mirror of
https://github.com/RT-Thread/rt-thread.git
synced 2025-01-25 21:37:21 +08:00
e03342ff6b
- added new boards: hpm5300evk, hpm5301evklite and hpm6800evk - upgaded hpm_sdk - driver updates and bugfixes - add hpmicro BSPs to CI Signed-off-by: Fan YANG <fan.yang@hpmicro.com>
826 lines
27 KiB
C
826 lines
27 KiB
C
/*
|
|
* Copyright (c) 2023 HPMicro
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
*
|
|
*/
|
|
|
|
#include "board.h"
|
|
#include "hpm_uart_drv.h"
|
|
#include "hpm_gptmr_drv.h"
|
|
#include "hpm_lcdc_drv.h"
|
|
#include "hpm_i2c_drv.h"
|
|
#include "hpm_gpio_drv.h"
|
|
#include "pinmux.h"
|
|
#include "hpm_pmp_drv.h"
|
|
#include "assert.h"
|
|
#include "hpm_clock_drv.h"
|
|
#include "hpm_sysctl_drv.h"
|
|
#include "hpm_pwm_drv.h"
|
|
#include "hpm_trgm_drv.h"
|
|
#include "hpm_pllctlv2_drv.h"
|
|
#include "hpm_pcfg_drv.h"
|
|
|
|
static board_timer_cb timer_cb;
|
|
ATTR_PLACE_AT_NONCACHEABLE_BSS static bool init_delay_flag;
|
|
|
|
/**
|
|
* @brief FLASH configuration option definitions:
|
|
* option[0]:
|
|
* [31:16] 0xfcf9 - FLASH configuration option tag
|
|
* [15:4] 0 - Reserved
|
|
* [3:0] option words (exclude option[0])
|
|
* option[1]:
|
|
* [31:28] Flash probe type
|
|
* 0 - SFDP SDR / 1 - SFDP DDR
|
|
* 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
|
|
* 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
|
|
* 6 - OctaBus DDR (SPI -> OPI DDR)
|
|
* 8 - Xccela DDR (SPI -> OPI DDR)
|
|
* 10 - EcoXiP DDR (SPI -> OPI DDR)
|
|
* [27:24] Command Pads after Power-on Reset
|
|
* 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
|
|
* [23:20] Command Pads after Configuring FLASH
|
|
* 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
|
|
* [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
|
|
* 0 - Not needed
|
|
* 1 - QE bit is at bit 6 in Status Register 1
|
|
* 2 - QE bit is at bit1 in Status Register 2
|
|
* 3 - QE bit is at bit7 in Status Register 2
|
|
* 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
|
|
* [15:8] Dummy cycles
|
|
* 0 - Auto-probed / detected / default value
|
|
* Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
|
|
* [7:4] Misc.
|
|
* 0 - Not used
|
|
* 1 - SPI mode
|
|
* 2 - Internal loopback
|
|
* 3 - External DQS
|
|
* [3:0] Frequency option
|
|
* 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
|
|
*
|
|
* option[2] (Effective only if the bit[3:0] in option[0] > 1)
|
|
* [31:20] Reserved
|
|
* [19:16] IO voltage
|
|
* 0 - 3V / 1 - 1.8V
|
|
* [15:12] Pin group
|
|
* 0 - 1st group / 1 - 2nd group
|
|
* [11:8] Connection selection
|
|
* 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
|
|
* [7:0] Drive Strength
|
|
* 0 - Default value
|
|
* option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
|
|
* JESD216)
|
|
* [31:16] reserved
|
|
* [15:12] Sector Erase Command Option, not required here
|
|
* [11:8] Sector Size Option, not required here
|
|
* [7:0] Flash Size Option
|
|
* 0 - 4MB / 1 - 8MB / 2 - 16MB
|
|
*/
|
|
#if defined(FLASH_XIP) && FLASH_XIP
|
|
__attribute__((section(".nor_cfg_option"))) const uint32_t option[4] = { 0xfcf90001, 0x00000007, 0x0, 0x0 };
|
|
#endif
|
|
|
|
#if defined(FLASH_UF2) && FLASH_UF2
|
|
ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
|
|
#endif
|
|
|
|
void board_init_console(void)
|
|
{
|
|
#if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
|
|
#if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
|
|
console_config_t cfg;
|
|
|
|
/* uart needs to configure pin function before enabling clock, otherwise the level change of
|
|
uart rx pin when configuring pin function will cause a wrong data to be received.
