4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-25 23:07:24 +08:00
wdfk-prog 569e2ae1e8
[CAN]update struct can_filter_item and rt_can_msg (#6556)
* 修改ry命令,已便于自定义保存路径

* modified:   components/utilities/ymodem/ry_sy.c

* 修复从被动错误恢复后发送返回异常

* 修复在自动重传模式下,ACK异常阻塞线程
- 删除TX中断函数else分支。仅当RQCP位 置一才进入该中断
- 添加SCE中断函数中关于ACK_ERR的else判断。自动重传模式下会进入该判断,打断自动重传释放完成量。

* 增加对于CAN1与CAN2的SCE中断和TX中断的公共处理函数

* formatting格式化代码

* update struct can_filter_item and rt_can_msg
1. 对过滤器号和索引号结构体定义中同一名称hdr进行重命名hdr_bank和hdr_index,
以便准确区分.采用宏定义兼容以前变量名.
2. 添加接收标识rxfifo,已指明是哪个RXFIFO.

* 更正42M下的波特率

* 修复接收获取索引号错误

* 添加接收标识

* 更新注释

* 取消CANFD限制

* update struct can_filter_item and rt_can_msg
2022-11-21 21:45:51 -05:00

661 lines
20 KiB
C

/**************************************************************************//**
*
* @copyright (C) 2020 Nuvoton Technology Corp. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-4-27 Wayne First version
*
******************************************************************************/
#include <rtconfig.h>
#if defined(BSP_USING_CANFD)
#include <rtdevice.h>
#include <rthw.h>
#include "drv_sys.h"
#include "drv_common.h"
#include "nu_bitutil.h"
#define LOG_TAG "drv.canfd"
#undef DBG_ENABLE
#define DBG_SECTION_NAME LOG_TAG
#define DBG_LEVEL LOG_LVL_ERROR
#define DBG_COLOR
#include <rtdbg.h>
/* Private Define ---------------------------------------------------------------*/
#define IS_CAN_STDID(STDID) ((STDID) <= 0x7FFU)
#define IS_CAN_EXTID(EXTID) ((EXTID) <= 0x1FFFFFFFU)
#define IS_CAN_DLC(DLC) ((DLC) <= 8U)
/* Default config for serial_configure structure */
#define NU_CANFD_CONFIG_DEFAULT \
{ \
CAN1MBaud, /* 1M bits/s */ \
RT_CANMSG_BOX_SZ, /* message box max size */ \
RT_CANSND_BOX_NUM, /* message box number */ \
RT_CAN_MODE_NORMAL, /* Normal mode */ \
0, /* privmode */ \
0, /* reserved */ \
100, /* Timeout Tick */ \
}
enum
{
CANFD_START = -1,
#if defined(BSP_USING_CANFD0)
CANFD0_IDX,
#endif
#if defined(BSP_USING_CANFD1)
CANFD1_IDX,
#endif
#if defined(BSP_USING_CANFD2)
CANFD2_IDX,
#endif
#if defined(BSP_USING_CANFD3)
CANFD3_IDX,
#endif
CANFD_CNT
};
/* Private Typedef --------------------------------------------------------------*/
struct nu_canfd
{
struct rt_can_device dev;
char *name;
CANFD_T *base;
uint32_t rstidx;
IRQn_Type irqn0;
IRQn_Type irqn1;
uint32_t int_flag;
CANFD_FD_T sCANFD_Config;
};
typedef struct nu_canfd *nu_canfd_t;
/* Private functions ------------------------------------------------------------*/
static rt_err_t nu_canfd_configure(struct rt_can_device *can, struct can_configure *cfg);
