rt-thread-official/bsp/ti/c28x/libraries/tms320f28379d/common/source/F2837xD_Gpio.c

507 lines
17 KiB
C

//###########################################################################
//
// FILE: F2837xD_Gpio.c
//
// TITLE: GPIO module support functions
//
//###########################################################################
// $TI Release: F2837xD Support Library v3.05.00.00 $
// $Release Date: Tue Jun 26 03:15:23 CDT 2018 $
// $Copyright:
// Copyright (C) 2013-2018 Texas Instruments Incorporated - http://www.ti.com/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// Neither the name of Texas Instruments Incorporated nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// $
//###########################################################################
//
// Included Files
//
#include "F2837xD_device.h"
#include "F2837xD_Examples.h"
//
//Low-level functions for GPIO configuration (CPU1 only)
//
#ifdef CPU1
//
// InitGpio - Sets all pins to be muxed to GPIO in input mode with pull-ups
// enabled. Also resets CPU control to CPU1 and disables open
// drain and polarity inversion and sets the qualification to
// synchronous. Also unlocks all GPIOs. Only one CPU should call
// this function.
//
void InitGpio()
{
volatile Uint32 *gpioBaseAddr;
Uint16 regOffset;
//
//Disable pin locks
//
EALLOW;
GpioCtrlRegs.GPALOCK.all = 0x00000000;
GpioCtrlRegs.GPBLOCK.all = 0x00000000;
GpioCtrlRegs.GPCLOCK.all = 0x00000000;
GpioCtrlRegs.GPDLOCK.all = 0x00000000;
GpioCtrlRegs.GPELOCK.all = 0x00000000;
GpioCtrlRegs.GPFLOCK.all = 0x00000000;
//
// Fill all registers with zeros. Writing to each register separately
// for six GPIO modules would make this function *very* long.
// Fortunately, we'd be writing them all with zeros anyway, so this
// saves a lot of space.
//
gpioBaseAddr = (Uint32 *)&GpioCtrlRegs;
for (regOffset = 0; regOffset < sizeof(GpioCtrlRegs)/2; regOffset++)
{
//
//Hack to avoid enabling pull-ups on all pins. GPyPUD is offset
//0x0C in each register group of 0x40 words. Since this is a
//32-bit pointer, the addresses must be divided by 2.
//
if (regOffset % (0x40/2) != (0x0C/2))
{
gpioBaseAddr[regOffset] = 0x00000000;
}
}
gpioBaseAddr = (Uint32 *)&GpioDataRegs;
for (regOffset = 0; regOffset < sizeof(GpioDataRegs)/2; regOffset++)
{
gpioBaseAddr[regOffset] = 0x00000000;
}
EDIS;
}
//
// GPIO_SetupPinMux - Set the peripheral muxing for the specified pin. The
// appropriate parameters can be found in the GPIO Muxed
// Pins table(4.4) in the datasheet. Use the GPIO index
// row (0 to 15) to select a muxing option for the GPIO.
//
void GPIO_SetupPinMux(Uint16 gpioNumber, Uint16 cpu, Uint16 muxPosition)
{
volatile Uint32 *gpioBaseAddr;
volatile Uint32 *mux, *gmux, *csel;
Uint16 pin32, pin16, pin8;
pin32 = gpioNumber % 32;
pin16 = gpioNumber % 16;
pin8 = gpioNumber % 8;
gpioBaseAddr = (Uint32 *)&GpioCtrlRegs + (gpioNumber/32)*GPY_CTRL_OFFSET;
//
//Sanity check for valid cpu and peripheral values
//
if (cpu > GPIO_MUX_CPU2CLA || muxPosition > 0xF)
return;
//
//Create pointers to the appropriate registers. This is a workaround
//for the way GPIO registers are defined. The standard definition
//in the header file makes it very easy to do named accesses of one
//register or bit, but hard to do arbitrary numerical accesses. It's
//easier to have an array of GPIO modules with identical registers,
//including arrays for multi-register groups like GPyCSEL1-4. But
//the header file doesn't define anything we can turn into an array,
//so manual pointer arithmetic is used instead.