|
|
And a uart rx dma request will be generated by default uart fifo dma trigger level. */
|
|
init_uart_pins((UART_Type *) BOARD_CONSOLE_UART_BASE);
|
|
|
|
/* Configure the UART clock to 24MHz */
|
|
clock_set_source_divider(BOARD_CONSOLE_UART_CLK_NAME, clk_src_osc24m, 1U);
|
|
clock_add_to_group(BOARD_CONSOLE_UART_CLK_NAME, 0);
|
|
|
|
cfg.type = BOARD_CONSOLE_TYPE;
|
|
cfg.base = (uint32_t)BOARD_CONSOLE_UART_BASE;
|
|
cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_UART_CLK_NAME);
|
|
cfg.baudrate = BOARD_CONSOLE_UART_BAUDRATE;
|
|
|
|
if (status_success != console_init(&cfg)) {
|
|
/* failed to initialize debug console */
|
|
while (1) {
|
|
}
|
|
}
|
|
#else
|
|
while (1)
|
|
;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void board_print_clock_freq(void)
|
|
{
|
|
printf("==============================\n");
|
|
printf(" %s clock summary\n", BOARD_NAME);
|
|
printf("==============================\n");
|
|
printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0));
|
|
printf("cpu1:\t\t %luHz\n", clock_get_frequency(clock_cpu1));
|
|
printf("axi:\t\t %luHz\n", clock_get_frequency(clock_axi));
|
|
printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb));
|
|
printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0));
|
|
printf("mchtmr1:\t %luHz\n", clock_get_frequency(clock_mchtmr1));
|
|
printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0));
|
|
printf("==============================\n");
|
|
}
|
|
|
|
void board_init_uart(UART_Type *ptr)
|
|
{
|
|
/* configure uart's pin before opening uart's clock */
|
|
init_uart_pins(ptr);
|
|
board_init_uart_clock(ptr);
|
|
}
|
|
|
|
void board_print_banner(void)
|
|
{
|
|
const uint8_t banner[] = { "\n\
|
|
----------------------------------------------------------------------\n\
|
|
$$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
|
|
$$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
|
|
$$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
|
|
$$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
|
|
$$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
|
|
$$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
|
|
$$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
|
|
\\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
|
|
----------------------------------------------------------------------\n"};
|
|
#ifdef SDK_VERSION_STRING
|
|
printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
|
|
#endif
|
|
printf("%s", banner);
|
|
}
|
|
|
|
uint8_t board_get_led_pwm_off_level(void)
|
|
{
|
|
return BOARD_LED_OFF_LEVEL;
|
|
}
|
|
|
|
uint8_t board_get_led_gpio_off_level(void)
|
|
{
|
|
return BOARD_LED_OFF_LEVEL;
|
|
}
|
|
|
|
void board_ungate_mchtmr_at_lp_mode(void)
|
|
{
|
|
/* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
|
|
sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
|
|
}
|
|
|
|
void board_init(void)
|
|
{
|
|
board_init_clock();
|
|
board_init_console();
|
|
board_init_pmp();
|
|
#if BOARD_SHOW_CLOCK
|
|
board_print_clock_freq();
|
|
#endif
|
|
#if BOARD_SHOW_BANNER
|
|
board_print_banner();
|
|
#endif
|
|
}
|
|
|
|
void board_init_core1(void)
|
|
{
|
|
board_init_console();
|
|
board_init_pmp();
|
|
}
|
|
|
|
void board_delay_us(uint32_t us)
|
|
{
|
|
clock_cpu_delay_us(us);
|
|
