4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-25 09:07:23 +08:00

1190 lines
34 KiB
C

/*
* Copyright (c) 2006-2024, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2024-03-19 Evlers first implementation
*/
#include "drv_usart_v2.h"
#ifdef RT_USING_SERIAL_V2
#if !defined(BSP_USING_UART0) && !defined(BSP_USING_UART1) && \
!defined(BSP_USING_UART2) && !defined(BSP_USING_UART3) && \
!defined(BSP_USING_UART4) && !defined(BSP_USING_UART5) && \
!defined(BSP_USING_UART6) && !defined(BSP_USING_UART7)
#error "Please define at least one UARTx"
#endif
#include <rtdevice.h>
enum {
#ifdef BSP_USING_UART0
UART0_INDEX,
#endif
#ifdef BSP_USING_UART1
UART1_INDEX,
#endif
#ifdef BSP_USING_UART2
UART2_INDEX,
#endif
#ifdef BSP_USING_UART3
UART3_INDEX,
#endif
#ifdef BSP_USING_UART4
UART4_INDEX,
#endif
#ifdef BSP_USING_UART5
UART5_INDEX,
#endif
#ifdef BSP_USING_UART6
UART6_INDEX,
#endif
#ifdef BSP_USING_UART7
UART7_INDEX,
#endif
};
static struct gd32_uart uart_obj[] = {
#ifdef BSP_USING_UART0
{
"uart0",
USART0, // uart peripheral index
USART0_IRQn, // uart iqrn
RCU_USART0, RCU_GPIOA, RCU_GPIOA, // periph clock, tx gpio clock, rt gpio clock
#if defined SOC_SERIES_GD32F4xx
GPIOA, GPIO_AF_7, GPIO_PIN_9, // tx port, tx alternate, tx pin
GPIOA, GPIO_AF_7, GPIO_PIN_10, // rx port, rx alternate, rx pin
#else
GPIOA, GPIO_PIN_9, // tx port, tx pin
GPIOA, GPIO_PIN_10, // rx port, rx pin
#endif
#ifdef BSP_UART0_RX_USING_DMA
.dma.rx = DRV_DMA_CONFIG(1, 5, 4),
#endif
#ifdef BSP_UART0_TX_USING_DMA
.dma.tx = DRV_DMA_CONFIG(1, 7, 4),
#endif
},
#endif
#ifdef BSP_USING_UART1
{
"uart1",
USART1, // uart peripheral index
USART1_IRQn, // uart iqrn
RCU_USART1, RCU_GPIOA, RCU_GPIOA, // periph clock, tx gpio clock, rt gpio clock
#if defined SOC_SERIES_GD32F4xx
GPIOA, GPIO_AF_7, GPIO_PIN_2, // tx port, tx alternate, tx pin
GPIOA, GPIO_AF_7, GPIO_PIN_3, // rx port, rx alternate, rx pin
#else
GPIOA, GPIO_PIN_2, // tx port, tx pin
GPIOA, GPIO_PIN_3, // rx port, rx pin
#endif
#ifdef BSP_UART1_RX_USING_DMA
.dma.rx = DRV_DMA_CONFIG(0, 5, 4),
#endif
#ifdef BSP_UART1_TX_USING_DMA
.dma.tx = DRV_DMA_CONFIG(0, 6, 4),
#endif
},
#endif
#ifdef BSP_USING_UART2
{
"uart2",
USART2, // uart peripheral index
USART2_IRQn, // uart iqrn
RCU_USART2, RCU_GPIOB, RCU_GPIOB, // periph clock, tx gpio clock, rt gpio clock
#if defined SOC_SERIES_GD32F4xx
GPIOB, GPIO_AF_7, GPIO_PIN_10, // tx port, tx alternate, tx pin
GPIOB, GPIO_AF_7, GPIO_PIN_11, // rx port, rx alternate, rx pin
#else
GPIOB, GPIO_PIN_10, // tx port, tx pin
GPIOB, GPIO_PIN_11, // rx port, rx pin
#endif
#ifdef BSP_UART2_RX_USING_DMA
.dma.rx = DRV_DMA_CONFIG(0, 1, 4),
#endif
#ifdef BSP_UART2_TX_USING_DMA
.dma.tx = DRV_DMA_CONFIG(0, 3, 4),
#endif
},
#endif
#ifdef BSP_USING_UART3
{
"uart3",
UART3, // uart peripheral index
UART3_IRQn, // uart iqrn
RCU_UART3, RCU_GPIOC, RCU_GPIOC, // periph clock, tx gpio clock, rt gpio clock
#if defined SOC_SERIES_GD32F4xx
GPIOC, GPIO_AF_8, GPIO_PIN_10, // tx port, tx alternate, tx pin
GPIOC, GPIO_AF_8, GPIO_PIN_11, // rx port, rx alternate, rx pin
#else
GPIOC, GPIO_PIN_10, // tx port, tx pin
GPIOC, GPIO_PIN_11, // rx port, rx pin
#endif
#ifdef BSP_UART3_RX_USING_DMA
.dma.rx = DRV_DMA_CONFIG(0, 2, 4),
#endif
#ifdef BSP_UART3_TX_USING_DMA
.dma.tx = DRV_DMA_CONFIG(0, 4, 4),
#endif
},
#endif
#ifdef BSP_USING_UART4
{
"uart4",
UART4, // uart peripheral index
UART4_IRQn, // uart iqrn
RCU_UART4, RCU_GPIOC, RCU_GPIOD, // periph clock, tx gpio clock, rt gpio clock
#if defined SOC_SERIES_GD32F4xx
GPIOC, GPIO_AF_8, GPIO_PIN_12, // tx port, tx alternate, tx pin
GPIOD, GPIO_AF_8, GPIO_PIN_2, // rx port, rx alternate, rx pin
#else
GPIOC, GPIO_PIN_12, // tx port, tx pin