//
mux = gpioBaseAddr + GPYMUX + pin32/16;
gmux = gpioBaseAddr + GPYGMUX + pin32/16;
csel = gpioBaseAddr + GPYCSEL + pin32/8;
//
//Now for the actual function
//
EALLOW;
//
//To change the muxing, set the peripheral mux to 0/GPIO first to avoid
//glitches, then change the group mux, then set the peripheral mux to
//its target value. Finally, set the CPU select. This procedure is
//described in the TRM. Unfortunately, since we don't know the pin in
//advance we can't hardcode a bitfield reference, so there's some
//tricky bit twiddling here.
//
*mux &= ~(0x3UL << (2*pin16));
*gmux &= ~(0x3UL << (2*pin16));
*gmux |= (Uint32)((muxPosition >> 2) & 0x3UL) << (2*pin16);
*mux |= (Uint32)(muxPosition & 0x3UL) << (2*pin16);
*csel &= ~(0x3L << (4*pin8));
*csel |= (Uint32)(cpu & 0x3L) << (4*pin8);
//
//WARNING: This code does not touch the analog mode select registers,
//which are needed to give the USB module control of its IOs.
//
EDIS;
}
//
// GPIO_SetupPinOptions - Setup up the GPIO input/output options for the
// specified pin.
//
//The flags are a 16-bit mask produced by ORing together options.
//For input pins, the valid flags are:
//GPIO_PULLUP Enable pull-up
//GPIO_INVERT Enable input polarity inversion
//GPIO_SYNC Synchronize the input latch to PLLSYSCLK
// (default -- you don't need to specify this)
//GPIO_QUAL3 Use 3-sample qualification
//GPIO_QUAL6 Use 6-sample qualification
//GPIO_ASYNC Do not use synchronization or qualification
//(Note: only one of SYNC, QUAL3, QUAL6, or ASYNC is allowed)
//
//For output pins, the valid flags are:
//GPIO_OPENDRAIN Output in open drain mode
//GPIO_PULLUP If open drain enabled, also enable the pull-up
//and the input qualification flags (SYNC/QUAL3/QUAL6/SYNC) listed above.
//
//With no flags, the default input state is synchronous with no
//pull-up or polarity inversion. The default output state is
//the standard digital output.
//
void GPIO_SetupPinOptions(Uint16 gpioNumber, Uint16 output, Uint16 flags)
{
volatile Uint32 *gpioBaseAddr;
volatile Uint32 *dir, *pud, *inv, *odr, *qsel;
Uint32 pin32, pin16, pinMask, qual;
pin32 = gpioNumber % 32;
pin16 = gpioNumber % 16;
pinMask = 1UL << pin32;
gpioBaseAddr = (Uint32 *)&GpioCtrlRegs + (gpioNumber/32)*GPY_CTRL_OFFSET;
//
//Create pointers to the appropriate registers. This is a workaround
//for the way GPIO registers are defined. The standard definition
//in the header file makes it very easy to do named accesses of one
//register or bit, but hard to do arbitrary numerical accesses. It's
//easier to have an array of GPIO modules with identical registers,
//including arrays for multi-register groups like GPyQSEL1-2. But
//the header file doesn't define anything we can turn into an array,
//so manual pointer arithmetic is used instead.
//
dir = gpioBaseAddr + GPYDIR;
pud = gpioBaseAddr + GPYPUD;
inv = gpioBaseAddr + GPYINV;
odr = gpioBaseAddr + GPYODR;
qsel = gpioBaseAddr + GPYQSEL + pin32/16;
EALLOW;
//
//Set the data direction
//
*dir &= ~pinMask;
if (output == 1)
{
//
//Output, with optional open drain mode and pull-up
//
*dir |= pinMask;
//
//Enable open drain if necessary
//
if (flags & GPIO_OPENDRAIN)
{
*odr |= pinMask;
}
else
{
*odr &= ~pinMask;
}
//
//Enable pull-up if necessary. Open drain mode must be active.