}
|
|
|
|
void board_delay_ms(uint32_t ms)
|
|
{
|
|
clock_cpu_delay_ms(ms);
|
|
}
|
|
|
|
void board_timer_isr(void)
|
|
{
|
|
if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
|
|
gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
|
|
timer_cb();
|
|
}
|
|
}
|
|
SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
|
|
|
|
void board_timer_create(uint32_t ms, board_timer_cb cb)
|
|
{
|
|
uint32_t gptmr_freq;
|
|
gptmr_channel_config_t config;
|
|
|
|
timer_cb = cb;
|
|
gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
|
|
|
|
clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
|
|
gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
|
|
|
|
config.reload = gptmr_freq / 1000 * ms;
|
|
gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
|
|
gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
|
|
intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
|
|
|
|
gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
|
|
}
|
|
|
|
void board_i2c_bus_clear(I2C_Type *ptr)
|
|
{
|
|
init_i2c_pins_as_gpio(ptr);
|
|
if (ptr == BOARD_APP_I2C_BASE) {
|
|
gpio_set_pin_input(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SDA_GPIO_INDEX, BOARD_I2C_SDA_GPIO_PIN);
|
|
gpio_set_pin_input(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN);
|
|
if (!gpio_read_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN)) {
|
|
printf("CLK is low, please power cycle the board\n");
|
|
while (1) {
|
|
}
|
|
}
|
|
if (!gpio_read_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SDA_GPIO_INDEX, BOARD_I2C_SDA_GPIO_PIN)) {
|
|
printf("SDA is low, try to issue I2C bus clear\n");
|
|
} else {
|
|
printf("I2C bus is ready\n");
|
|
return;
|
|
}
|
|
|
|
gpio_set_pin_output(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN);
|
|
while (1) {
|
|
for (uint32_t i = 0; i < 9; i++) {
|
|
gpio_write_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN, 1);
|
|
board_delay_ms(10);
|
|
gpio_write_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN, 0);
|
|
board_delay_ms(10);
|
|
}
|
|
board_delay_ms(100);
|
|
}
|
|
printf("I2C bus is cleared\n");
|
|
}
|
|
}
|
|
|
|
void board_init_i2c(I2C_Type *ptr)
|
|
{
|
|
i2c_config_t config;
|
|
hpm_stat_t stat;
|
|
uint32_t freq;
|
|
if (ptr == NULL) {
|
|
return;
|
|
}
|
|
|
|
board_i2c_bus_clear(ptr);
|
|
init_i2c_pins(ptr);
|
|
clock_add_to_group(clock_i2c0, 0);
|
|
clock_add_to_group(clock_i2c1, 0);
|
|
clock_add_to_group(clock_i2c2, 0);
|
|
clock_add_to_group(clock_i2c3, 0);
|
|
/* Configure the I2C clock to 24MHz */
|
|
clock_set_source_divider(BOARD_APP_I2C_CLK_NAME, clk_src_osc24m, 1U);
|
|
|
|
config.i2c_mode = i2c_mode_normal;
|
|
config.is_10bit_addressing = false;
|
|
freq = clock_get_frequency(BOARD_APP_I2C_CLK_NAME);
|
|
stat = i2c_init_master(ptr, freq, &config);
|
|
if (stat != status_success) {
|
|
printf("failed to initialize i2c 0x%x\n", (uint32_t) ptr);
|
|
while (1) {
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t board_init_spi_clock(SPI_Type *ptr)
|
|
{
|
|
if (ptr == HPM_SPI1) {
|
|
/* SPI1 clock configure */
|
|
clock_add_to_group(clock_spi1, 0);
|
|
clock_set_source_divider(clock_spi1, clk_src_pll0_clk0, 5U); /* 80MHz */
|
|
|
|
return clock_get_frequency(clock_spi1);
|
|
} else if (ptr == HPM_SPI2) {
|
|
/* SPI3 clock configure */