static rt_err_t nu_canfd_control(struct rt_can_device *can, int cmd, void *arg);
static int nu_canfd_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t boxno);
static int nu_canfd_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t boxno);
static struct nu_canfd nu_canfd_arr[] =
{
#if defined(BSP_USING_CANFD0)
{
.name = "canfd0",
.base = CANFD0,
.rstidx = CANFD0_RST,
.irqn0 = CANFD00_IRQn,
.irqn1 = CANFD01_IRQn,
},
#endif
#if defined(BSP_USING_CANFD1)
{
.name = "canfd1",
.base = CANFD1,
.rstidx = CANFD1_RST,
.irqn0 = CANFD10_IRQn,
.irqn1 = CANFD11_IRQn,
},
#endif
#if defined(BSP_USING_CANFD2)
{
.name = "canfd2",
.base = CANFD2,
.rstidx = CANFD2_RST,
.irqn0 = CANFD20_IRQn,
.irqn1 = CANFD21_IRQn,
},
#endif
#if defined(BSP_USING_CANFD3)
{
.name = "canfd3",
.base = CANFD3,
.rstidx = CANFD3_RST,
.irqn0 = CANFD30_IRQn,
.irqn1 = CANFD31_IRQn,
},
#endif
}; /* struct nu_can */
/* Public functions ------------------------------------------------------------*/
/* Private variables ------------------------------------------------------------*/
static const struct rt_can_ops nu_canfd_ops =
{
.configure = nu_canfd_configure,
.control = nu_canfd_control,
.sendmsg = nu_canfd_sendmsg,
.recvmsg = nu_canfd_recvmsg,
};
static const struct can_configure nu_canfd_default_config = NU_CANFD_CONFIG_DEFAULT;
/* Interrupt Handle Function ----------------------------------------------------*/
/* Private Variables ------------------------------------------------------------*/
const char *szIR[] =
{
"CANFD_IR_RF0N - Rx FIFO 0 New Message",
"CANFD_IR_RF0W - Rx FIFO 0 Watermark Reached",
"CANFD_IR_RF0F - Rx FIFO 0 Full",
"CANFD_IR_RF0L - Rx FIFO 0 Message Lost",
"CANFD_IR_RF1N - Rx FIFO 1 New Message",
"CANFD_IR_RF1W - Rx FIFO 1 Watermark Reached",
"CANFD_IR_RF1F - Rx FIFO 1 Full",
"CANFD_IR_RF1L - Rx FIFO 1 Message Lost",
"CANFD_IR_HPM - High Priority Message",
"CANFD_IR_TC - Transmission Completed",
"CANFD_IR_TCF - Transmission Cancellation Finished",
"CANFD_IR_TFE - Tx FIFO Empty",
"CANFD_IR_TEFN - Tx Event FIFO New Entry",
"CANFD_IR_TEFW - Tx Event FIFO Watermark Reached",
"CANFD_IR_TEFF - Tx Event FIFO Full",
"CANFD_IR_TEFL - Tx Event FIFO Event Lost",
"CANFD_IR_TSW - Timestamp Wraparound",
"CANFD_IR_MRAF - Message RAM Access Failure",
"CANFD_IR_TOO - Timeout Occurred",
"CANFD_IR_DRX - Message stored to Dedicated Rx Buffer",
"BIT20",
"BIT21",
"CANFD_IR_ELO - Error Logging Overflow",
"CANFD_IR_EP - Error Passive",
"CANFD_IR_EW - Warning Status",
"CANFD_IR_BO - Bus_Off Status",
"CANFD_IR_WDI - Watchdog",
