4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-27 16:00:25 +08:00
Fan YANG e03342ff6b [bsp][hpmicro] add HPM5300EVK,HPM5301EVKLITE and HPM6800EVK support & update hpm_sdk
- added new boards: hpm5300evk, hpm5301evklite and hpm6800evk
- upgaded hpm_sdk
- driver updates and bugfixes
- add hpmicro BSPs to CI

Signed-off-by: Fan YANG <fan.yang@hpmicro.com>
2024-06-03 18:05:20 +08:00

1490 lines
50 KiB
C

/*
* Copyright (c) 2023 HPMicro
* SPDX-License-Identifier: BSD-3-Clause
*
*
*/
#include "board.h"
#include "hpm_uart_drv.h"
#include "hpm_gptmr_drv.h"
#include "hpm_lcdc_drv.h"
#include "hpm_i2c_drv.h"
#include "hpm_gpio_drv.h"
#include "pinmux.h"
#include "hpm_pmp_drv.h"
#include "hpm_clock_drv.h"
#include "hpm_sysctl_drv.h"
#include "hpm_pllctlv2_drv.h"
#include "hpm_sdxc_drv.h"
#include "hpm_ddrctl_regs.h"
#include "hpm_ddrphy_regs.h"
#include "hpm_pcfg_drv.h"
#include "hpm_pixelmux_drv.h"
#include "hpm_lvb_drv.h"
#include "hpm_enet_drv.h"
#include "hpm_usb_drv.h"
#include "hpm_mipi_dsi_drv.h"
#include "hpm_mipi_dsi_phy_drv.h"
static board_timer_cb timer_cb;
/**
* @brief FLASH configuration option definitions:
* option[0]:
* [31:16] 0xfcf9 - FLASH configuration option tag
* [15:4] 0 - Reserved
* [3:0] option words (exclude option[0])
* option[1]:
* [31:28] Flash probe type
* 0 - SFDP SDR / 1 - SFDP DDR
* 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
* 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
* 6 - OctaBus DDR (SPI -> OPI DDR)
* 8 - Xccela DDR (SPI -> OPI DDR)
* 10 - EcoXiP DDR (SPI -> OPI DDR)
* [27:24] Command Pads after Power-on Reset
* 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
* [23:20] Command Pads after Configuring FLASH
* 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
* [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
* 0 - Not needed
* 1 - QE bit is at bit 6 in Status Register 1
* 2 - QE bit is at bit1 in Status Register 2
* 3 - QE bit is at bit7 in Status Register 2
* 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
* [15:8] Dummy cycles
* 0 - Auto-probed / detected / default value
* Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
* [7:4] Misc.
* 0 - Not used
* 1 - SPI mode
* 2 - Internal loopback
* 3 - External DQS
* [3:0] Frequency option
* 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
*
* option[2] (Effective only if the bit[3:0] in option[0] > 1)
* [31:20] Reserved
* [19:16] IO voltage
* 0 - 3V / 1 - 1.8V
* [15:12] Pin group
* 0 - 1st group / 1 - 2nd group
* [11:8] Connection selection
* 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
* [7:0] Drive Strength
* 0 - Default value
* option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
* JESD216)
* [31:16] reserved
* [15:12] Sector Erase Command Option, not required here
* [11:8] Sector Size Option, not required here
* [7:0] Flash Size Option
* 0 - 4MB / 1 - 8MB / 2 - 16MB
*/
#if defined(FLASH_XIP) && FLASH_XIP
__attribute__((section(".nor_cfg_option"))) const uint32_t option[4] = { 0xfcf90001, 0x00000007, 0x0, 0x0 };
#endif
#if defined(FLASH_UF2) && FLASH_UF2
ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
#endif
void board_init_console(void)
{
#if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
#if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
console_config_t cfg;
/* uart needs to configure pin function before enabling clock, otherwise the level change of
* uart rx pin when configuring pin function will cause a wrong data to be received.
* And a uart rx dma request will be generated by default uart fifo dma trigger level.
*/
init_uart_pins((UART_Type *) BOARD_CONSOLE_UART_BASE);
/* Configure the UART clock to 24MHz */
clock_set_source_divider(BOARD_CONSOLE_UART_CLK_NAME, clk_src_osc24m, 1U);
clock_add_to_group(BOARD_CONSOLE_UART_CLK_NAME, 0);
cfg.type = BOARD_CONSOLE_TYPE;
cfg.base = (uint32_t) BOARD_CONSOLE_UART_BASE;
cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_UART_CLK_NAME);
cfg.baudrate = BOARD_CONSOLE_UART_BAUDRATE;
if (status_success != console_init(&cfg)) {
/* failed to initialize debug console */
while (1) {
}
}
#else
while (1)
;
#endif
#endif
}
void board_print_clock_freq(void)
{
printf("==============================\n");
printf(" %s clock summary\n", BOARD_NAME);
printf("==============================\n");
printf("cpu0:\t\t %dHz\n", clock_get_frequency(clock_cpu0));
printf("gpu0:\t\t %dHz\n", clock_get_frequency(clock_gpu0));
printf("axis:\t\t %dHz\n", clock_get_frequency(clock_axis));
printf("axic:\t\t %dHz\n", clock_get_frequency(clock_axic));
printf("axif:\t\t %dHz\n", clock_get_frequency(clock_axif));
printf("axid:\t\t %dHz\n", clock_get_frequency(clock_axid));
printf("axiv:\t\t %dHz\n", clock_get_frequency(clock_axiv));
printf("axig:\t\t %dHz\n", clock_get_frequency(clock_axig));
printf("mchtmr0:\t %dHz\n", clock_get_frequency(clock_mchtmr0));
printf("xpi0:\t\t %dHz\n", clock_get_frequency(clock_xpi0));
printf("==============================\n");
}
void board_init_uart(UART_Type *ptr)
{
/* configure uart's pin before opening uart's clock */
init_uart_pins(ptr);
board_init_uart_clock(ptr);
}
void board_print_banner(void)
{
const uint8_t banner[] = { "\n\
----------------------------------------------------------------------\n\
$$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
$$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