|
|
clock_add_to_group(clock_spi2, 0);
|
|
clock_set_source_divider(clock_spi2, clk_src_pll0_clk0, 5U); /* 80MHz */
|
|
|
|
return clock_get_frequency(clock_spi2);
|
|
} else if (ptr == HPM_SPI3) {
|
|
/* SPI3 clock configure */
|
|
clock_add_to_group(clock_spi3, 0);
|
|
clock_set_source_divider(clock_spi3, clk_src_pll0_clk0, 5U); /* 80MHz */
|
|
|
|
return clock_get_frequency(clock_spi3);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void board_init_lin_pins(LIN_Type *ptr)
|
|
{
|
|
init_lin_pins(ptr);
|
|
}
|
|
|
|
uint32_t board_init_lin_clock(LIN_Type *ptr)
|
|
{
|
|
if (ptr == HPM_LIN0) {
|
|
clock_add_to_group(clock_lin0, 0);
|
|
clock_set_source_divider(clock_lin0, clk_src_pll0_clk0, 20U); /* 20MHz */
|
|
|
|
return clock_get_frequency(clock_lin0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void board_init_gpio_pins(void)
|
|
{
|
|
init_gpio_pins();
|
|
}
|
|
|
|
void board_init_spi_pins(SPI_Type *ptr)
|
|
{
|
|
init_spi_pins(ptr);
|
|
}
|
|
|
|
void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
|
|
{
|
|
init_spi_pins_with_gpio_as_cs(ptr);
|
|
gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
|
|
GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
|
|
}
|
|
|
|
void board_write_spi_cs(uint32_t pin, uint8_t state)
|
|
{
|
|
gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
|
|
}
|
|
|
|
void board_init_led_pins(void)
|
|
{
|
|
init_led_pins_as_gpio();
|
|
gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, board_get_led_gpio_off_level());
|
|
gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, board_get_led_gpio_off_level());
|
|
gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, board_get_led_gpio_off_level());
|
|
}
|
|
|
|
void board_led_toggle(void)
|
|
{
|
|
#ifdef BOARD_LED_TOGGLE_RGB
|
|
static uint8_t i;
|
|
switch (i) {
|
|
case 1:
|
|
gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
|
|
gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_ON_LEVEL);
|
|
gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
|
|
break;
|
|
|
|
case 2:
|
|
gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
|
|
gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
|
|
gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_ON_LEVEL);
|
|
break;
|
|
|
|
case 0:
|
|
default:
|
|
gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_ON_LEVEL);
|
|
gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
|
|
gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
|
|
break;
|
|
}
|
|
i++;
|
|
i = i % 3;
|
|
#else
|
|
gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
|
|
#endif
|
|
}
|
|
|
|
void board_led_write(uint8_t state)
|
|
{
|
|
gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
|
|
}
|
|
|
|
void board_init_usb_pins(void)
|
|
{
|
|
/* set pull-up for USBx ID pin */
|
|
init_usb_pins();
|
|
|
|
/* configure USBx ID pin as input function */
|
|
gpio_set_pin_input(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
|
|
}
|
|
|
|
uint8_t board_get_usb_id_status(void)
|
|
{
|
|
return gpio_read_pin(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
|
|
}
|
|
|
|
void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
|
|
{
|
|
(void) usb_index;
|
|
(void) level;
|
|
}
|
|
|
|
void board_init_pmp(void)
|
|
{
|
|
uint32_t start_addr;
|
|
uint32_t end_addr;