"CANFD_IR_PEA - Protocol Error in Arbitration Phase",
"CANFD_IR_PED - Protocol Error in Data Phase",
"CANFD_IR_ARA - Access to Reserved Address",
"BIT30",
"BIT31"
};
static void dump_interrupt_event(uint32_t u32Status)
{
uint32_t idx;
while ((idx = nu_ctz(u32Status)) < 32) // Count Trailing Zeros ==> Find First One
{
LOG_D("[%s]", szIR[idx]);
u32Status &= ~(1 << idx);
}
}
static void nu_canfd_isr(int vector, void *param)
{
/* Get base address of canfd register */
nu_canfd_t psNuCANFD = (nu_canfd_t)param;
/* Get base address of CAN register */
CANFD_T *base = psNuCANFD->base;
/* Get interrupt status */
uint32_t u32Status = base->IR;
CANFD_ClearStatusFlag(base, u32Status);
/* Dump IR event */
dump_interrupt_event(u32Status);
/* Check Status Interrupt Flag (Error status Int and Status change Int) */
/**************************/
/* Status Change interrupt*/
/**************************/
if (u32Status & CANFD_IR_TC_Msk)
{
if (psNuCANFD->int_flag & RT_DEVICE_FLAG_INT_TX)
{
rt_hw_can_isr(&psNuCANFD->dev, RT_CAN_EVENT_TX_DONE);
}
}
if (u32Status & (CANFD_IR_RF0N_Msk | CANFD_IR_RF1N_Msk))
{
if (psNuCANFD->int_flag & RT_DEVICE_FLAG_INT_RX)
{
rt_hw_can_isr(&psNuCANFD->dev, RT_CAN_EVENT_RX_IND);
}
}
if (u32Status & (CANFD_IR_RF0L_Msk | CANFD_IR_RF1L_Msk))
{
rt_hw_can_isr(&psNuCANFD->dev, RT_CAN_EVENT_RXOF_IND);
}
if (u32Status & (CANFD_IR_TEFF_Msk | CANFD_IR_TOO_Msk))
{
rt_hw_can_isr(&psNuCANFD->dev, RT_CAN_EVENT_TX_FAIL);
}
/**************************/
/* Error Status interrupt */
/**************************/
if (u32Status & CANFD_IR_EW_Msk)
{
LOG_E("[%s]EWARN", psNuCANFD->name) ;
}
if (u32Status & CANFD_IR_BO_Msk)
{
LOG_E("[%s]BUSOFF", psNuCANFD->name) ;
/* To release busoff pin */
}
if (u32Status & CANFD_IR_PED_Msk)
{
LOG_E("[%s] LEC: %03x\n", psNuCANFD->name, base->PSR & CANFD_PSR_LEC_Msk) ;
}
}
static void nu_canfd_ie(nu_canfd_t psNuCANFD)
{
uint32_t u32CanFDIE = CANFD_IE_BOE_Msk;
if (psNuCANFD->int_flag & (RT_DEVICE_FLAG_INT_RX))
{
/* Rx FIFO 0 New Message Interrupt */
u32CanFDIE |= (CANFD_IE_RF0NE_Msk | CANFD_IE_RF1NE_Msk);
}
if (psNuCANFD->int_flag & (RT_DEVICE_FLAG_INT_TX))
{
/* Transmission Completed Interrupt */
/* Timeout Occurred Interrupt */
u32CanFDIE |= (CANFD_IE_TCE_Msk | CANFD_IE_TEFNE_Msk);
}
if (psNuCANFD->int_flag & RT_DEVICE_CAN_INT_ERR)
{
/* Bus_Off Status Interrupt */
/* Warning Status Interrupt */
/* Error Passive Interrupt */
/* Error Logging Overflow Interrupt */
/* Protocol Error in Data Phase interrupt Indicator */
u32CanFDIE |= (CANFD_IE_EPE_Msk | CANFD_IE_EWE_Msk | CANFD_IE_ELOE_Msk | CANFD_IE_TOOE_Msk | CANFD_IR_PED_Msk);