$$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
$$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
$$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
$$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
$$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
\\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
----------------------------------------------------------------------\n" };
#ifdef SDK_VERSION_STRING
printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
#endif
printf("%s", banner);
}
uint8_t board_get_led_gpio_off_level(void)
{
return BOARD_LED_OFF_LEVEL;
}
void board_ungate_mchtmr_at_lp_mode(void)
{
/* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
sysctl_set_cpu0_lp_mode(HPM_SYSCTL, cpu_lp_mode_ungate_cpu_clock);
}
void board_init(void)
{
board_init_clock();
board_init_console();
board_init_pmp();
#if BOARD_SHOW_CLOCK
board_print_clock_freq();
#endif
#if BOARD_SHOW_BANNER
board_print_banner();
#endif
}
void board_delay_us(uint32_t us)
{
clock_cpu_delay_us(us);
}
void board_delay_ms(uint32_t ms)
{
clock_cpu_delay_ms(ms);
}
void board_timer_isr(void)
{
if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
timer_cb();
}
}
SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
void board_timer_create(uint32_t ms, board_timer_cb cb)
{
uint32_t gptmr_freq;
gptmr_channel_config_t config;
timer_cb = cb;
gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
config.reload = gptmr_freq / 1000 * ms;
gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
}
void board_i2c_bus_clear(I2C_Type *ptr)
{
if (i2c_get_line_scl_status(ptr) == false) {
printf("CLK is low, please power cycle the board\n");
while (1) {
}
}
if (i2c_get_line_sda_status(ptr) == false) {
printf("SDA is low, try to issue I2C bus clear\n");
} else {
printf("I2C bus is ready\n");
return;
}
i2s_gen_reset_signal(ptr, 9);
board_delay_ms(100);
printf("I2C bus is cleared\n");
}
void board_init_i2c(I2C_Type *ptr)
{
hpm_stat_t stat;
uint32_t freq;
i2c_config_t config;
init_i2c_pins(ptr);
board_i2c_bus_clear(ptr);
if (ptr == HPM_I2C0) {
clock_add_to_group(clock_i2c0, 0);
clock_set_source_divider(clock_i2c0, clk_src_osc24m, 1U);
freq = clock_get_frequency(clock_i2c0);
} else if (ptr == HPM_I2C1) {
clock_add_to_group(clock_i2c1, 0);
clock_set_source_divider(clock_i2c1, clk_src_osc24m, 1U);
freq = clock_get_frequency(clock_i2c1);
} else if (ptr == HPM_I2C2) {
clock_add_to_group(clock_i2c2, 0);
clock_set_source_divider(clock_i2c2, clk_src_osc24m, 1U);
freq = clock_get_frequency(clock_i2c2);
} else if (ptr == HPM_I2C3) {
clock_add_to_group(clock_i2c3, 0);
clock_set_source_divider(clock_i2c3, clk_src_osc24m, 1U);
freq = clock_get_frequency(clock_i2c3);
} else {
printf("invild i2c base address 0x%x\n", (uint32_t) ptr);
while (1) {
}
}
config.i2c_mode = i2c_mode_normal;
config.is_10bit_addressing = false;
stat = i2c_init_master(ptr, freq, &config);
if (stat != status_success) {
printf("failed to initialize i2c 0x%x\n", (uint32_t) ptr);
while (1) {
}
}
}
uint32_t board_init_spi_clock(SPI_Type *ptr)
{
if (ptr == HPM_SPI1) {
/* SPI1 clock configure */
clock_add_to_group(clock_spi1, 0);
return clock_get_frequency(clock_spi1);
} else if (ptr == HPM_SPI2) {
/* SPI2 clock configure */
clock_add_to_group(clock_spi2, 0);
return clock_get_frequency(clock_spi2);
} else if (ptr == HPM_SPI3) {
/* SPI3 clock configure */
clock_add_to_group(clock_spi3, 0);
return clock_get_frequency(clock_spi3);
}
return 0;
}
void board_init_gpio_pins(void)
{
init_gpio_pins();
}
void board_init_spi_pins(SPI_Type *ptr)
{
init_spi_pins(ptr);
}
void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
{
init_spi_pins_with_gpio_as_cs(ptr);
gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
}
void board_write_spi_cs(uint32_t pin, uint8_t state)
{
gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
}
void board_init_led_pins(void)
{
init_led_pins_as_gpio();
gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN,
board_get_led_gpio_off_level());
gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN,
board_get_led_gpio_off_level());
gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN,
board_get_led_gpio_off_level());
}
void board_led_toggle(void)
{
#ifdef BOARD_LED_TOGGLE_RGB
static uint8_t i;
switch (i) {
case 1:
gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_ON_LEVEL);
gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
break;
case 2:
gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_ON_LEVEL);
break;
case 0:
default:
gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_ON_LEVEL);
gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
break;
}
i++;
i = i % 3;
#else
gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
#endif
}
void board_led_write(uint8_t state)
{
gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
}
void board_init_pmp(void)
{
extern uint32_t __noncacheable_start__[];
extern uint32_t __noncacheable_end__[];
uint32_t start_addr = (uint32_t) __noncacheable_start__;
uint32_t end_addr = (uint32_t) __noncacheable_end__;
uint32_t length = end_addr - start_addr;
if (length == 0) {
return;
}
/* Ensure the address and the length are power of 2 aligned */
assert((length & (length - 1U)) == 0U);
assert((start_addr & (length - 1U)) == 0U);
pmp_entry_t pmp_entry[3] = { 0 };
pmp_entry[0].pmp_addr = PMP_NAPOT_ADDR(0x0000000, 0x80000000);