|
|
uint32_t length;
|
|
pmp_entry_t pmp_entry[16];
|
|
uint8_t index = 0;
|
|
|
|
/* Init noncachable memory */
|
|
extern uint32_t __noncacheable_start__[];
|
|
extern uint32_t __noncacheable_end__[];
|
|
start_addr = (uint32_t)__noncacheable_start__;
|
|
end_addr = (uint32_t)__noncacheable_end__;
|
|
length = end_addr - start_addr;
|
|
if (length > 0) {
|
|
/* Ensure the address and the length are power of 2 aligned */
|
|
assert((length & (length - 1U)) == 0U);
|
|
assert((start_addr & (length - 1U)) == 0U);
|
|
pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
|
|
pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
|
|
pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
|
|
pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
|
|
index++;
|
|
}
|
|
|
|
/* Init share memory */
|
|
extern uint32_t __share_mem_start__[];
|
|
extern uint32_t __share_mem_end__[];
|
|
start_addr = (uint32_t)__share_mem_start__;
|
|
end_addr = (uint32_t)__share_mem_end__;
|
|
length = end_addr - start_addr;
|
|
if (length > 0) {
|
|
/* Ensure the address and the length are power of 2 aligned */
|
|
assert((length & (length - 1U)) == 0U);
|
|
assert((start_addr & (length - 1U)) == 0U);
|
|
pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
|
|
pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
|
|
pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
|
|
pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
|
|
index++;
|
|
}
|
|
|
|
pmp_config(&pmp_entry[0], index);
|
|
}
|
|
|
|
void board_init_clock(void)
|
|
{
|
|
uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
|
|
if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
|
|
/* Configure the External OSC ramp-up time: ~9ms */
|
|
pllctlv2_xtal_set_rampup_time(HPM_PLLCTLV2, 32UL * 1000UL * 9U);
|
|
|
|
/* Select clock setting preset1 */
|
|
sysctl_clock_set_preset(HPM_SYSCTL, 2);
|
|
}
|
|
/* Add most Clocks to group 0 */
|
|
/* not open uart clock in this API, uart should configure pin function before opening clock */
|
|
clock_add_to_group(clock_cpu0, 0);
|
|
clock_add_to_group(clock_ahbp, 0);
|
|
clock_add_to_group(clock_axic, 0);
|
|
clock_add_to_group(clock_axis, 0);
|
|
|
|
clock_add_to_group(clock_mchtmr0, 0);
|
|
clock_add_to_group(clock_xpi0, 0);
|
|
clock_add_to_group(clock_gptmr0, 0);
|
|
clock_add_to_group(clock_gptmr1, 0);
|
|
clock_add_to_group(clock_gptmr2, 0);
|
|
clock_add_to_group(clock_gptmr3, 0);
|
|
clock_add_to_group(clock_i2c0, 0);
|
|
clock_add_to_group(clock_i2c1, 0);
|
|
clock_add_to_group(clock_i2c2, 0);
|
|
clock_add_to_group(clock_i2c3, 0);
|
|
clock_add_to_group(clock_lin0, 0);
|
|
clock_add_to_group(clock_lin1, 0);
|
|
clock_add_to_group(clock_lin2, 0);
|
|
clock_add_to_group(clock_lin3, 0);
|
|
clock_add_to_group(clock_spi0, 0);
|
|
clock_add_to_group(clock_spi1, 0);
|
|
clock_add_to_group(clock_spi2, 0);
|
|
clock_add_to_group(clock_spi3, 0);
|
|
clock_add_to_group(clock_can0, 0);
|
|
clock_add_to_group(clock_can1, 0);
|
|
clock_add_to_group(clock_can2, 0);
|
|
clock_add_to_group(clock_can3, 0);
|
|
clock_add_to_group(clock_ptpc, 0);
|
|
clock_add_to_group(clock_ref0, 0);
|
|
clock_add_to_group(clock_ref1, 0);
|
|
clock_add_to_group(clock_watchdog0, 0);
|
|
clock_add_to_group(clock_sdp, 0);
|
|