GPIOD, GPIO_PIN_2, // rx port, rx pin
#endif
#ifdef BSP_UART4_RX_USING_DMA
.dma.rx = DRV_DMA_CONFIG(0, 0, 4),
#endif
#ifdef BSP_UART4_TX_USING_DMA
.dma.tx = DRV_DMA_CONFIG(0, 7, 4),
#endif
},
#endif
#ifdef BSP_USING_UART5
{
"uart5",
USART5, // uart peripheral index
USART5_IRQn, // uart iqrn
RCU_USART5, RCU_GPIOC, RCU_GPIOC, // periph clock, tx gpio clock, rt gpio clock
#if defined SOC_SERIES_GD32F4xx
GPIOC, GPIO_AF_8, GPIO_PIN_6, // tx port, tx alternate, tx pin
GPIOC, GPIO_AF_8, GPIO_PIN_7, // rx port, rx alternate, rx pin
#else
GPIOC, GPIO_PIN_6, // tx port, tx pin
GPIOC, GPIO_PIN_7, // rx port, rx pin
#endif
#ifdef BSP_UART5_RX_USING_DMA
.dma.rx = DRV_DMA_CONFIG(1, 1, 5),
#endif
#ifdef BSP_UART5_TX_USING_DMA
.dma.tx = DRV_DMA_CONFIG(1, 7, 5),
#endif
},
#endif
#ifdef BSP_USING_UART6
{
"uart6",
UART6, // uart peripheral index
UART6_IRQn, // uart iqrn
RCU_UART6, RCU_GPIOE, RCU_GPIOE, // periph clock, tx gpio clock, rt gpio clock
#if defined SOC_SERIES_GD32F4xx
GPIOE, GPIO_AF_8, GPIO_PIN_7, // tx port, tx alternate, tx pin
GPIOE, GPIO_AF_8, GPIO_PIN_8, // rx port, rx alternate, rx pin
#else
GPIOE, GPIO_PIN_7, // tx port, tx pin
GPIOE, GPIO_PIN_8, // rx port, rx pin
#endif
#ifdef BSP_UART6_RX_USING_DMA
.dma.rx = DRV_DMA_CONFIG(0, 3, 5),
#endif
#ifdef BSP_UART6_TX_USING_DMA
.dma.tx = DRV_DMA_CONFIG(0, 1, 5),
#endif
},
#endif
#ifdef BSP_USING_UART7
{
"uart7",
UART7, // uart peripheral index
UART7_IRQn, // uart iqrn
RCU_UART7, RCU_GPIOE, RCU_GPIOE, // periph clock, tx gpio clock, rt gpio clock
#if defined SOC_SERIES_GD32F4xx
GPIOE, GPIO_AF_8, GPIO_PIN_0, // tx port, tx alternate, tx pin
GPIOE, GPIO_AF_8, GPIO_PIN_1, // rx port, rx alternate, rx pin
#else
GPIOE, GPIO_PIN_0, // tx port, tx pin
GPIOE, GPIO_PIN_1, // rx port, rx pin
#endif
#ifdef BSP_UART7_RX_USING_DMA
.dma.rx = DRV_DMA_CONFIG(0, 6, 5),
#endif
#ifdef BSP_UART7_TX_USING_DMA
.dma.tx = DRV_DMA_CONFIG(0, 0, 5),
#endif
},
#endif
};
#ifdef RT_SERIAL_USING_DMA
static void dma_recv_isr (struct rt_serial_device *serial)
{
struct gd32_uart *uart;
rt_size_t recv_len, counter;
rt_base_t level;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
recv_len = 0;
level = rt_hw_interrupt_disable();
counter = dma_transfer_number_get(uart->dma.rx.periph, uart->dma.rx.channel);
if (counter <= uart->dma.last_index)
{
recv_len = uart->dma.last_index - counter;
}
else
{
recv_len = serial->config.rx_bufsz + uart->dma.last_index - counter;
}
uart->dma.last_index = counter;
rt_hw_interrupt_enable(level);
if (recv_len)
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
}
}
#endif
static void usart_isr (struct rt_serial_device *serial)
{
struct gd32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_RBNE) != RESET)
{
struct rt_serial_rx_fifo *rx_fifo;
rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
rt_ringbuffer_putchar(&(rx_fifo->rb), usart_data_receive(uart->periph));
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
/* Clear RXNE interrupt flag */
usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_RBNE);
}
else if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_TBE) != RESET)
{
struct rt_serial_tx_fifo *tx_fifo;
tx_fifo = (struct rt_serial_tx_fifo *) serial->serial_tx;
RT_ASSERT(tx_fifo != RT_NULL);
rt_uint8_t put_char = 0;
if (rt_ringbuffer_getchar(&(tx_fifo->rb), &put_char))
{
usart_data_transmit(uart->periph, put_char);
}
else
{
usart_interrupt_disable(uart->periph, USART_INT_TBE);
usart_interrupt_enable(uart->periph, USART_INT_TC);
}
usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_TBE);
}
else if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_TC) != RESET)
{
usart_interrupt_disable(uart->periph, USART_INT_TC);