}
//u32CanFDIE = 0xffffffff;
CANFD_EnableInt(psNuCANFD->base, u32CanFDIE, 0,
(psNuCANFD->int_flag & (RT_DEVICE_FLAG_INT_TX)) ? CANFD_TXBTIE_TIEn_Msk : 0,
(psNuCANFD->int_flag & (RT_DEVICE_FLAG_INT_TX)) ? CANFD_TXBCIE_CFIEn_Msk : 0);
}
static rt_err_t nu_canfd_configure(struct rt_can_device *can, struct can_configure *cfg)
{
nu_canfd_t psNuCANFD = (nu_canfd_t)can;
CANFD_FD_T *psCANFDConf;
RT_ASSERT(can);
RT_ASSERT(cfg);
psCANFDConf = &psNuCANFD->sCANFD_Config;
/* Get base address of CAN register */
CANFD_T *base = psNuCANFD->base;
CANFD_GetDefaultConfig(psCANFDConf, CANFD_OP_CAN_MODE);
LOG_I("Message Ram Size: %d @%08x ~ %08x", psCANFDConf->u32MRamSize, CANFD_SRAM_BASE_ADDR(base), psCANFDConf->u32MRamSize + CANFD_SRAM_BASE_ADDR(base));
LOG_I("SIDFC: %d @%08x Size:%d", psCANFDConf->sElemSize.u32SIDFC, CANFD_SRAM_BASE_ADDR(base) + psCANFDConf->sMRamStartAddr.u32SIDFC_FLSSA, psCANFDConf->sElemSize.u32SIDFC * sizeof(CANFD_STD_FILTER_T));
LOG_I("XIDFC: %d @%08x Size:%d", psCANFDConf->sElemSize.u32XIDFC, CANFD_SRAM_BASE_ADDR(base) + psCANFDConf->sMRamStartAddr.u32XIDFC_FLESA, psCANFDConf->sElemSize.u32XIDFC * sizeof(CANFD_EXT_FILTER_T));
LOG_I("RxFifo0: %d @%08x Size:%d", psCANFDConf->sElemSize.u32RxFifo0, CANFD_SRAM_BASE_ADDR(base) + psCANFDConf->sMRamStartAddr.u32RXF0C_F0SA, psCANFDConf->sElemSize.u32RxFifo0 * sizeof(CANFD_BUF_T));
LOG_I("RxFifo1: %d @%08x Size:%d", psCANFDConf->sElemSize.u32RxFifo1, CANFD_SRAM_BASE_ADDR(base) + psCANFDConf->sMRamStartAddr.u32RXF1C_F1SA, psCANFDConf->sElemSize.u32RxFifo1 * sizeof(CANFD_BUF_T));
LOG_I("RxBuf: %d @%08x Size:%d", psCANFDConf->sElemSize.u32RxBuf, CANFD_SRAM_BASE_ADDR(base) + psCANFDConf->sMRamStartAddr.u32RXBC_RBSA, psCANFDConf->sElemSize.u32RxBuf * sizeof(CANFD_BUF_T));
LOG_I("TxEventFifo: %d @%08x Size:%d", psCANFDConf->sElemSize.u32TxEventFifo, CANFD_SRAM_BASE_ADDR(base) + psCANFDConf->sMRamStartAddr.u32TXEFC_EFSA, psCANFDConf->sElemSize.u32TxEventFifo * sizeof(CANFD_EXT_FILTER_T));
LOG_I("TxBuf: %d @%08x Size:%d", psCANFDConf->sElemSize.u32TxBuf, CANFD_SRAM_BASE_ADDR(base) + psCANFDConf->sMRamStartAddr.u32TXBC_TBSA, psCANFDConf->sElemSize.u32TxBuf * sizeof(CANFD_BUF_T));
psCANFDConf->sBtConfig.sNormBitRate.u32BitRate = cfg->baud_rate;
psCANFDConf->sBtConfig.sDataBitRate.u32BitRate = 0;
LOG_I("CAN Baud rate: %d bps", cfg->baud_rate);
switch (cfg->mode)
{
case RT_CAN_MODE_NORMAL: // Normal
psCANFDConf->sBtConfig.evTestMode = eCANFD_NORMAL;
break;
case RT_CAN_MODE_LISTEN: // Bus monitor Mode, can't start a transmission
psCANFDConf->sBtConfig.evTestMode = eCANFD_BUS_MONITOR;