pmp_entry[0].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
pmp_entry[1].pmp_addr = PMP_NAPOT_ADDR(0x80000000, 0x80000000);
pmp_entry[1].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
pmp_entry[2].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
pmp_entry[2].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
pmp_entry[2].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
pmp_entry[2].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
pmp_config(&pmp_entry[0], ARRAY_SIZE(pmp_entry));
}
void board_init_display_system_clock(void)
{
clock_add_to_group(clock_gpu0, 0);
clock_add_to_group(clock_gwc0, 0);
clock_add_to_group(clock_gwc1, 0);
clock_add_to_group(clock_lvb, 0);
clock_add_to_group(clock_lcb, 0);
clock_add_to_group(clock_lcd0, 0);
clock_add_to_group(clock_dsi0, 0);
clock_add_to_group(clock_dsi1, 0);
clock_add_to_group(clock_cam0, 0);
clock_add_to_group(clock_cam1, 0);
clock_add_to_group(clock_jpeg, 0);
clock_add_to_group(clock_pdma, 0);
}
void board_init_clock(void)
{
uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
/* Configure the External OSC ramp-up time: ~9ms */
pllctlv2_xtal_set_rampup_time(HPM_PLLCTLV2, 32UL * 1000UL * 9U);
/* Select clock setting preset1 */
sysctl_clock_set_preset(HPM_SYSCTL, 2);
}
/* Add most Clocks to group 0 */
/* not open uart clock in this API, uart should configure pin function before opening clock */
clock_add_to_group(clock_cpu0, 0);
clock_add_to_group(clock_ahb, 0);
clock_add_to_group(clock_axic, 0);
clock_add_to_group(clock_axis, 0);
clock_add_to_group(clock_axiv, 0);
clock_add_to_group(clock_axid, 0);
clock_add_to_group(clock_axig, 0);
clock_add_to_group(clock_mchtmr0, 0);
clock_add_to_group(clock_xpi0, 0);
clock_add_to_group(clock_gptmr0, 0);
clock_add_to_group(clock_gptmr1, 0);
clock_add_to_group(clock_gptmr2, 0);
clock_add_to_group(clock_gptmr3, 0);
clock_add_to_group(clock_i2c0, 0);
clock_add_to_group(clock_i2c1, 0);
clock_add_to_group(clock_i2c2, 0);
clock_add_to_group(clock_i2c3, 0);
clock_add_to_group(clock_spi0, 0);
clock_add_to_group(clock_spi1, 0);
clock_add_to_group(clock_spi2, 0);
clock_add_to_group(clock_spi3, 0);
clock_add_to_group(clock_can0, 0);
clock_add_to_group(clock_can1, 0);
clock_add_to_group(clock_can2, 0);
clock_add_to_group(clock_can3, 0);
clock_add_to_group(clock_can4, 0);
clock_add_to_group(clock_can5, 0);
clock_add_to_group(clock_can6, 0);
clock_add_to_group(clock_can7, 0);
clock_add_to_group(clock_ptpc, 0);
clock_add_to_group(clock_ref0, 0);
clock_add_to_group(clock_ref1, 0);
clock_add_to_group(clock_watchdog0, 0);
clock_add_to_group(clock_sdp, 0);
clock_add_to_group(clock_xdma, 0);
clock_add_to_group(clock_xram, 0);
clock_add_to_group(clock_usb0, 0);
clock_add_to_group(clock_kman, 0);
clock_add_to_group(clock_gpio, 0);
clock_add_to_group(clock_mbx0, 0);
clock_add_to_group(clock_hdma, 0);
clock_add_to_group(clock_rng, 0);
clock_add_to_group(clock_adc0, 0);
clock_add_to_group(clock_adc1, 0);
clock_add_to_group(clock_crc0, 0);
clock_add_to_group(clock_dao, 0);
clock_add_to_group(clock_pdm, 0);
clock_add_to_group(clock_smix, 0);
clock_add_to_group(clock_i2s0, 0);
clock_add_to_group(clock_i2s1, 0);
clock_add_to_group(clock_i2s2, 0);
clock_add_to_group(clock_i2s3, 0);
clock_add_to_group(clock_eth0, 0);
clock_add_to_group(clock_ffa, 0);
clock_add_to_group(clock_tsns, 0);
board_init_display_system_clock();
/* Connect Group0 to CPU0 */
clock_connect_group_to_cpu(0, 0);
/* Bump up DCDC voltage to 1150mv */
pcfg_dcdc_set_voltage(HPM_PCFG, 1150);
/* Configure PLL1_CLK0 Post Divider to 1 */
pllctlv2_set_postdiv(HPM_PLLCTLV2, 0, 0, 0);
pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, 0, BOARD_CPU_FREQ);
/* Configure axis to 200MHz */
clock_set_source_divider(clock_axis, clk_src_pll1_clk0, 4);
/* Configure axig/clock_gpu0 to 400MHz */
clock_set_source_divider(clock_axig, clk_src_pll1_clk0, 2);
/* Configure mchtmr to 24MHz */
clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
clock_update_core_clock();
}
void board_init_can(MCAN_Type *ptr)
{
init_can_pins(ptr);
}
uint32_t board_init_can_clock(MCAN_Type *ptr)
{
uint32_t freq = 0;
if (ptr == HPM_MCAN0) {
/* Set the CAN0 peripheral clock to 80MHz */
clock_set_source_divider(clock_can0, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_can0);
} else if (ptr == HPM_MCAN1) {
/* Set the CAN1 peripheral clock to 80MHz */
clock_set_source_divider(clock_can1, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_can1);
} else if (ptr == HPM_MCAN2) {
/* Set the CAN2 peripheral clock to 8MHz */
clock_set_source_divider(clock_can2, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_can2);
} else if (ptr == HPM_MCAN3) {
/* Set the CAN3 peripheral clock to 80MHz */
clock_set_source_divider(clock_can3, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_can3);
} else if (ptr == HPM_MCAN4) {
/* Set the CAN4 peripheral clock to 80MHz */
clock_set_source_divider(clock_can4, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_can4);
} else if (ptr == HPM_MCAN5) {
/* Set the CAN5 peripheral clock to 80MHz */
clock_set_source_divider(clock_can5, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_can5);
} else if (ptr == HPM_MCAN6) {
/* Set the CAN6 peripheral clock to 80MHz */
clock_set_source_divider(clock_can6, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_can6);
} else if (ptr == HPM_MCAN7) {
/* Set the CAN7 peripheral clock to 80MHz */