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DONE);
usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_TC);
}
#ifdef RT_SERIAL_USING_DMA
else if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_IDLE) != RESET)
{
volatile uint8_t data = (uint8_t)usart_data_receive(uart->periph);
dma_recv_isr(serial);
usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_IDLE);
}
#endif
else
{
if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_ERR_ORERR) != RESET)
{
usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_ERR_ORERR);
}
if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_ERR_NERR) != RESET)
{
usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_ERR_NERR);
}
if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_ERR_FERR) != RESET)
{
usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_ERR_FERR);
}
if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_RBNE_ORERR) != RESET)
{
usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_RBNE_ORERR);
}
if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_PERR) != RESET)
{
usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_PERR);
}
if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_CTS) != RESET)
{
usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_CTS);
}
if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_LBD) != RESET)
{
usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_LBD);
}
if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_EB) != RESET)
{
usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_EB);
}
if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_RT) != RESET)
{
usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_RT);
}
}
}
#if defined(BSP_UART0_RX_USING_DMA) || \
defined(BSP_UART1_RX_USING_DMA) || \
defined(BSP_UART2_RX_USING_DMA) || \
defined(BSP_UART3_RX_USING_DMA) || \
defined(BSP_UART4_RX_USING_DMA) || \
defined(BSP_UART5_RX_USING_DMA) || \
defined(BSP_UART6_RX_USING_DMA) || \
defined(BSP_UART7_RX_USING_DMA)
static void dma_rx_isr (struct rt_serial_device *serial)
{
struct gd32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
if ((dma_interrupt_flag_get(uart->dma.rx.periph, uart->dma.rx.channel, DMA_INT_FLAG_HTF) != RESET) ||
(dma_interrupt_flag_get(uart->dma.rx.periph, uart->dma.rx.channel, DMA_INT_FLAG_FTF) != RESET))
{
dma_recv_isr(serial);
/* clear dma flag */
dma_interrupt_flag_clear(uart->dma.rx.periph, uart->dma.rx.channel, DMA_INT_FLAG_HTF);
dma_interrupt_flag_clear(uart->dma.rx.periph, uart->dma.rx.channel, DMA_INT_FLAG_FTF);
}
}
#endif
#if defined(BSP_UART0_TX_USING_DMA) || \
defined(BSP_UART1_TX_USING_DMA) || \
defined(BSP_UART2_TX_USING_DMA) || \
defined(BSP_UART3_TX_USING_DMA) || \
defined(BSP_UART4_TX_USING_DMA) || \
defined(BSP_UART5_TX_USING_DMA) || \
defined(BSP_UART6_TX_USING_DMA) || \
defined(BSP_UART7_TX_USING_DMA)
static void dma_tx_isr (struct rt_serial_device *serial)
{
struct gd32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
if (dma_interrupt_flag_get(uart->dma.tx.periph, uart->dma.tx.channel, DMA_INT_FLAG_FTF) != RESET)
{
rt_size_t trans_total_index;
/* clear dma flag */
dma_interrupt_flag_clear(uart->dma.tx.periph, uart->dma.tx.channel, DMA_INT_FLAG_FTF);
/* disable dma tx channel */
dma_channel_disable(uart->dma.tx.periph, uart->dma.tx.channel);
trans_total_index = dma_transfer_number_get(uart->dma.tx.periph, uart->dma.tx.channel);
if (trans_total_index == 0)
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DMADONE);
}
}
}
#endif
#if defined(BSP_USING_UART0)
void USART0_IRQHandler (void)
{
/* enter interrupt */
rt_interrupt_enter();
usart_isr(&uart_obj[UART0_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART0 */