break;
case RT_CAN_MODE_LOOPBACK: // Test - Internal loopback
psCANFDConf->sBtConfig.evTestMode = eCANFD_LOOPBACK_INTERNAL;
break;
case RT_CAN_MODE_LOOPBACKANLISTEN:
default:
rt_kprintf("Unsupported Operating mode\n");
goto exit_nu_canfd_configure;
}
/*Set the CAN Bit Rate and Operating mode*/
CANFD_Open(base, psCANFDConf);
/* Set FIFO policy */
#if defined(RT_CAN_USING_HDR)
/* Whitelist filtering */
CANFD_SetGFC(base, eCANFD_REJ_NON_MATCH_FRM, eCANFD_REJ_NON_MATCH_FRM, 0, 0);
#else
/* Blacklist filtering. */
CANFD_SetGFC(base, eCANFD_ACC_NON_MATCH_FRM_RX_FIFO0, eCANFD_ACC_NON_MATCH_FRM_RX_FIFO0, 0, 0);
#endif
/* Enable interrupt */
nu_canfd_ie(psNuCANFD);
//LOG_HEX("canfd", 16, (void *)base, sizeof(CANFD_T));
/* Lock protected registers & Run */
CANFD_RunToNormal(base, TRUE);
return RT_EOK;
exit_nu_canfd_configure:
CANFD_Close(base);
return -(RT_ERROR);
}
static rt_err_t nu_canfd_control(struct rt_can_device *can, int cmd, void *arg)
{
rt_uint32_t argval = (rt_uint32_t)arg;
nu_canfd_t psNuCANFD = (nu_canfd_t)can;
RT_ASSERT(can);
switch (cmd)
{
case RT_DEVICE_CTRL_SET_INT:
psNuCANFD->int_flag |= argval;
return nu_canfd_configure(can, &can->config);
case RT_DEVICE_CTRL_CLR_INT:
psNuCANFD->int_flag &= ~argval;
return nu_canfd_configure(can, &can->config);
#if defined(RT_CAN_USING_HDR)
case RT_CAN_CMD_SET_FILTER:
{
struct rt_can_filter_config *filter_cfg = (struct rt_can_filter_config *)arg;
RT_ASSERT(filter_cfg);
for (int i = 0; i < filter_cfg->count; i++)
{
uint32_t u32FEC = (filter_cfg->items[i].mode == RT_CAN_MODE_PRIV) ? eCANFD_FLTR_ELEM_SET_PRI_STO_FIFO0 : eCANFD_FLTR_ELEM_STO_FIFO0;
/* Set the filter rule */
if (filter_cfg->items[i].ide == RT_CAN_STDID)
{
/* for 11-bit */
CANFD_STD_FILTER_T sStdFilter;
if (i >= CANFD_MAX_11_BIT_FTR_ELEMS) // Check filter entry limitation
return -(RT_ERROR);
sStdFilter.SFID2 = filter_cfg->items[i].mask; /*!<Standard Filter ID 2. */ //mask
sStdFilter.SFID1 = filter_cfg->items[i].id; /*!<Standard Filter ID 1. */ //filter
sStdFilter.SFEC = u32FEC; /*!<Standard Filter Element Configuration */ //001b: Store in Rx FIFO 0 if filter matches
sStdFilter.SFT = eCANFD_SID_FLTR_TYPE_CLASSIC; /*!<Standard Filter Type */ //10b: Classic filter: SFID1 = filter, SFID2 = mask
CANFD_SetSIDFltr(psNuCANFD->base, i, sStdFilter.VALUE);
}
else
{
/* for 29-bit */
CANFD_EXT_FILTER_T sXidFilter;
if (i >= CANFD_MAX_29_BIT_FTR_ELEMS) // Check filter entry limitation
return -(RT_ERROR);
sXidFilter.EFID1 = filter_cfg->items[i].mask; /*!<Extended Filter ID 2. */ //mask