clock_set_source_divider(clock_can7, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_can7);
} else {
/* Invalid CAN instance */
}
return freq;
}
uint32_t board_init_uart_clock(UART_Type *ptr)
{
uint32_t freq = 0U;
if (ptr == HPM_UART0) {
clock_set_source_divider(clock_uart0, clk_src_osc24m, 1);
clock_add_to_group(clock_uart0, 0);
freq = clock_get_frequency(clock_uart0);
} else if (ptr == HPM_UART1) {
clock_set_source_divider(clock_uart1, clk_src_osc24m, 1);
clock_add_to_group(clock_uart1, 0);
freq = clock_get_frequency(clock_uart1);
} else if (ptr == HPM_UART2) {
clock_set_source_divider(clock_uart2, clk_src_osc24m, 1);
clock_add_to_group(clock_uart2, 0);
freq = clock_get_frequency(clock_uart2);
} else if (ptr == HPM_UART3) {
clock_set_source_divider(clock_uart3, clk_src_osc24m, 1);
clock_add_to_group(clock_uart3, 0);
freq = clock_get_frequency(clock_uart3);
} else {
/* Not supported */
}
return freq;
}
uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz);
#if defined(CONFIG_PANEL_RGB_TM070RDH13) && CONFIG_PANEL_RGB_TM070RDH13
static void set_reset_pin_level_tm070rdh13(uint8_t level)
{
gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 14, level);
}
static void set_backlight_tm070rdh13(uint16_t percent)
{
gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 9, percent > 0 ? 1 : 0);
}
static void set_video_router_tm070rdh13(void)
{
pixelmux_rgb_data_source_enable(pixelmux_rgb_sel_lcdc0);
}
void board_init_lcd_rgb_tm070rdh13(void)
{
init_lcd_rgb_ctl_pins();
init_lcd_rgb_pins();
gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOY, 5);
gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOY, 5, 1);
gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOA, 9);
gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOA, 14);
hpm_panel_hw_interface_t hw_if = {0};
hpm_panel_t *panel = hpm_panel_find_device_default();
const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel);
uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_lcd0, timing->pixel_clock_khz);
hw_if.set_reset_pin_level = set_reset_pin_level_tm070rdh13;
hw_if.set_backlight = set_backlight_tm070rdh13;
hw_if.set_video_router = set_video_router_tm070rdh13;
hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz;
hpm_panel_register_interface(panel, &hw_if);
printf("name: %s, lcdc_clk: %ukhz\n",
hpm_panel_get_name(panel),
lcdc_pixel_clk_khz);
hpm_panel_reset(panel);
hpm_panel_init(panel);
hpm_panel_power_on(panel);
}
#endif
#if defined(CONFIG_PANEL_LVDS_CC10128007) && CONFIG_PANEL_LVDS_CC10128007
static void set_backlight_cc10128007(uint16_t percent)
{
gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 31, percent > 0 ? 1 : 0);
gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 30, percent > 0 ? 1 : 0);
}
static void set_video_router_cc10128007(void)
{
pixelmux_config_tx_phy1_mode(pixelmux_tx_phy_mode_lvds);
pixelmux_lvb_di0_data_source_enable(pixelmux_lvb_di0_sel_lcdc0);
}
void board_init_lcd_lvds_cc10128007(void)
{
init_lcd_lvds_single_ctl_pins();
gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOA, 30);
gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOA, 31);
init_mipi_lvds_tx_phy1_pin();
hpm_panel_hw_interface_t hw_if = {0};
hpm_panel_t *panel = hpm_panel_find_device_default();
const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel);
uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_lcd0, timing->pixel_clock_khz);
hw_if.set_video_router = set_video_router_cc10128007;
hw_if.set_backlight = set_backlight_cc10128007;
hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz;
hw_if.video.lvds.channel_di_index = 0;
hw_if.video.lvds.channel_index = 1; /* ch1 -> phy1*/
hw_if.video.lvds.lvb_base = HPM_LVB;
hpm_panel_register_interface(panel, &hw_if);
printf("name: %s, lcdc_clk: %ukhz\n",
hpm_panel_get_name(panel),
lcdc_pixel_clk_khz);
hpm_panel_reset(panel);
hpm_panel_init(panel);
hpm_panel_power_on(panel);
}
#endif
#if defined(CONFIG_PANEL_MIPI_MC10128007_31B) && CONFIG_PANEL_MIPI_MC10128007_31B
static void set_reset_pin_level_mc10128007_31b(uint8_t level)
{
gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOB, 1, level);
}
static void set_video_router_mc10128007_31b(void)
{
pixelmux_mipi_dsi0_data_source_enable(pixelmux_mipi_dsi0_sel_lcdc0);
pixelmux_config_tx_phy0_mode(pixelmux_tx_phy_mode_mipi);
}
void board_init_lcd_mipi_mc10128007_31b(void)
{
/* RESET */
init_lcd_mipi_ctl_pins();
gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOB, 1);
init_mipi_lvds_tx_phy0_pin();
hpm_panel_hw_interface_t hw_if = {0};
hpm_panel_t *panel = hpm_panel_find_device_default();
const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel);
uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_lcd0, timing->pixel_clock_khz);
hw_if.set_reset_pin_level = set_reset_pin_level_mc10128007_31b;
hw_if.set_video_router = set_video_router_mc10128007_31b;
hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz;
hw_if.video.mipi.format = HPM_PANEL_MIPI_FORMAT_RGB888;
hw_if.video.mipi.mipi_host_base = HPM_MIPI_DSI0;
hw_if.video.mipi.mipi_phy_base = HPM_MIPI_DSI_PHY0;
hpm_panel_register_interface(panel, &hw_if);
printf("name: %s, lcdc_clk: %ukhz\n",
hpm_panel_get_name(panel),
lcdc_pixel_clk_khz);
hpm_panel_reset(panel);
hpm_panel_init(panel);
hpm_panel_power_on(panel);
}
#endif
#if defined(CONFIG_PANEL_LVDS_TM103XDGP01) && CONFIG_PANEL_LVDS_TM103XDGP01