#if defined(BSP_USING_UART1)
void USART1_IRQHandler (void)
{
/* enter interrupt */
rt_interrupt_enter();
usart_isr(&uart_obj[UART1_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART1 */
#if defined(BSP_USING_UART2)
void USART2_IRQHandler (void)
{
/* enter interrupt */
rt_interrupt_enter();
usart_isr(&uart_obj[UART2_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART2 */
#if defined(BSP_USING_UART3)
void UART3_IRQHandler (void)
{
/* enter interrupt */
rt_interrupt_enter();
usart_isr(&uart_obj[UART3_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART3 */
#if defined(BSP_USING_UART4)
void UART4_IRQHandler (void)
{
/* enter interrupt */
rt_interrupt_enter();
usart_isr(&uart_obj[UART4_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART4 */
#if defined(BSP_USING_UART5)
void USART5_IRQHandler (void)
{
/* enter interrupt */
rt_interrupt_enter();
usart_isr(&uart_obj[UART5_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART5 */
#if defined(BSP_USING_UART6)
void UART6_IRQHandler (void)
{
/* enter interrupt */
rt_interrupt_enter();
usart_isr(&uart_obj[UART6_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART6 */
#if defined(BSP_USING_UART7)
void UART7_IRQHandler (void)
{
/* enter interrupt */
rt_interrupt_enter();
usart_isr(&uart_obj[UART7_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART7 */
#ifdef BSP_UART0_RX_USING_DMA
void DMA1_Channel5_IRQHandler (void)
{
dma_rx_isr(&uart_obj[UART0_INDEX].serial);
}
#endif
#ifdef BSP_UART0_TX_USING_DMA
void DMA1_Channel7_IRQHandler (void)
{
dma_tx_isr(&uart_obj[UART0_INDEX].serial);
}
#endif
#ifdef BSP_UART1_RX_USING_DMA
void DMA0_Channel5_IRQHandler (void)
{
dma_rx_isr(&uart_obj[UART1_INDEX].serial);
}
#endif
#ifdef BSP_UART1_TX_USING_DMA
void DMA0_Channel6_IRQHandler (void)
{
dma_tx_isr(&uart_obj[UART1_INDEX].serial);
}
#endif
#ifdef BSP_UART2_RX_USING_DMA
void DMA0_Channel1_IRQHandler (void)
{
dma_rx_isr(&uart_obj[UART2_INDEX].serial);
}
#endif
#ifdef BSP_UART2_TX_USING_DMA
void DMA0_Channel3_IRQHandler (void)
{
dma_tx_isr(&uart_obj[UART2_INDEX].serial);
}
#endif
#ifdef BSP_UART3_RX_USING_DMA
void DMA0_Channel2_IRQHandler (void)
{
dma_rx_isr(&uart_obj[UART3_INDEX].serial);
}
#endif
#ifdef BSP_UART3_TX_USING_DMA
void DMA0_Channel4_IRQHandler (void)
{
dma_tx_isr(&uart_obj[UART3_INDEX].serial);
}
#endif
#ifdef BSP_UART4_RX_USING_DMA
void DMA0_Channel0_IRQHandler (void)
{
dma_rx_isr(&uart_obj[UART4_INDEX].serial);
}
#endif
#ifdef BSP_UART4_TX_USING_DMA
void DMA0_Channel7_IRQHandler (void)
{
dma_tx_isr(&uart_obj[UART4_INDEX].serial);
}
#endif
#ifdef BSP_UART5_RX_USING_DMA
void DMA1_Channel1_IRQHandler (void)
{
dma_rx_isr(&uart_obj[UART5_INDEX].serial);
}
#endif
#ifdef BSP_UART5_TX_USING_DMA
void DMA1_Channel7_IRQHandler (void)
{
dma_tx_isr(&uart_obj[UART5_INDEX].serial);
}
#endif
#ifdef BSP_UART6_RX_USING_DMA
void DMA0_Channel3_IRQHandler (void)
{
dma_rx_isr(&uart_obj[UART6_INDEX].serial);
}
#endif
#ifdef BSP_UART6_TX_USING_DMA
void DMA0_Channel1_IRQHandler (void)
{
dma_tx_isr(&uart_obj[UART6_INDEX].serial);
}
#endif
#ifdef BSP_UART7_RX_USING_DMA
void DMA0_Channel6_IRQHandler (void)
{
dma_rx_isr(&uart_obj[UART7_INDEX].serial);
}
#endif
#ifdef BSP_UART7_TX_USING_DMA
void DMA0_Channel0_IRQHandler (void)
{
dma_tx_isr(&uart_obj[UART7_INDEX].serial);
}
#endif
/**
* @brief UART MSP Initialization
* This function configures the hardware resources used in this example:
* - Peripheral's clock enable
* - Peripheral's GPIO Configuration
* - NVIC configuration for UART interrupt request enable
* @param huart: UART handle pointer
* @retval None
*/
void gd32_uart_gpio_init (struct gd32_uart *uart)