clock_add_to_group(clock_xdma, 0);
|
|
clock_add_to_group(clock_ram0, 0);
|
|
clock_add_to_group(clock_usb0, 0);
|
|
clock_add_to_group(clock_kman, 0);
|
|
clock_add_to_group(clock_gpio, 0);
|
|
clock_add_to_group(clock_mbx0, 0);
|
|
clock_add_to_group(clock_hdma, 0);
|
|
clock_add_to_group(clock_rng, 0);
|
|
clock_add_to_group(clock_mot0, 0);
|
|
clock_add_to_group(clock_mot1, 0);
|
|
clock_add_to_group(clock_mot2, 0);
|
|
clock_add_to_group(clock_mot3, 0);
|
|
clock_add_to_group(clock_acmp, 0);
|
|
clock_add_to_group(clock_msyn, 0);
|
|
clock_add_to_group(clock_lmm0, 0);
|
|
clock_add_to_group(clock_lmm1, 0);
|
|
|
|
clock_add_to_group(clock_adc0, 0);
|
|
clock_add_to_group(clock_adc1, 0);
|
|
clock_add_to_group(clock_adc2, 0);
|
|
|
|
clock_add_to_group(clock_dac0, 0);
|
|
clock_add_to_group(clock_dac1, 0);
|
|
|
|
clock_add_to_group(clock_tsns, 0);
|
|
clock_add_to_group(clock_crc0, 0);
|
|
clock_add_to_group(clock_sdm0, 0);
|
|
|
|
/* Connect Group0 to CPU0 */
|
|
clock_connect_group_to_cpu(0, 0);
|
|
|
|
/* Add the CPU1 clock to Group1 */
|
|
clock_add_to_group(clock_mchtmr1, 1);
|
|
|
|
/* Connect Group1 to CPU1 */
|
|
clock_connect_group_to_cpu(1, 1);
|
|
|
|
/* Bump up DCDC voltage to 1275mv */
|
|
pcfg_dcdc_set_voltage(HPM_PCFG, 1275);
|
|
|
|
/* Connect CAN2/CAN3 to pll0clk0*/
|
|
clock_set_source_divider(clock_can2, clk_src_pll0_clk0, 1);
|
|
clock_set_source_divider(clock_can3, clk_src_pll0_clk0, 1);
|
|
|
|
/* Configure CPU to 600MHz, AXI/AHB to 200MHz */
|
|
sysctl_config_cpu0_domain_clock(HPM_SYSCTL, clock_source_pll1_clk0, 1, 3, 3);
|
|
/* Configure PLL1_CLK0 Post Divider to 1 */
|
|
pllctlv2_set_postdiv(HPM_PLLCTLV2, 1, 0, 0);
|
|
pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, 1, 600000000);
|
|
clock_update_core_clock();
|
|
|
|
/* Configure mchtmr to 24MHz */
|
|
clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
|
|
clock_set_source_divider(clock_mchtmr1, clk_src_osc24m, 1);
|
|
}
|
|
|
|
uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
|
|
{
|
|
uint32_t freq = 0;
|
|
|
|
if (ptr == HPM_GPTMR0) {
|
|
clock_add_to_group(clock_gptmr0, 0);
|
|
clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk1, 4);
|
|
freq = clock_get_frequency(clock_gptmr0);
|
|
}
|
|
else if (ptr == HPM_GPTMR1) {
|
|
clock_add_to_group(clock_gptmr1, 0);
|
|
clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk1, 4);
|
|
freq = clock_get_frequency(clock_gptmr1);
|
|
}
|
|
else if (ptr == HPM_GPTMR2) {
|
|
clock_add_to_group(clock_gptmr2, 0);
|
|
clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk1, 4);
|
|
freq = clock_get_frequency(clock_gptmr2);
|
|
}
|
|
else if (ptr == HPM_GPTMR3) {
|
|
clock_add_to_group(clock_gptmr3, 0);
|
|
clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk1, 4);
|
|
freq = clock_get_frequency(clock_gptmr3);
|
|
}
|
|
else {
|
|
/* Invalid instance */
|
|
}
|
|
return freq;
|
|
}
|
|
|
|
uint32_t board_init_adc12_clock(ADC16_Type *ptr)
|
|
{
|
|
uint32_t freq = 0;
|
|
switch ((uint32_t)ptr) {
|
|
case HPM_ADC0_BASE:
|
|
/* Configure the ADC clock to 200MHz */
|
|
clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
|
|
clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
|
|
freq = clock_get_frequency(clock_adc0);
|
|
break;
|
|
case HPM_ADC1_BASE:
|
|
