
}
return kStatus_Success;
}
#endif /* FSL_FEATURE_PXP_HAS_NO_LUT */
#if (defined(FSL_FEATURE_PXP_HAS_DITHER) && FSL_FEATURE_PXP_HAS_DITHER)
void PXP_SetInternalRamData(PXP_Type *base, pxp_ram_t ram, uint32_t bytesNum, uint8_t *data, uint16_t memStartAddr)
{
assert((memStartAddr + bytesNum) <= PXP_INTERNAL_RAM_LUT_BYTE);
base->INIT_MEM_CTRL =
PXP_INIT_MEM_CTRL_ADDR(memStartAddr) | PXP_INIT_MEM_CTRL_SELECT(ram) | PXP_INIT_MEM_CTRL_START_MASK;
while (bytesNum--)
{
base->INIT_MEM_DATA = (uint32_t)(*data);
data++;
}
base->INIT_MEM_CTRL = 0U;
}
void PXP_SetDitherFinalLutData(PXP_Type *base, const pxp_dither_final_lut_data_t *data)
{
base->DITHER_FINAL_LUT_DATA0 = data->data_3_0;
base->DITHER_FINAL_LUT_DATA1 = data->data_7_4;
base->DITHER_FINAL_LUT_DATA2 = data->data_11_8;
base->DITHER_FINAL_LUT_DATA3 = data->data_15_12;
}
void PXP_EnableDither(PXP_Type *base, bool enable)
{
if (enable)
{
base->CTRL_SET = PXP_CTRL_ENABLE_DITHER_MASK;
/* Route dither output to output buffer. */
base->DATA_PATH_CTRL0 &= ~PXP_DATA_PATH_CTRL0_MUX14_SEL_MASK;
}
else
{
base->CTRL_CLR = PXP_CTRL_ENABLE_DITHER_MASK;
/* Route MUX 12 output to output buffer. */
base->DATA_PATH_CTRL0 |= PXP_DATA_PATH_CTRL0_MUX14_SEL(1U);
}
}
#endif /* FSL_FEATURE_PXP_HAS_DITHER */