//
if (flags & (GPIO_OPENDRAIN | GPIO_PULLUP))
{
*pud &= ~pinMask;
}
else
{
*pud |= pinMask;
}
}
else
{
//
//Input, with optional pull-up, qualification, and polarity
//inversion
//
*dir &= ~pinMask;
//
//Enable pull-up if necessary
//
if (flags & GPIO_PULLUP)
{
*pud &= ~pinMask;
}
else
{
*pud |= pinMask;
}
//
//Invert polarity if necessary
//
if (flags & GPIO_INVERT)
{
*inv |= pinMask;
}
else
{
*inv &= ~pinMask;
}
}
//
//Extract the qualification parameter and load it into the register.
//This is also needed for open drain outputs, so we might as well do it
//all the time.
//
qual = (flags & GPIO_ASYNC) / GPIO_QUAL3;
*qsel &= ~(0x3L << (2 * pin16));
if (qual != 0x0)
{
*qsel |= qual << (2 * pin16);
}
EDIS;
}
//
// GPIO_SetupLock - Enable or disable the GPIO register bit lock for the
// specified pin.
// The valid flags are:
// GPIO_UNLOCK - Unlock the pin setup register bits for
// the specified pin
// GPIO_LOCK - Lock the pin setup register bits for the
// specified pin
//
void GPIO_SetupLock(Uint16 gpioNumber, Uint16 flags)
{
volatile Uint32 *gpioBaseAddr;
volatile Uint32 *lock;
Uint32 pin32, pinMask;
pin32 = gpioNumber % 32;
pinMask = 1UL << pin32;
gpioBaseAddr = (Uint32 *)&GpioCtrlRegs + (gpioNumber/32)*GPY_CTRL_OFFSET;
//
//Create pointers to the appropriate registers. This is a workaround
//for the way GPIO registers are defined. The standard definition
//in the header file makes it very easy to do named accesses of one
//register or bit, but hard to do arbitrary numerical accesses. It's
//easier to have an array of GPIO modules with identical registers,
//including arrays for multi-register groups like GPyQSEL1-2. But
//the header file doesn't define anything we can turn into an array,
//so manual pointer arithmetic is used instead.
//
lock = gpioBaseAddr + GPYLOCK;
EALLOW;
if(flags)
{
//Lock the pin
*lock |= pinMask;
}
else
{
//Unlock the pin
*lock &= ~pinMask;
}
EDIS;
}
//
//External interrupt setup
//
void GPIO_SetupXINT1Gpio(Uint16 gpioNumber)
{
EALLOW;
InputXbarRegs.INPUT4SELECT = gpioNumber; //Set XINT1 source to GPIO-pin
EDIS;
}
void GPIO_SetupXINT2Gpio(Uint16 gpioNumber)
{
EALLOW;
InputXbarRegs.INPUT5SELECT = gpioNumber; //Set XINT2 source to GPIO-pin
EDIS;
}
void GPIO_SetupXINT3Gpio(Uint16 gpioNumber)
{
EALLOW;
InputXbarRegs.INPUT6SELECT = gpioNumber; //Set XINT3 source to GPIO-pin
EDIS;
}
void GPIO_SetupXINT4Gpio(Uint16 gpioNumber)
{
EALLOW;
InputXbarRegs.INPUT13SELECT = gpioNumber; //Set XINT4 source to GPIO-pin
EDIS;
}
void GPIO_SetupXINT5Gpio(Uint16 gpioNumber)
{
EALLOW;
InputXbarRegs.INPUT14SELECT = gpioNumber; //Set XINT5 source to GPIO-pin