/* Configure the ADC clock to 200MHz */
|
|
clock_set_adc_source(clock_adc1, clk_adc_src_ana0);
|
|
clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
|
|
freq = clock_get_frequency(clock_adc1);
|
|
break;
|
|
case HPM_ADC2_BASE:
|
|
/* Configure the ADC clock to 200MHz */
|
|
clock_set_adc_source(clock_adc2, clk_adc_src_ana0);
|
|
clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
|
|
freq = clock_get_frequency(clock_adc2);
|
|
break;
|
|
default:
|
|
/* Invalid ADC instance */
|
|
break;
|
|
}
|
|
|
|
return freq;
|
|
}
|
|
|
|
uint32_t board_init_adc16_clock(ADC16_Type *ptr, bool clk_src_ahb)
|
|
{
|
|
uint32_t freq = 0;
|
|
|
|
if (ptr == HPM_ADC0) {
|
|
if (clk_src_ahb) {
|
|
/* Configure the ADC clock from AHB (@200MHz by default)*/
|
|
clock_set_adc_source(clock_adc0, clk_adc_src_ahb0);
|
|
} else {
|
|
/* Configure the ADC clock from pll0_clk0 divided by 2 (@200MHz by default) */
|
|
clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
|
|
clock_set_source_divider(clock_ana0, clk_src_pll0_clk0, 2U);
|
|
}
|
|
|
|
freq = clock_get_frequency(clock_adc0);
|
|
} else if (ptr == HPM_ADC1) {
|
|
if (clk_src_ahb) {
|
|
/* Configure the ADC clock from AHB (@200MHz by default)*/
|
|
clock_set_adc_source(clock_adc1, clk_adc_src_ahb0);
|
|
} else {
|
|
/* Configure the ADC clock from pll0_clk0 divided by 2 (@200MHz by default) */
|
|
clock_set_adc_source(clock_adc1, clk_adc_src_ana1);
|
|
clock_set_source_divider(clock_ana1, clk_src_pll0_clk0, 2U);
|
|
}
|
|
|
|
freq = clock_get_frequency(clock_adc1);
|
|
} else if (ptr == HPM_ADC2) {
|
|
if (clk_src_ahb) {
|
|
/* Configure the ADC clock from AHB (@200MHz by default)*/
|
|
clock_set_adc_source(clock_adc2, clk_adc_src_ahb0);
|
|
} else {
|
|
/* Configure the ADC clock from pll0_clk0 divided by 2 (@200MHz by default) */
|
|
clock_set_adc_source(clock_adc2, clk_adc_src_ana2);
|
|
clock_set_source_divider(clock_ana2, clk_src_pll0_clk0, 2U);
|
|
}
|
|
|
|
freq = clock_get_frequency(clock_adc2);
|
|
}
|
|
|
|
return freq;
|
|
}
|
|
|
|
uint32_t board_init_dac_clock(DAC_Type *ptr, bool clk_src_ahb)
|
|
{
|
|
uint32_t freq = 0;
|
|
|
|
if (ptr == HPM_DAC0) {
|
|
if (clk_src_ahb == true) {
|
|
/* Configure the DAC clock to 200MHz */
|
|
clock_set_dac_source(clock_dac0, clk_dac_src_ahb0);
|
|
} else {
|
|
/* Configure the DAC clock to 166MHz */
|
|
clock_set_dac_source(clock_dac0, clk_dac_src_ana3);
|
|
clock_set_source_divider(clock_ana3, clk_src_pll0_clk1, 2);
|
|
}
|
|
|
|
freq = clock_get_frequency(clock_dac0);
|
|
} else if (ptr == HPM_DAC1) {
|
|
if (clk_src_ahb == true) {
|
|
/* Configure the DAC clock to 200MHz */
|
|
clock_set_dac_source(clock_dac1, clk_dac_src_ahb0);
|
|
} else {
|
|
/* Configure the DAC clock to 166MHz */
|
|
clock_set_dac_source(clock_dac1, clk_dac_src_ana4);
|
|
clock_set_source_divider(clock_ana4, clk_src_pll0_clk1, 2);
|
|
}
|
|
|
|
freq = clock_get_frequency(clock_dac1);
|
|
}
|
|
|
|
return freq;
|
|
}
|
|
|
|
void board_init_can(MCAN_Type *ptr)
|
|
{
|
|
init_can_pins(ptr);
|
|
}
|
|
|
|
uint32_t board_init_can_clock(MCAN_Type *ptr)
|
|
{
|
|
uint32_t freq = 0;
|
|
if (ptr == HPM_MCAN0) {
|
|
/* Set the CAN0 peripheral clock to 8MHz */
|
|
clock_set_source_divider(clock_can0, clk_src_pll0_clk0, 5);
|
|
freq = clock_get_frequency(clock_can0);
|
|