static void set_reset_pin_level_tm103xdgp01(uint8_t level)
{
gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 31, level);
}
static void set_video_router_tm103xdgp01(void)
{
pixelmux_config_tx_phy0_mode(pixelmux_tx_phy_mode_lvds);
pixelmux_config_tx_phy1_mode(pixelmux_tx_phy_mode_lvds);
pixelmux_lvb_di1_data_source_enable(pixelmux_lvb_di1_sel_lcdc0);
pixelmux_lvb_di0_data_source_enable(pixelmux_lvb_di0_sel_lcdc0);
}
void board_init_lcd_lvds_tm103xdgp01(void)
{
init_lcd_lvds_double_ctl_pins();
gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOA, 31);
init_mipi_lvds_tx_phy0_pin();
init_mipi_lvds_tx_phy1_pin();
hpm_panel_hw_interface_t hw_if = {0};
hpm_panel_t *panel = hpm_panel_find_device_default();
const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel);
/* In split mode: lcdc_pixel_clk = 2 * panel_pixel_clk */
uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_lcd0, timing->pixel_clock_khz * 2);
hw_if.set_reset_pin_level = set_reset_pin_level_tm103xdgp01;
hw_if.set_video_router = set_video_router_tm103xdgp01;
hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz;
hw_if.video.lvds.channel_di_index = 0;
hw_if.video.lvds.lvb_base = HPM_LVB;
hpm_panel_register_interface(panel, &hw_if);
printf("name: %s, lcdc_clk: %ukhz\n",
hpm_panel_get_name(panel),
lcdc_pixel_clk_khz);
hpm_panel_reset(panel);
hpm_panel_init(panel);
hpm_panel_power_on(panel);
}
#endif
#ifdef CONFIG_HPM_PANEL
void board_lcd_backlight(bool is_on)
{
hpm_panel_t *panel = hpm_panel_find_device_default();
hpm_panel_set_backlight(panel, is_on == true ? 100 : 0);
}
uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz)
{
clock_add_to_group(clock_name, 0);
uint32_t freq_khz = clock_get_frequency(clk_pll4clk0) / 1000;
uint32_t div = (freq_khz + pixel_clk_khz / 2) / pixel_clk_khz;
clock_set_source_divider(clock_name, clk_src_pll4_clk0, div);
return clock_get_frequency(clock_name) / 1000;
}
void board_init_lcd(void)
{
#if defined(CONFIG_PANEL_RGB_TM070RDH13) && CONFIG_PANEL_RGB_TM070RDH13
board_init_lcd_rgb_tm070rdh13();
#endif
#if defined(CONFIG_PANEL_LVDS_CC10128007) && CONFIG_PANEL_LVDS_CC10128007
board_init_lcd_lvds_cc10128007();
#endif
#if defined(CONFIG_PANEL_MIPI_MC10128007_31B) && CONFIG_PANEL_MIPI_MC10128007_31B
board_init_lcd_mipi_mc10128007_31b();
#endif
#if defined(CONFIG_PANEL_LVDS_TM103XDGP01) && CONFIG_PANEL_LVDS_TM103XDGP01
board_init_lcd_lvds_tm103xdgp01();
#endif
}
void board_panel_para_to_lcdc(lcdc_config_t *config)
{
const hpm_panel_timing_t *timing;
hpm_panel_t *panel = hpm_panel_find_device_default();
timing = hpm_panel_get_timing(panel);
config->resolution_x = timing->hactive;
config->resolution_y = timing->vactive;
config->hsync.pulse_width = timing->hsync_len;
config->hsync.back_porch_pulse = timing->hback_porch;
config->hsync.front_porch_pulse = timing->hfront_porch;
config->vsync.pulse_width = timing->vsync_len;
config->vsync.back_porch_pulse = timing->vback_porch;
config->vsync.front_porch_pulse = timing->vfront_porch;
config->control.invert_hsync = timing->hsync_pol;
config->control.invert_vsync = timing->vsync_pol;
config->control.invert_href = timing->de_pol;
config->control.invert_pixel_data = timing->pixel_data_pol;
config->control.invert_pixel_clock = timing->pixel_clk_pol;
}
#endif
void board_init_gwc(void)
{
clock_add_to_group(clock_gwc0, 0);
clock_add_to_group(clock_gwc1, 0);
clock_add_to_group(clock_lcd0, 0);
}
void board_init_cap_touch(void)
{
init_cap_pins();
gpio_set_pin_output_with_initial(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 0);
gpio_set_pin_output_with_initial(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
board_delay_ms(1);
gpio_write_pin(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
board_delay_ms(1);
gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 1);
board_delay_ms(6);
gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
board_init_i2c(BOARD_CAP_I2C_BASE);
}
void board_init_cam_pins(void)
{
init_cam_pins();
/* enable cam RST pin out with high level */
gpio_set_pin_output_with_initial(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, 1);
/* PWDN pin set to low when power up */
gpio_set_pin_output_with_initial(BOARD_CAM_PWDN_GPIO_CTRL, BOARD_CAM_PWDN_GPIO_INDEX, BOARD_CAM_PWDN_GPIO_PIN, 0);
pixelmux_cam0_data_source_enable(pixelmux_cam0_sel_dvp);
}
void board_write_cam_rst(uint8_t state)
{
gpio_write_pin(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, state);
}
void board_write_cam_pwdn(uint8_t state)
{
gpio_write_pin(BOARD_CAM_PWDN_GPIO_CTRL, BOARD_CAM_PWDN_GPIO_INDEX, BOARD_CAM_PWDN_GPIO_PIN, state);
}
uint32_t board_init_cam_clock(CAM_Type *ptr)
{
uint32_t freq = 0;
if (ptr == HPM_CAM0) {
/* Configure camera clock to 24MHz */
clock_set_source_divider(clock_cam0, clk_src_osc24m, 1U);
freq = clock_get_frequency(clock_cam0);
} else if (ptr == HPM_CAM1) {
/* Configure camera clock to 24MHz */
clock_set_source_divider(clock_cam1, clk_src_osc24m, 1U);
freq = clock_get_frequency(clock_cam1);
} else {
/* Invalid camera instance */
}
return freq;
}
void board_init_mipi_csi_cam_pins(void)
{
init_cam_mipi_csi_pins();
init_mipi_lvds_rx_phy1_pin();
/* enable cam RST pin out with high level */
gpio_set_pin_output_with_initial(HPM_GPIO0, GPIO_DI_GPIOB, 0, 1);
}
void board_write_mipi_csi_cam_rst(uint8_t state)
{
gpio_write_pin(HPM_GPIO0, GPIO_DI_GPIOB, 0, state);
}