EDIS;
}
//
//GPIO_EnableUnbondedIOPullupsFor176Pin - Enable pullups for the unbonded
// GPIOs on the 176PTP package:
// GPIOs Grp Bits
// 95-132 C 31
// D 31:0
// E 4:0
// 134-168 E 31:6
// F 8:0
//
void GPIO_EnableUnbondedIOPullupsFor176Pin()
{
EALLOW;
GpioCtrlRegs.GPCPUD.all = ~0x80000000; //GPIO 95
GpioCtrlRegs.GPDPUD.all = ~0xFFFFFFF7; //GPIOs 96-127
GpioCtrlRegs.GPEPUD.all = ~0xFFFFFFDF; //GPIOs 128-159 except for 133
GpioCtrlRegs.GPFPUD.all = ~0x000001FF; //GPIOs 160-168
EDIS;
}
//
// GPIO_EnableUnbondedIOPullupsFor100Pin - Enable pullups for the unbonded
// GPIOs on the 100PZ package:
// GPIOs Grp Bits
// 0-1 A 1:0
// 5-9 A 9:5
// 22-40 A 31:22
// B 8:0
// 44-57 B 25:12
// 67-68 C 4:3
// 74-77 C 13:10
// 79-83 C 19:15
// 93-168 C 31:29
// D 31:0
// E 31:0
// F 8:0
//
void GPIO_EnableUnbondedIOPullupsFor100Pin()
{
EALLOW;
GpioCtrlRegs.GPAPUD.all = ~0xFFC003E3; //GPIOs 0-1, 5-9, 22-31
GpioCtrlRegs.GPBPUD.all = ~0x03FFF1FF; //GPIOs 32-40, 44-57
GpioCtrlRegs.GPCPUD.all = ~0xE10FBC18; //GPIOs 67-68, 74-77, 79-83, 93-95
GpioCtrlRegs.GPDPUD.all = ~0xFFFFFFF7; //GPIOs 96-127
GpioCtrlRegs.GPEPUD.all = ~0xFFFFFFFF; //GPIOs 128-159
GpioCtrlRegs.GPFPUD.all = ~0x000001FF; //GPIOs 160-168
EDIS;
}
//
// GPIO_EnableUnbondedIOPullups - InitSysCtrl would call this function
// this takes care of enabling IO pullups.
//
void GPIO_EnableUnbondedIOPullups()
{
//
//bits 8-10 have pin count
//
unsigned char pin_count = ((DevCfgRegs.PARTIDL.all & 0x00000700) >> 8) ;
//
//5 = 100 pin
//6 = 176 pin
//7 = 337 pin
//
if(pin_count == 5)
{
GPIO_EnableUnbondedIOPullupsFor100Pin();
}
else if (pin_count == 6)
{
GPIO_EnableUnbondedIOPullupsFor176Pin();
}
else
{
//do nothing - this is 337 pin package
}
}
#endif //CPU1
//
// GPIO_ReadPin - Read the GPyDAT register bit for the specified pin. Note that
// this returns the actual state of the pin, not the state of
// the output latch.
//
Uint16 GPIO_ReadPin(Uint16 gpioNumber)
{
volatile Uint32 *gpioDataReg;
Uint16 pinVal;
gpioDataReg = (volatile Uint32 *)&GpioDataRegs + (gpioNumber/32)*GPY_DATA_OFFSET;
pinVal = (gpioDataReg[GPYDAT] >> (gpioNumber % 32)) & 0x1;
return pinVal;
}
//
// GPIO_WritePin - Set the GPyDAT register bit for the specified pin.
//
void GPIO_WritePin(Uint16 gpioNumber, Uint16 outVal)
{
volatile Uint32 *gpioDataReg;
Uint32 pinMask;
gpioDataReg = (volatile Uint32 *)&GpioDataRegs + (gpioNumber/32)*GPY_DATA_OFFSET;
pinMask = 1UL << (gpioNumber % 32);
if (outVal == 0)
{
gpioDataReg[GPYCLEAR] = pinMask;
}
else
{
gpioDataReg[GPYSET] = pinMask;
}
}
//
// End of file
//