{
/* enable USART clock */
rcu_periph_clock_enable(uart->tx_gpio_clk);
rcu_periph_clock_enable(uart->rx_gpio_clk);
rcu_periph_clock_enable(uart->per_clk);
#if defined SOC_SERIES_GD32F4xx
/* connect port to USARTx_Tx */
gpio_af_set(uart->tx_port, uart->tx_af, uart->tx_pin);
/* connect port to USARTx_Rx */
gpio_af_set(uart->rx_port, uart->rx_af, uart->rx_pin);
/* configure USART Tx as alternate function push-pull */
gpio_mode_set(uart->tx_port, GPIO_MODE_AF, GPIO_PUPD_PULLUP, uart->tx_pin);
gpio_output_options_set(uart->tx_port, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ, uart->tx_pin);
/* configure USART Rx as alternate function push-pull */
gpio_mode_set(uart->rx_port, GPIO_MODE_AF, GPIO_PUPD_PULLUP, uart->rx_pin);
gpio_output_options_set(uart->rx_port, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ, uart->rx_pin);
#else
/* connect port to USARTx_Tx */
gpio_init(uart->tx_port, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, uart->tx_pin);
/* connect port to USARTx_Rx */
gpio_init(uart->rx_port, GPIO_MODE_IN_FLOATING, GPIO_OSPEED_50MHZ, uart->rx_pin);
#endif
NVIC_SetPriority(uart->irqn, 0);
NVIC_EnableIRQ(uart->irqn);
}
/**
* @brief uart configure
* @param serial, cfg
* @retval None
*/
static rt_err_t gd32_uart_configure (struct rt_serial_device *serial, struct serial_configure *cfg)
{
struct gd32_uart *uart;
RT_ASSERT(serial != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
#ifdef RT_SERIAL_USING_DMA
uart->dma.last_index = serial->config.rx_bufsz;
#endif
gd32_uart_gpio_init(uart);
usart_baudrate_set(uart->periph, cfg->baud_rate);
switch (cfg->data_bits)
{
case DATA_BITS_9:
usart_word_length_set(uart->periph, USART_WL_9BIT);
break;
default:
usart_word_length_set(uart->periph, USART_WL_8BIT);
break;
}
switch (cfg->stop_bits)
{
case STOP_BITS_2:
usart_stop_bit_set(uart->periph, USART_STB_2BIT);
break;
default:
usart_stop_bit_set(uart->periph, USART_STB_1BIT);
break;
}
switch (cfg->parity)
{
case PARITY_ODD:
usart_parity_config(uart->periph, USART_PM_ODD);
break;
case PARITY_EVEN:
usart_parity_config(uart->periph, USART_PM_EVEN);
break;
default:
usart_parity_config(uart->periph, USART_PM_NONE);
break;
}
usart_receive_config(uart->periph, USART_RECEIVE_ENABLE);
usart_transmit_config(uart->periph, USART_TRANSMIT_ENABLE);
usart_enable(uart->periph);
return RT_EOK;
}
#ifdef RT_SERIAL_USING_DMA
static void _uart_dma_receive (struct gd32_uart *uart, rt_uint8_t *buffer, rt_uint32_t size)
{
dma_single_data_parameter_struct dma_init_struct = { 0 };
/* clear all the interrupt flags */
dma_flag_clear(uart->dma.rx.periph, uart->dma.rx.channel, DMA_FLAG_FEE);
dma_flag_clear(uart->dma.rx.periph, uart->dma.rx.channel, DMA_FLAG_SDE);
dma_flag_clear(uart->dma.rx.periph, uart->dma.rx.channel, DMA_FLAG_TAE);
dma_flag_clear(uart->dma.rx.periph, uart->dma.rx.channel, DMA_FLAG_HTF);
dma_flag_clear(uart->dma.rx.periph, uart->dma.rx.channel, DMA_FLAG_FTF);
dma_channel_disable(uart->dma.rx.periph, uart->dma.rx.channel);
dma_deinit(uart->dma.rx.periph, uart->dma.rx.channel);
/* configure receive DMA */
rcu_periph_clock_enable(uart->dma.rx.rcu);
dma_deinit(uart->dma.rx.periph, uart->dma.rx.channel);
dma_init_struct.number = size;
dma_init_struct.memory0_addr = (uint32_t)buffer;
dma_init_struct.periph_addr = (uint32_t)&USART_DATA(uart->periph);
dma_init_struct.periph_memory_width = DMA_PERIPH_WIDTH_8BIT;
dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_init_struct.circular_mode = DMA_CIRCULAR_MODE_ENABLE;
dma_init_struct.direction = DMA_PERIPH_TO_MEMORY;
dma_init_struct.priority = DMA_PRIORITY_HIGH;
dma_single_data_mode_init(uart->dma.rx.periph, uart->dma.rx.channel, &dma_init_struct);