static void _cpu_wait_ms(uint32_t cpu_freq, uint32_t ms)
{
uint32_t ticks_per_us = (cpu_freq + 1000000UL - 1UL) / 1000000UL;
uint64_t expected_ticks = hpm_csr_get_core_mcycle() + (uint64_t)ticks_per_us * 1000UL * ms;
while (hpm_csr_get_core_mcycle() < expected_ticks) {
}
}
void init_ddr2_800(void)
{
/* Enable On-chip DCDC 1.8V output */
HPM_PCFG->DCDCM_MODE = PCFG_DCDCM_MODE_VOLT_SET(1800) | PCFG_DCDCM_MODE_MODE_SET(1);
/* Change DDR clock to 200MHz, namely: DDR2-800 */
clock_set_source_divider(clock_axif, clk_src_pll1_clk0, 4);
/* Enable DDR clock first */
clock_add_to_group(clock_ddr0, 0);
/* Wait until the clock is stable */
uint32_t core_clock_freq = clock_get_frequency(clock_cpu0);
_cpu_wait_ms(core_clock_freq, 5);
/* Clear DFI_INIT_COMPLETE_EN bit */
HPM_DDRCTL->DFIMISC &= ~DDRCTL_DFIMISC_DFI_INIT_COMPLETE_EN_MASK;
/* Release DDR core reset */
*(volatile uint32_t *) (HPM_DDRCTL_BASE + 0x3000UL) |= (1UL << 26);
/* Enable PORT */
HPM_DDRCTL->PCFG[0].CTRL = 1;
/* Configure W972GG6KB parameters, configure DDRCTL first */
HPM_DDRCTL->MSTR = DDRCTL_MSTR_ACTIVE_RANKS_SET(1) /* RANK=1 */
| DDRCTL_MSTR_BURST_RDWR_SET(4) /* Burst Length = 8 */
| DDRCTL_MSTR_DATA_BUS_WIDTH_SET(0) /* Full DQ bus width */
| DDRCTL_MSTR_DDR3_SET(0); /* DDR2 Device */
/* Skip SDRAM Initialization in controller, the initialization sequence will be performed by PHY */
HPM_DDRCTL->INIT0 = DDRCTL_INIT0_SKIP_DRAM_INIT_SET(1)
| DDRCTL_INIT0_POST_CKE_X1024_SET(2) /* Default setting */
| DDRCTL_INIT0_PRE_CKE_X1024_SET(0x4e); /* Default setting */
/* Configure DFI timing */
HPM_DDRCTL->DFITMG0 = 0x03010101UL;
HPM_DDRCTL->DFITMG1 = 0x00020101UL;
HPM_DDRCTL->DFIUPD0 = 0x40005UL;
HPM_DDRCTL->DFIUPD1 = 0x00020008UL;
HPM_DDRCTL->ODTCFG = 0x06000600UL; /* BL=8 */
/* Configure ADDRMAP */
HPM_DDRCTL->ADDRMAP0 = 0x001F1F1FUL; /* RANK0 not used */
HPM_DDRCTL->ADDRMAP1 = 0x00121212UL; /* HIF bit[24:22] as BANK[2:0] */
HPM_DDRCTL->ADDRMAP2 = 0; /* HIF bit[6:3] as COL_B[6:3] */
HPM_DDRCTL->ADDRMAP3 = 0; /* HIF bit [10:7] as COL_B[11,9:6:7] */
HPM_DDRCTL->ADDRMAP4 = 0xF0FUL; /* not used */
HPM_DDRCTL->ADDRMAP5 = 0x06030303UL; /* HIF bit[21:11] as ROW[10:0], HIF bit[25] as ROW[11] */
HPM_DDRCTL->ADDRMAP6 = 0x0F0F0606UL; /* HIF bit[27:26] as ROW[13:12] */
/* Release DDR AXI reset */
*(volatile uint32_t *) (HPM_DDRCTL_BASE + 0x3000UL) |= (1UL << 27);
/* Release DDR PHY */
*(volatile uint32_t *) (HPM_DDRPHY_BASE + 0x3000UL) |= (1UL << 4);
HPM_DDRPHY->DCR = DDRPHY_DCR_DDRMD_SET(2) /* Set to DDR2 mode */
| DDRPHY_DCR_DDR8BNK_MASK /* BANK = 8 */
| DDRPHY_DCR_BYTEMASK_MASK; /* BYTEMASK = 1 */
HPM_DDRPHY->DSGCR |= DDRPHY_DSGCR_RRMODE_MASK; /* Enable RRMode */
/* Configure DDR2 registers */
HPM_DDRPHY->MR = (3UL << 0) /* BL = 3 */
| (0UL << 3) /* BT = 0 */
| (6UL << 4) /* CL = 6 */
| (0UL << 7) /* Operating mode */
| (0UL << 8) /* DLL Reset = 0 */
| (6UL << 9); /* WR = 6 */
HPM_DDRPHY->EMR = (1UL << 0) /* DLL Enable */
| (0UL << 1) /* Output Driver Impedance Control */
| (0UL << 6) | (1UL << 2) /* On Die Termination */
| (0UL << 3) /* AL(Posted CAS Additive Latency) = 0 */
| (0UL << 7) /* OCD = 0*/
| (0UL << 10) /* DQS */
| (0UL << 11) /* RDQS */
| (0UL << 12); /* QOFF */
HPM_DDRPHY->EMR2 = 0;
HPM_DDRPHY->EMR3 = 0;
HPM_DDRPHY->DTPR0 = (4UL << 0)
| (5UL << 4)
| (14UL << 8)
| (15UL << 12)
| (50UL << 16)
| (10UL << 22)
| (60UL << 26);
HPM_DDRPHY->DTPR1 = (2UL << 0)
| (31UL << 5)
| (80UL << 11)
| (40UL << 20)
| (0x8 << 26);
HPM_DDRPHY->DTPR2 = (256UL << 0)
| (6UL << 10)
| (4UL << 15)
| (512UL << 19);
/* tREFPRD */
HPM_DDRPHY->PGCR2 = 0xF06D50;
/* Set DFI_INIT_COMPLETE_EN bit */
HPM_DDRCTL->DFIMISC |= DDRCTL_DFIMISC_DFI_INIT_COMPLETE_EN_MASK;
/* Start PHY Init First */
HPM_DDRPHY->PIR |= DDRPHY_PIR_INIT_MASK;
while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) == 0) {
}
/** Data training
* RANKEN = 1, Others: default value
*/
HPM_DDRPHY->DTCR = 0x91003587UL;
/* Trigger PHY to do the PHY initialization and DRAM initialization */
HPM_DDRPHY->PIR = 0xF501UL;
/* Wait until the initialization sequence started */
while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) != 0) {
}
/* Wait until the initialization sequence completed */
while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) == 0) {
}
/* Wait for normal mode */
while ((HPM_DDRCTL->STAT & DDRCTL_STAT_OPERATING_MODE_MASK) != 0x1) {
}
}
void init_ddr3l_1333(void)
{
/* Enable On-chip DCDC 1.4V output */
HPM_PCFG->DCDCM_MODE = PCFG_DCDCM_MODE_VOLT_SET(1400) | PCFG_DCDCM_MODE_MODE_SET(5);
/* Change DDR clock to 333.33MHz, namely: DDR3-1333 */
clock_set_source_divider(clock_axif, clk_src_pll1_clk1, 2);
/* Enable DDR clock first */
clock_add_to_group(clock_ddr0, 0);
/* Wait until the clock is stable */
uint32_t core_clock_freq = clock_get_frequency(clock_cpu0);
_cpu_wait_ms(core_clock_freq, 5);
/* Release DDR PHY */
*(volatile uint32_t *) (HPM_DDRPHY_BASE + 0x3000UL) |= (1UL << 4);
/* Clear DFI_INIT_COMPLETE_EN bit */
HPM_DDRCTL->DFIMISC &= ~DDRCTL_DFIMISC_DFI_INIT_COMPLETE_EN_MASK;
HPM_DDRPHY->DSGCR = 0xf004641f;
*(volatile uint32_t *) (HPM_DDRPHY_BASE + 0x3000UL) |= (1UL << 0);
/* Release DDR core reset */
*(volatile uint32_t *) (HPM_DDRCTL_BASE + 0x3000UL) |= (1UL << 26);
/* Configure DDRCTL first */
HPM_DDRCTL->MSTR = DDRCTL_MSTR_ACTIVE_RANKS_SET(1) /* RANK=1 */
| DDRCTL_MSTR_BURST_RDWR_SET(4) /* Burst Length = 8 */
| DDRCTL_MSTR_DATA_BUS_WIDTH_SET(0) /* Full DQ bus width */