sXidFilter.EFID2 = filter_cfg->items[i].id; /*!<Extended Filter ID 1. */ //filter
sXidFilter.EFEC = u32FEC; /*!<Extended Filter Element Configuration */ //001b: Store in Rx FIFO 0 if filter matches
sXidFilter.EFT = eCANFD_XID_FLTR_TYPE_CLASSIC; /*!<Extended Filter Type */ //10b: Classic filter: SFID1 = filter, SFID2 = mask
CANFD_SetXIDFltr(psNuCANFD->base, i, sXidFilter.LOWVALUE, sXidFilter.HIGHVALUE);
}
} //for (int i = 0; i < filter_cfg->count; i++)
}
break;
#endif
case RT_CAN_CMD_SET_MODE:
if ((argval == RT_CAN_MODE_NORMAL) ||
(argval == RT_CAN_MODE_LISTEN) ||
(argval == RT_CAN_MODE_LOOPBACK) ||
(argval == RT_CAN_MODE_LOOPBACKANLISTEN))
{
if (argval != can->config.mode)
{
can->config.mode = argval;
return nu_canfd_configure(can, &can->config);
}
}
else
{
return -(RT_ERROR);
}
break;
case RT_CAN_CMD_SET_BAUD:
{
if ((argval == CAN1MBaud) ||
(argval == CAN800kBaud) ||
(argval == CAN500kBaud) ||
(argval == CAN250kBaud) ||
(argval == CAN125kBaud) ||
(argval == CAN100kBaud) ||
(argval == CAN50kBaud) ||
(argval == CAN20kBaud) ||
(argval == CAN10kBaud))
{
if (argval != can->config.baud_rate)
{
can->config.baud_rate = argval;
return nu_canfd_configure(can, &can->config);
}
}
else
{
return -(RT_ERROR);
}
}
break;
case RT_CAN_CMD_SET_PRIV:
if (argval != RT_CAN_MODE_PRIV &&
argval != RT_CAN_MODE_NOPRIV)
{
return -(RT_ERROR);
}
if (argval != can->config.privmode)
{
can->config.privmode = argval;
return nu_canfd_configure(can, &can->config);
}
break;
case RT_CAN_CMD_GET_STATUS:
{
rt_uint32_t u32ErrCounter = psNuCANFD->base->ECR;
rt_uint32_t u32ProtocolStatus = psNuCANFD->base->PSR;
RT_ASSERT(arg);
/*Receive Error Counter, return value is with Receive Error Passive.*/
can->status.rcverrcnt = ((u32ErrCounter & CANFD_ECR_REC_Msk) >> CANFD_ECR_REC_Pos);
/*Transmit Error Counter*/
can->status.snderrcnt = ((u32ErrCounter & CANFD_ECR_TEC_Msk) >> CANFD_ECR_TEC_Pos);
/*Last Error Type*/
can->status.lasterrtype = ((u32ProtocolStatus & CANFD_PSR_LEC_Msk) >> CANFD_PSR_LEC_Pos);
/*Status error code*/
can->status.errcode = (u32ProtocolStatus & CANFD_PSR_EW_Msk) ? 1 :
(u32ProtocolStatus & CANFD_PSR_EP_Msk) ? 2 :
(u32ProtocolStatus & CANFD_PSR_BO_Msk) ? 3 :
0;
rt_memcpy(arg, &can->status, sizeof(struct rt_can_status));
}
break;
default:
return -(RT_EINVAL);
}
return RT_EOK;
}
static int nu_canfd_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t boxno)
{
CANFD_FD_MSG_T sTxMsg;
struct rt_can_msg *pmsg;
nu_canfd_t psNuCANFD = (nu_canfd_t)can;
RT_ASSERT(can);
RT_ASSERT(buf);
pmsg = (struct rt_can_msg *) buf;
if (pmsg->ide == RT_CAN_STDID && IS_CAN_STDID(pmsg->id))