dma_channel_subperipheral_select(uart->dma.rx.periph, uart->dma.rx.channel, uart->dma.rx.subperiph);
/* enable transmit complete interrupt */
nvic_irq_enable(uart->dma.rx.irq, 2, 0);
dma_interrupt_enable(uart->dma.rx.periph, uart->dma.rx.channel, DMA_CHXCTL_HTFIE);
dma_interrupt_enable(uart->dma.rx.periph, uart->dma.rx.channel, DMA_CHXCTL_FTFIE);
/* enable dma channel */
dma_channel_enable(uart->dma.rx.periph, uart->dma.rx.channel);
/* enable usart idle interrupt */
usart_interrupt_enable(uart->periph, USART_INT_IDLE);
/* enable dma receive */
usart_dma_receive_config(uart->periph, USART_RECEIVE_DMA_ENABLE);
}
static void _uart_dma_transmit (struct gd32_uart *uart, rt_uint8_t *buffer, rt_uint32_t size)
{
/* Set the data length and data pointer */
DMA_CHM0ADDR(uart->dma.tx.periph, uart->dma.tx.channel) = (uint32_t)buffer;
DMA_CHCNT(uart->dma.tx.periph, uart->dma.tx.channel) = size;
/* enable dma transmit */
usart_dma_transmit_config(uart->periph, USART_TRANSMIT_DMA_ENABLE);
/* enable dma channel */
dma_channel_enable(uart->dma.tx.periph, uart->dma.tx.channel);
}
static void gd32_dma_config (struct rt_serial_device *serial, rt_ubase_t flag)
{
struct gd32_uart *uart;
struct rt_serial_rx_fifo *rx_fifo;
dma_single_data_parameter_struct dma_init_struct = { 0 };
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
RT_ASSERT(flag == RT_DEVICE_FLAG_DMA_TX || flag == RT_DEVICE_FLAG_DMA_RX);
/* enable rx dma */
if (flag == RT_DEVICE_FLAG_DMA_TX)
{
/* clear all the interrupt flags */
dma_flag_clear(uart->dma.tx.periph, uart->dma.tx.channel, DMA_FLAG_FEE);
dma_flag_clear(uart->dma.tx.periph, uart->dma.tx.channel, DMA_FLAG_SDE);
dma_flag_clear(uart->dma.tx.periph, uart->dma.tx.channel, DMA_FLAG_TAE);
dma_flag_clear(uart->dma.tx.periph, uart->dma.tx.channel, DMA_FLAG_HTF);
dma_flag_clear(uart->dma.tx.periph, uart->dma.tx.channel, DMA_FLAG_FTF);
dma_channel_disable(uart->dma.tx.periph, uart->dma.tx.channel);
dma_deinit(uart->dma.tx.periph, uart->dma.tx.channel);
/* configure receive DMA */
rcu_periph_clock_enable(uart->dma.tx.rcu);
dma_deinit(uart->dma.tx.periph, uart->dma.tx.channel);
dma_init_struct.periph_addr = (uint32_t)&USART_DATA(uart->periph);
dma_init_struct.periph_memory_width = DMA_PERIPH_WIDTH_8BIT;
dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_init_struct.circular_mode = DMA_CIRCULAR_MODE_DISABLE;
dma_init_struct.direction = DMA_MEMORY_TO_PERIPH;
dma_init_struct.priority = DMA_PRIORITY_HIGH;
dma_single_data_mode_init(uart->dma.tx.periph, uart->dma.tx.channel, &dma_init_struct);
dma_channel_subperipheral_select(uart->dma.tx.periph, uart->dma.tx.channel, uart->dma.tx.subperiph);
/* enable tx dma interrupt */
nvic_irq_enable(uart->dma.tx.irq, 2, 0);
/* enable transmit complete interrupt */
dma_interrupt_enable(uart->dma.tx.periph, uart->dma.tx.channel, DMA_CHXCTL_FTFIE);
}
/* enable rx dma */
if (flag == RT_DEVICE_FLAG_DMA_RX)
{
rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
/* start dma transfer */
_uart_dma_receive(uart, rx_fifo->buffer, serial->config.rx_bufsz);
}
}
#endif
/**
* @brief uart control
* @param serial, arg
* @retval None
*/
static rt_err_t gd32_uart_control (struct rt_serial_device *serial, int cmd, void *arg)
{
struct gd32_uart *uart;
#ifdef RT_SERIAL_USING_DMA
rt_ubase_t ctrl_arg = (rt_ubase_t)arg;
#endif
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
if (ctrl_arg & (RT_DEVICE_FLAG_RX_BLOCKING | RT_DEVICE_FLAG_RX_NON_BLOCKING))
{
if (uart->uart_dma_flag & RT_DEVICE_FLAG_DMA_RX)
ctrl_arg = RT_DEVICE_FLAG_DMA_RX;
else
ctrl_arg = RT_DEVICE_FLAG_INT_RX;
}
else if (ctrl_arg & (RT_DEVICE_FLAG_TX_BLOCKING | RT_DEVICE_FLAG_TX_NON_BLOCKING))