| DDRCTL_MSTR_DDR3_SET(1); /* DDR3 Device */
/* Enable PORT */
HPM_DDRCTL->PCFG[0].CTRL = 1;
/* Skip SDRAM Initialization in controller, the initialization sequence will be performed by PHY */
HPM_DDRCTL->INIT0 = DDRCTL_INIT0_SKIP_DRAM_INIT_SET(1)
| DDRCTL_INIT0_POST_CKE_X1024_SET(2) /* Default setting */
| DDRCTL_INIT0_PRE_CKE_X1024_SET(0x4e); /* Default setting */
HPM_DDRCTL->DRAMTMG4 = 0x05010407;
/* Configure DFI timing */
HPM_DDRCTL->DFITMG0 = 0x07040102;
HPM_DDRCTL->DFITMG1 = 0x20404;
HPM_DDRCTL->DFIUPD1 = 0x20008;
HPM_DDRCTL->ODTCFG = 0x06000600UL; /* BL=8 */
HPM_DDRCTL->ODTMAP = 0x11;
/* Configure ADDRMAP */
HPM_DDRCTL->ADDRMAP0 = 0x001F1F1FUL; /* RANK0 not used */
HPM_DDRCTL->ADDRMAP1 = 0x00121212UL; /* HIF bit[24:22] as BANK[2:0] */
HPM_DDRCTL->ADDRMAP2 = 0; /* HIF bit[6:3] as COL_B[6:3] */
HPM_DDRCTL->ADDRMAP3 = 0; /* HIF bit [10:7] as COL_B[11,9:6:7] */
HPM_DDRCTL->ADDRMAP4 = 0xF0FUL; /* not used */
HPM_DDRCTL->ADDRMAP5 = 0x06030303UL; /* HIF bit[21:11] as ROW[10:0], HIF bit[25] as ROW[11] */
HPM_DDRCTL->ADDRMAP6 = 0x0F060606UL; /* HIF bit[27:26] as ROW[13:12] */
/* Release DDR AXI reset */
*(volatile uint32_t *) (HPM_DDRCTL_BASE + 0x3000UL) |= (1UL << 27);
/* Configure DDR3 registers */
HPM_DDRPHY->MR0 = 0xC70;
HPM_DDRPHY->MR1 = 0x6;
HPM_DDRPHY->MR2 = 0x18;
HPM_DDRPHY->MR3 = 0;
HPM_DDRPHY->ODTCR = 0x84210000;
HPM_DDRPHY->DTPR0 = 0x919c8866;
HPM_DDRPHY->DTPR1 = 0x1a838360;
HPM_DDRPHY->DTPR2 = 0x3002d200;
/* tREFPRD */
HPM_DDRPHY->PGCR2 = 0xf06d28;
/* Set DFI_INIT_COMPLETE_EN bit */
HPM_DDRCTL->DFIMISC |= DDRCTL_DFIMISC_DFI_INIT_COMPLETE_EN_MASK;
/* Start PHY Init First */
HPM_DDRPHY->PIR |= DDRPHY_PIR_INIT_MASK;
while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) == 0) {
}
/** Data training
* RANKEN = 1, Others: default value
*/
HPM_DDRPHY->DTCR = 0x930035D7;
/* Trigger PHY to do the PHY initialization and DRAM initialization */
HPM_DDRPHY->PIR = 0xFF81UL;
/* Wait until the initialization sequence started */
while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) != 0) {
}
/* Wait until the initialization sequence completed */
while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) == 0) {
}
/* Wait for normal mode */
while ((HPM_DDRCTL->STAT & DDRCTL_STAT_OPERATING_MODE_MASK) != 0x1) {
}
}
void _init_ext_ram(void)
{
#if (BOARD_DDR_TYPE == DDR_TYPE_DDR2)
init_ddr2_800();
#endif
#if (BOARD_DDR_TYPE == DDR_TYPE_DDR3L)
init_ddr3l_1333();
#endif
}
void board_init_usb_pins(void)
{
init_usb_pins();
usb_hcd_set_power_ctrl_polarity(BOARD_USB, true);
/* Wait USB_PWR pin control vbus power stable. Time depend on decoupling capacitor, you can decrease or increase this time */
board_delay_ms(100);
}
void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
{
(void) usb_index;
(void) level;
}
void board_sd_power_switch(SDXC_Type *ptr, bool power_on)
{
if (ptr == HPM_SDXC1) {
init_sdxc_pwr_pin(ptr, true);
uint32_t gpio_index = BOARD_APP_SDCARD_POWER_SWITCH_PIN / 32;
uint32_t pin_index = BOARD_APP_SDCARD_POWER_SWITCH_PIN % 32;
if (power_on) {
HPM_GPIO0->DO[gpio_index].SET = 1UL << pin_index;
} else {
HPM_GPIO0->DO[gpio_index].CLEAR = 1UL << pin_index;
}
}
}
void board_init_sd_pins(SDXC_Type *ptr)
{
if (ptr == HPM_SDXC0) {
init_sdxc_cmd_pin(ptr, false, true);
init_sdxc_clk_data_pins(ptr, 8, true);
} else {
init_sdxc_cmd_pin(ptr, false, false);
init_sdxc_clk_data_pins(ptr, 4, false);
}
}
uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq, bool need_inverse)
{
uint32_t actual_freq = 0;
do {
if ((ptr != HPM_SDXC0) && (ptr != HPM_SDXC1)) {
break;
}
clock_name_t sdxc_clk = (ptr == HPM_SDXC0) ? clock_sdxc0 : clock_sdxc1;
clock_add_to_group(sdxc_clk, 0);
sdxc_enable_inverse_clock(ptr, false);
sdxc_enable_sd_clock(ptr, false);
clock_set_source_divider(sdxc_clk, clk_src_pll1_clk0, 4U);
/* Configure the clock below 400KHz for the identification state */
if (freq <= 400000UL) {
/* Set clock to 375KHz */
sdxc_set_clock_divider(ptr, 534U);
}
/* configure the clock to 24MHz for the SDR12/Default speed */
else if (freq <= 26000000UL) {
/* Set clock to 25MHz */
sdxc_set_clock_divider(ptr, 8U);
}
/* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */
else if (freq <= 52000000UL) {
/* Set clock to 50MHz */
sdxc_set_clock_divider(ptr, 4U);
}
/* Configure the clock to 100MHz for the SDR50 */
else if (freq <= 100000000UL) {
/* Set clock to 100MHz */
sdxc_set_clock_divider(ptr, 2U);
}
/* Configure the clock to 133MHz for SDR104/HS200/HS400 */
else if (freq <= 208000000UL) {
/* 166MHz */
clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 5U);
sdxc_set_clock_divider(ptr, 1U);
}
/* For other unsupported clock ranges, configure the clock to 24MHz */
else {
/* Set clock to 25MHz */
sdxc_set_clock_divider(ptr, 5U);
}
if (need_inverse) {
sdxc_enable_inverse_clock(ptr, true);
}
sdxc_enable_sd_clock(ptr, true);
actual_freq = clock_get_frequency(sdxc_clk) / sdxc_get_clock_divider(ptr);
} while (false);
return actual_freq;
}
uint32_t board_init_dao_clock(void)
{
return clock_get_frequency(clock_dao);
}
uint32_t board_init_pdm_clock(void)
{
return clock_get_frequency(clock_pdm);
}
uint32_t board_init_i2s_clock(I2S_Type *ptr)
{
if (ptr == HPM_I2S0) {
return clock_get_frequency(clock_i2s0);
} else if (ptr == HPM_I2S1) {
return clock_get_frequency(clock_i2s1);
} else if (ptr == HPM_I2S2) {
return clock_get_frequency(clock_i2s2);