{
/* Standard ID (11 bits)*/
sTxMsg.u32Id = pmsg->id;
sTxMsg.eIdType = eCANFD_SID;
}
else if (pmsg->ide == RT_CAN_EXTID && IS_CAN_EXTID(pmsg->id))
{
/* Extended ID (29 bits)*/
sTxMsg.u32Id = pmsg->id;
sTxMsg.eIdType = eCANFD_XID;
}
else
{
goto exit_nu_canfd_sendmsg;
}
sTxMsg.bBitRateSwitch = 0;
if (pmsg->rtr == RT_CAN_DTR)
{
/* Data frame */
sTxMsg.eFrmType = eCANFD_DATA_FRM;
}
else if (pmsg->rtr == RT_CAN_RTR)
{
/* Remote frame */
sTxMsg.eFrmType = eCANFD_REMOTE_FRM;
}
else
{
goto exit_nu_canfd_sendmsg;
}
/* Check the parameters */
if (IS_CAN_DLC(pmsg->len))
{
sTxMsg.u32DLC = pmsg->len;
}
else
{
goto exit_nu_canfd_sendmsg;
}
if (pmsg->len > 0)
{
rt_memcpy(&sTxMsg.au8Data[0], pmsg->data, pmsg->len);
}
if (!CANFD_TransmitTxMsg(psNuCANFD->base, 0, &sTxMsg))
{
goto exit_nu_canfd_sendmsg;
}
return RT_EOK;
exit_nu_canfd_sendmsg:
return -(RT_ERROR);
}
static int nu_canfd_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t boxno)
{
CANFD_FD_MSG_T sRxMsg;
struct rt_can_msg *pmsg;
nu_canfd_t psNuCANFD = (nu_canfd_t)can;
RT_ASSERT(can);
RT_ASSERT(buf);
pmsg = (struct rt_can_msg *) buf;
/* get data */
if (CANFD_ReadRxFifoMsg(psNuCANFD->base, 0, &sRxMsg) == FALSE)
{
rt_kprintf("No available RX Msg.\n");
return -(RT_ERROR);
}
#ifdef RT_CAN_USING_HDR
/* Hardware filter messages are valid */
pmsg->hdr_index = boxno;
can->hdr[pmsg->hdr_index].connected = 1;
#endif
pmsg->ide = (sRxMsg.eIdType == eCANFD_SID) ? RT_CAN_STDID : RT_CAN_EXTID;
pmsg->rtr = (sRxMsg.eFrmType == eCANFD_DATA_FRM) ? RT_CAN_DTR : RT_CAN_RTR;
pmsg->id = sRxMsg.u32Id;
pmsg->len = sRxMsg.u32DLC;
if (pmsg->len > 0)
rt_memcpy(&pmsg->data[0], &sRxMsg.au8Data[0], pmsg->len);
return RT_EOK;
}
/**
* Hardware CAN Initialization
*/
static int rt_hw_canfd_init(void)
{
int i;
rt_err_t ret = RT_EOK;
for (i = (CANFD_START + 1); i < CANFD_CNT; i++)
{
nu_canfd_arr[i].dev.config = nu_canfd_default_config;
#ifdef RT_CAN_USING_HDR
nu_canfd_arr[i].dev.config.maxhdr = RT_CANMSG_BOX_SZ;
#endif
/* Register can device */
ret = rt_hw_can_register(&nu_canfd_arr[i].dev, nu_canfd_arr[i].name, &nu_canfd_ops, NULL);
RT_ASSERT(ret == RT_EOK);
/* Register ISR. */
rt_hw_interrupt_install(nu_canfd_arr[i].irqn0, nu_canfd_isr, &nu_canfd_arr[i], nu_canfd_arr[i].name);
rt_hw_interrupt_install(nu_canfd_arr[i].irqn1, nu_canfd_isr, &nu_canfd_arr[i], nu_canfd_arr[i].name);
/* Unmask interrupt. */
rt_hw_interrupt_umask(nu_canfd_arr[i].irqn0);
rt_hw_interrupt_umask(nu_canfd_arr[i].irqn1);
}
return (int)ret;
}
INIT_DEVICE_EXPORT(rt_hw_canfd_init);
#endif //#if defined(BSP_USING_CANFD)