} else if (ptr == HPM_MCAN1) {
|
|
/* Set the CAN1 peripheral clock to 8MHz */
|
|
clock_set_source_divider(clock_can1, clk_src_pll0_clk0, 5);
|
|
freq = clock_get_frequency(clock_can1);
|
|
} else if (ptr == HPM_MCAN2) {
|
|
/* Set the CAN2 peripheral clock to 8MHz */
|
|
clock_set_source_divider(clock_can2, clk_src_pll0_clk0, 5);
|
|
freq = clock_get_frequency(clock_can2);
|
|
} else if (ptr == HPM_MCAN3) {
|
|
/* Set the CAN2 peripheral clock to 8MHz */
|
|
clock_set_source_divider(clock_can3, clk_src_pll0_clk0, 5);
|
|
freq = clock_get_frequency(clock_can3);
|
|
} else {
|
|
/* Invalid CAN instance */
|
|
}
|
|
return freq;
|
|
}
|
|
|
|
void board_init_adc16_pins(void)
|
|
{
|
|
init_adc_pins();
|
|
}
|
|
|
|
void board_init_rgb_pwm_pins(void)
|
|
{
|
|
init_led_pins_as_pwm();
|
|
}
|
|
|
|
void board_disable_output_rgb_led(uint8_t color)
|
|
{
|
|
switch (color) {
|
|
case BOARD_RGB_RED:
|
|
pwm_disable_output(BOARD_RED_PWM, BOARD_RED_PWM_OUT);
|
|
break;
|
|
case BOARD_RGB_GREEN:
|
|
pwm_disable_output(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT);
|
|
break;
|
|
case BOARD_RGB_BLUE:
|
|
pwm_disable_output(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT);
|
|
break;
|
|
default:
|
|
while (1) {
|
|
;
|
|
}
|
|
}
|
|
}
|
|
|
|
void board_enable_output_rgb_led(uint8_t color)
|
|
{
|
|
switch (color) {
|
|
case BOARD_RGB_RED:
|
|
pwm_enable_output(BOARD_RED_PWM, BOARD_RED_PWM_OUT);
|
|
break;
|
|
case BOARD_RGB_GREEN:
|
|
pwm_enable_output(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT);
|
|
break;
|
|
case BOARD_RGB_BLUE:
|
|
pwm_enable_output(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT);
|
|
break;
|
|
default:
|
|
while (1) {
|
|
;
|
|
}
|
|
}
|
|
}
|
|
void board_init_dac_pins(DAC_Type *ptr)
|
|
{
|
|
init_dac_pins(ptr);
|
|
}
|
|
|
|
uint32_t board_init_uart_clock(UART_Type *ptr)
|
|
{
|
|
uint32_t freq = 0U;
|
|
if (ptr == HPM_UART0) {
|
|
clock_set_source_divider(clock_uart0, clk_src_pll1_clk0, 6);
|
|
clock_add_to_group(clock_uart0, 0);
|
|
freq = clock_get_frequency(clock_uart0);
|
|
} else if (ptr == HPM_UART1) {
|
|
clock_set_source_divider(clock_uart1, clk_src_pll1_clk0, 6);
|
|
clock_add_to_group(clock_uart1, 0);
|
|
freq = clock_get_frequency(clock_uart1);
|
|
} else if (ptr == HPM_UART2) {
|
|
clock_set_source_divider(clock_uart2, clk_src_pll1_clk0, 6);
|
|
clock_add_to_group(clock_uart2, 0);
|
|
freq = clock_get_frequency(clock_uart2);
|
|
} else if (ptr == HPM_UART6) {
|
|
clock_set_source_divider(clock_uart6, clk_src_pll1_clk0, 6);
|
|
clock_add_to_group(clock_uart6, 0);
|
|
freq = clock_get_frequency(clock_uart6);
|
|
} else {
|
|
/* Not supported */
|
|
}
|
|
return freq;
|
|
}
|
|
|
|
uint32_t board_init_pwm_clock(PWM_Type *ptr)
|
|
{
|
|
uint32_t freq = 0;
|
|
if (ptr == HPM_PWM0) {
|
|
clock_add_to_group(clock_mot0, 0);
|
|
freq = clock_get_frequency(clock_mot0);
|
|
} else if (ptr == HPM_PWM1) {
|
|
clock_add_to_group(clock_mot1, 0);
|
|
freq = clock_get_frequency(clock_mot1);
|
|
} else if (ptr == HPM_PWM2) {
|
|
clock_add_to_group(clock_mot2, 0);
|
|
freq = clock_get_frequency(clock_mot2);
|
|
} else if (ptr == HPM_PWM3) {
|
|
clock_add_to_group(clock_mot3, 0);
|
|
freq = clock_get_frequency(clock_mot3);
|
|
} else {
|
|
|
|
}
|
|
return freq;
|
|
}
|