} else if (ptr == HPM_I2S3) {
return clock_get_frequency(clock_i2s3);
} else {
return 0;
}
}
/* adjust I2S source clock base on sample rate */
uint32_t board_config_i2s_clock(I2S_Type *ptr, uint32_t sample_rate)
{
if (ptr == HPM_I2S0) {
if ((sample_rate % 22050) == 0) {
clock_set_source_divider(clock_aud0, clk_src_pll1_clk0, 71); /* config clock_aud1 for 22050*n sample rate */
clock_add_to_group(clock_i2s0, 0);
clock_set_i2s_source(clock_i2s0, clk_i2s_src_aud0);
} else {
clock_set_source_divider(clock_aud0, clk_src_pll3_clk0, 21); /* default 24576000Hz */
clock_add_to_group(clock_i2s0, 0);
clock_set_i2s_source(clock_i2s0, clk_i2s_src_aud0);
}
return clock_get_frequency(clock_i2s0);
} else if (ptr == HPM_I2S1) {
if ((sample_rate % 22050) == 0) {
clock_set_source_divider(clock_aud1, clk_src_pll1_clk0, 71); /* config clock_aud1 for 22050*n sample rate */
clock_add_to_group(clock_i2s1, 0);
clock_set_i2s_source(clock_i2s1, clk_i2s_src_aud1);
} else {
clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 21); /* default 24576000Hz */
clock_add_to_group(clock_i2s1, 0);
clock_set_i2s_source(clock_i2s1, clk_i2s_src_aud1);
}
return clock_get_frequency(clock_i2s1);
} else if (ptr == HPM_I2S3) {
if ((sample_rate % 22050) == 0) {
clock_set_source_divider(clock_aud3, clk_src_pll1_clk0, 71); /* config clock_aud1 for 22050*n sample rate */
clock_add_to_group(clock_i2s3, 0);
clock_set_i2s_source(clock_i2s3, clk_i2s_src_aud3);
} else {
clock_set_source_divider(clock_aud3, clk_src_pll3_clk0, 21); /* default 24576000Hz */
clock_add_to_group(clock_i2s3, 0);
clock_set_i2s_source(clock_i2s3, clk_i2s_src_aud3);
}
return clock_get_frequency(clock_i2s3);
}
return 0;
}
hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
{
init_enet_pins(ptr);
if (ptr == HPM_ENET0) {
gpio_set_pin_output_with_initial(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX,
BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
} else {
return status_invalid_argument;
}
return status_success;
}
hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
{
if (ptr == HPM_ENET0) {
gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
board_delay_ms(1);
gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 1);
} else {
return status_invalid_argument;
}
return status_success;
}
uint8_t board_get_enet_dma_pbl(ENET_Type *ptr)
{
(void) ptr;
return enet_pbl_32;
}
hpm_stat_t board_enable_enet_irq(ENET_Type *ptr)
{
if (ptr == HPM_ENET0) {
intc_m_enable_irq(IRQn_ENET0);
} else {
return status_invalid_argument;
}
return status_success;
}
hpm_stat_t board_disable_enet_irq(ENET_Type *ptr)
{
if (ptr == HPM_ENET0) {
intc_m_disable_irq(IRQn_ENET0);
} else {
return status_invalid_argument;
}
return status_success;
}
void board_init_enet_pps_pins(ENET_Type *ptr)
{
(void) ptr;
init_enet_pps_pins();
}
hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
{
/* set clock source */
if (ptr == HPM_ENET0) {
/* make sure pll0_clk0 output clock at 800MHz to get a clock at 100MHz for the enet0 ptp function */
clock_set_source_divider(clock_ptp0, clk_src_pll1_clk0, 8); /* 100MHz */
} else {
return status_invalid_argument;
}
return status_success;
}
hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
{
(void) ptr;
(void) internal;
return status_success;
}
hpm_stat_t board_init_enet_rgmii_clock_delay(ENET_Type *ptr)
{
if (ptr == HPM_ENET0) {
return enet_rgmii_set_clock_delay(ptr, BOARD_ENET_RGMII_TX_DLY, BOARD_ENET_RGMII_RX_DLY);
}
return status_invalid_argument;
}
void board_init_adc16_pins(void)
{
init_adc_pins();
}
uint32_t board_init_adc16_clock(ADC16_Type *ptr, bool clk_src_ahb)
{
uint32_t freq = 0;
if (ptr == HPM_ADC0) {
if (clk_src_ahb) {
/* Configure the ADC clock from AXI (@200MHz by default)*/
clock_set_adc_source(clock_adc0, clk_adc_src_ahb0);
} else {
/* Configure the ADC clock from pll0_clk1 divided by 4 (@200MHz by default) */
clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
clock_set_source_divider(clock_ana0, clk_src_pll1_clk0, 4U);
}
freq = clock_get_frequency(clock_adc0);
}
return freq;
}
uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
{
uint32_t freq = 0;
if (ptr == HPM_GPTMR0) {
clock_add_to_group(clock_gptmr0, 0);
clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_gptmr0);
}
else if (ptr == HPM_GPTMR1) {
clock_add_to_group(clock_gptmr1, 0);
clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_gptmr1);
}
else if (ptr == HPM_GPTMR2) {
clock_add_to_group(clock_gptmr2, 0);
clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_gptmr2);
}
else if (ptr == HPM_GPTMR3) {
clock_add_to_group(clock_gptmr3, 0);
clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_gptmr3);
}
else if (ptr == HPM_GPTMR4) {
clock_add_to_group(clock_gptmr4, 0);
clock_set_source_divider(clock_gptmr4, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_gptmr4);
}
else if (ptr == HPM_GPTMR5) {
clock_add_to_group(clock_gptmr5, 0);
clock_set_source_divider(clock_gptmr5, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_gptmr5);
}
else if (ptr == HPM_GPTMR6) {
clock_add_to_group(clock_gptmr6, 0);
clock_set_source_divider(clock_gptmr6, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_gptmr6);
}
else if (ptr == HPM_GPTMR7) {
clock_add_to_group(clock_gptmr7, 0);
clock_set_source_divider(clock_gptmr7, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_gptmr7);
}
else {
/* Invalid instance */
}
}