{
if (uart->uart_dma_flag & RT_DEVICE_FLAG_DMA_TX)
ctrl_arg = RT_DEVICE_FLAG_DMA_TX;
else
ctrl_arg = RT_DEVICE_FLAG_INT_TX;
}
switch (cmd)
{
case RT_DEVICE_CTRL_CLR_INT:
/* disable rx irq */
NVIC_DisableIRQ(uart->irqn);
/* disable interrupt */
if (ctrl_arg == RT_DEVICE_FLAG_INT_RX)
{
usart_interrupt_disable(uart->periph, USART_INT_RBNE);
}
else if (ctrl_arg == RT_DEVICE_FLAG_INT_TX)
{
usart_interrupt_disable(uart->periph, USART_INT_TBE);
}
#ifdef RT_SERIAL_USING_DMA
/* disable DMA */
else if (ctrl_arg == RT_DEVICE_FLAG_DMA_RX)
{
usart_interrupt_disable(uart->periph, USART_INT_RBNE);
NVIC_DisableIRQ(uart->dma.rx.irq);
dma_deinit(uart->dma.rx.periph, uart->dma.rx.channel);
}
else if(ctrl_arg == RT_DEVICE_FLAG_DMA_TX)
{
usart_interrupt_disable(uart->periph, USART_INT_TBE);
NVIC_DisableIRQ(uart->dma.tx.irq);
dma_deinit(uart->dma.tx.periph, uart->dma.tx.channel);
}
#endif
break;
case RT_DEVICE_CTRL_SET_INT:
/* enable rx irq */
NVIC_EnableIRQ(uart->irqn);
/* enable interrupt */
if (ctrl_arg == RT_DEVICE_FLAG_INT_RX)
{
usart_interrupt_enable(uart->periph, USART_INT_RBNE);
}
else if (ctrl_arg == RT_DEVICE_FLAG_INT_TX)
{
usart_interrupt_enable(uart->periph, USART_INT_TBE);
}
break;
case RT_DEVICE_CTRL_CONFIG:
if(ctrl_arg & (RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX))
{
#ifdef RT_SERIAL_USING_DMA
gd32_dma_config(serial, ctrl_arg);
#endif
}
else
{
gd32_uart_control(serial, RT_DEVICE_CTRL_SET_INT, (void *)ctrl_arg);
}
break;
case RT_DEVICE_CHECK_OPTMODE:
if(ctrl_arg & RT_DEVICE_FLAG_DMA_TX)
return RT_SERIAL_TX_BLOCKING_NO_BUFFER;
else
return RT_SERIAL_TX_BLOCKING_BUFFER;
case RT_DEVICE_CTRL_CLOSE:
usart_deinit(uart->periph);
break;
}
return RT_EOK;
}
/**
* @brief uart put char
* @param serial, ch
* @retval None
*/
static int gd32_uart_putc (struct rt_serial_device *serial, char ch)
{
struct gd32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
usart_data_transmit(uart->periph, ch);
while((usart_flag_get(uart->periph, USART_FLAG_TBE) == RESET));
return RT_EOK;
}
/**
* @brief uart get char
* @param serial
* @retval None
*/
static int gd32_uart_getc (struct rt_serial_device *serial)
{
int ch;
struct gd32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
ch = -1;
if (usart_flag_get(uart->periph, USART_FLAG_RBNE) != RESET)
ch = usart_data_receive(uart->periph);
return ch;
}
static rt_ssize_t gd32_transmit (struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, rt_uint32_t tx_flag)
{
struct gd32_uart *uart;
RT_ASSERT(buf != RT_NULL);
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
if (size == 0)
{
return 0;
}
if (uart->uart_dma_flag & RT_DEVICE_FLAG_DMA_TX)
{
_uart_dma_transmit(uart, buf, size);
return size;
}
gd32_uart_control(serial, RT_DEVICE_CTRL_SET_INT, (void *)tx_flag);
return size;
}
static const struct rt_uart_ops gd32_uart_ops =
{
.configure = gd32_uart_configure,
.control = gd32_uart_control,
.putc = gd32_uart_putc,
.getc = gd32_uart_getc,
#ifdef RT_SERIAL_USING_DMA
.transmit = gd32_transmit,
#else
.transmit = RT_NULL,
#endif
};
static void gd32_uart_get_config (void)
{
struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
#ifdef BSP_USING_UART0
uart_obj[UART0_INDEX].uart_dma_flag = 0;
uart_obj[UART0_INDEX].serial.config = config;
uart_obj[UART0_INDEX].serial.config.rx_bufsz = BSP_UART0_RX_BUFSIZE;
uart_obj[UART0_INDEX].serial.config.tx_bufsz = BSP_UART0_TX_BUFSIZE;
#ifdef BSP_UART0_RX_USING_DMA
uart_obj[UART0_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
#endif
#ifdef BSP_UART0_TX_USING_DMA
uart_obj[UART0_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
#endif
#endif
#ifdef BSP_USING_UART1
uart_obj[UART1_INDEX].uart_dma_flag = 0;
uart_obj[UART1_INDEX].serial.config = config;
uart_obj[UART1_INDEX].serial.config.rx_bufsz = BSP_UART1_RX_BUFSIZE;
uart_obj[UART1_INDEX].serial.config.tx_bufsz = BSP_UART1_TX_BUFSIZE;
#ifdef BSP_UART1_RX_USING_DMA
uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
#endif
#ifdef BSP_UART1_TX_USING_DMA
uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
#endif
#endif
#ifdef BSP_USING_UART2
uart_obj[UART2_INDEX].uart_dma_flag = 0;
uart_obj[UART2_INDEX].serial.config = config;
uart_obj[UART2_INDEX].serial.config.rx_bufsz = BSP_UART2_RX_BUFSIZE;
uart_obj[UART2_INDEX].serial.config.tx_bufsz = BSP_UART2_TX_BUFSIZE;
#ifdef BSP_UART2_RX_USING_DMA
uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
#endif
#ifdef BSP_UART2_TX_USING_DMA
uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
#endif
#endif
#ifdef BSP_USING_UART3
uart_obj[UART3_INDEX].uart_dma_flag = 0;
uart_obj[UART3_INDEX].serial.config = config;
uart_obj[UART3_INDEX].serial.config.rx_bufsz = BSP_UART3_RX_BUFSIZE;
uart_obj[UART3_INDEX].serial.config.tx_bufsz = BSP_UART3_TX_BUFSIZE;
#ifdef BSP_UART3_RX_USING_DMA
uart_obj[UART3_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
#endif
#ifdef BSP_UART3_TX_USING_DMA
uart_obj[UART3_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
#endif
#endif
#ifdef BSP_USING_UART4
uart_obj[UART4_INDEX].uart_dma_flag = 0;
uart_obj[UART4_INDEX].serial.config = config;
uart_obj[UART4_INDEX].serial.config.rx_bufsz = BSP_UART4_RX_BUFSIZE;
uart_obj[UART4_INDEX].serial.config.tx_bufsz = BSP_UART4_TX_BUFSIZE;
#ifdef BSP_UART4_RX_USING_DMA
uart_obj[UART4_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
#endif
#ifdef BSP_UART4_TX_USING_DMA
uart_obj[UART4_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
#endif
#endif
#ifdef BSP_USING_UART5
uart_obj[UART5_INDEX].uart_dma_flag = 0;
uart_obj[UART5_INDEX].serial.config = config;
uart_obj[UART5_INDEX].serial.config.rx_bufsz = BSP_UART5_RX_BUFSIZE;
uart_obj[UART5_INDEX].serial.config.tx_bufsz = BSP_UART5_TX_BUFSIZE;
#ifdef BSP_UART5_RX_USING_DMA
uart_obj[UART5_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
#endif
#ifdef BSP_UART5_TX_USING_DMA
uart_obj[UART5_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
#endif
#endif
#ifdef BSP_USING_UART6
uart_obj[UART6_INDEX].uart_dma_flag = 0;
uart_obj[UART6_INDEX].serial.config = config;
uart_obj[UART6_INDEX].serial.config.rx_bufsz = BSP_UART6_RX_BUFSIZE;
uart_obj[UART6_INDEX].serial.config.tx_bufsz = BSP_UART6_TX_BUFSIZE;
#ifdef BSP_UART6_RX_USING_DMA
uart_obj[UART6_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
#endif
#ifdef BSP_UART6_TX_USING_DMA
uart_obj[UART6_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
#endif
#endif
#ifdef BSP_USING_UART7
uart_obj[UART7_INDEX].uart_dma_flag = 0;
uart_obj[UART7_INDEX].serial.config = config;
uart_obj[UART7_INDEX].serial.config.rx_bufsz = BSP_UART7_RX_BUFSIZE;
uart_obj[UART7_INDEX].serial.config.tx_bufsz = BSP_UART7_TX_BUFSIZE;
#ifdef BSP_UART7_RX_USING_DMA
uart_obj[UART7_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
#endif
#ifdef BSP_UART7_TX_USING_DMA
uart_obj[UART7_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
#endif
#endif
}
/**
* @brief uart init
* @param None
* @retval None
*/
int rt_hw_usart_init (void)
{
int i;
int result;
gd32_uart_get_config();
for (i = 0; i < sizeof(uart_obj) / sizeof(uart_obj[0]); i++)
{
uart_obj[i].serial.ops = &gd32_uart_ops;
/* register UART1 device */
result = rt_hw_serial_register(&uart_obj[i].serial,
uart_obj[i].device_name,
RT_DEVICE_FLAG_RDWR |
RT_DEVICE_FLAG_INT_RX |
uart_obj[i].uart_dma_flag,
(void *)&uart_obj[i]);
RT_ASSERT(result == RT_EOK);
}
return result;
}
#endif