4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-23 00:17:32 +08:00
2012-07-08 14:43:08 +00:00

720 lines
15 KiB
C

/*
* File : sd.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-07-25 weety first version
*/
#include <drivers/mmcsd_core.h>
#include <drivers/sd.h>
static const rt_uint32_t tran_unit[] = {
10000, 100000, 1000000, 10000000,
0, 0, 0, 0
};
static const rt_uint8_t tran_value[] = {
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80,
};
static const rt_uint32_t tacc_uint[] = {
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
};
static const rt_uint8_t tacc_value[] = {
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80,
};
rt_inline rt_uint32_t GET_BITS(rt_uint32_t *resp, rt_uint32_t start, rt_uint32_t size)
{
const rt_int32_t __size = size;
const rt_uint32_t __mask = (__size < 32 ? 1 << __size : 0) - 1;
const rt_int32_t __off = 3 - ((start) / 32);
const rt_int32_t __shft = (start) & 31;
rt_uint32_t __res;
__res = resp[__off] >> __shft;
if (__size + __shft > 32)
__res |= resp[__off-1] << ((32 - __shft) % 32);
return __res & __mask;
}
static rt_int32_t mmcsd_parse_csd(struct rt_mmcsd_card *card)
{
struct rt_mmcsd_csd *csd = &card->csd;
rt_uint32_t *resp = card->resp_csd;
csd->csd_structure = GET_BITS(resp, 126, 2);
switch (csd->csd_structure) {
case 0:
csd->taac = GET_BITS(resp, 112, 8);
csd->nsac = GET_BITS(resp, 104, 8);
csd->tran_speed = GET_BITS(resp, 96, 8);
csd->card_cmd_class = GET_BITS(resp, 84, 12);
csd->rd_blk_len = GET_BITS(resp, 80, 4);
csd->rd_blk_part = GET_BITS(resp, 79, 1);
csd->wr_blk_misalign = GET_BITS(resp, 78, 1);
csd->rd_blk_misalign = GET_BITS(resp, 77, 1);
csd->dsr_imp = GET_BITS(resp, 76, 1);
csd->c_size = GET_BITS(resp, 62, 12);
csd->c_size_mult = GET_BITS(resp, 47, 3);
csd->r2w_factor = GET_BITS(resp, 26, 3);
csd->wr_blk_len = GET_BITS(resp, 22, 4);
csd->wr_blk_partial = GET_BITS(resp, 21, 1);
csd->csd_crc = GET_BITS(resp, 1, 7);
card->card_blksize = 1 << csd->rd_blk_len;
card->card_capacity = (csd->c_size + 1) << (csd->c_size_mult + 2);
card->card_capacity *= card->card_blksize;
card->card_capacity >>= 10; /* unit:KB */
card->tacc_clks = csd->nsac * 100;
card->tacc_ns = (tacc_uint[csd->taac&0x07] * tacc_value[(csd->taac&0x78)>>3] + 9) / 10;
card->max_data_rate = tran_unit[csd->tran_speed&0x07] * tran_value[(csd->tran_speed&0x78)>>3];
#if 0
val = GET_BITS(resp, 115, 4);
unit = GET_BITS(resp, 112, 3);
csd->tacc_ns = (tacc_uint[unit] * tacc_value[val] + 9) / 10;
csd->tacc_clks = GET_BITS(resp, 104, 8) * 100;
val = GET_BITS(resp, 99, 4);
unit = GET_BITS(resp, 96, 3);
csd->max_data_rate = tran_unit[unit] * tran_value[val];
csd->ccc = GET_BITS(resp, 84, 12);
unit = GET_BITS(resp, 47, 3);
val = GET_BITS(resp, 62, 12);
csd->device_size = (1 + val) << (unit + 2);
csd->read_bl_len = GET_BITS(resp, 80, 4);
csd->write_bl_len = GET_BITS(resp, 22, 4);
csd->r2w_factor = GET_BITS(resp, 26, 3);
#endif
break;
case 1:
card->flags |= CARD_FLAG_SDHC;
/*This field is fixed to 0Eh, which indicates 1 ms.
The host should not use TAAC, NSAC, and R2W_FACTOR
to calculate timeout and should uses fixed timeout
values for read and write operations*/
csd->taac = GET_BITS(resp, 112, 8);
csd->nsac = GET_BITS(resp, 104, 8);
csd->tran_speed = GET_BITS(resp, 96, 8);
csd->card_cmd_class = GET_BITS(resp, 84, 12);
csd->rd_blk_len = GET_BITS(resp, 80, 4);
csd->rd_blk_part = GET_BITS(resp, 79, 1);
csd->wr_blk_misalign = GET_BITS(resp, 78, 1);
csd->rd_blk_misalign = GET_BITS(resp, 77, 1);
csd->dsr_imp = GET_BITS(resp, 76, 1);
csd->c_size = GET_BITS(resp, 48, 22);
csd->r2w_factor = GET_BITS(resp, 26, 3);
csd->wr_blk_len = GET_BITS(resp, 22, 4);
csd->wr_blk_partial = GET_BITS(resp, 21, 1);
csd->csd_crc = GET_BITS(resp, 1, 7);
card->card_blksize = 512;
card->card_capacity = (csd->c_size + 1) * 512; /* unit:KB */
card->tacc_clks = 0;
card->tacc_ns = 0;
card->max_data_rate = tran_unit[csd->tran_speed&0x07] * tran_value[(csd->tran_speed&0x78)>>3];
#if 0
csd->tacc_ns = 0;
csd->tacc_clks = 0;
val = GET_BITS(resp, 99, 4);
unit = GET_BITS(resp, 96, 3);
csd->max_data_rate = tran_unit[unit] * tran_value[val];
csd->ccc = GET_BITS(resp, 84, 12);
val = GET_BITS(resp, 48, 22);
csd->device_size = (1 + val) << 10;
csd->read_bl_len = 9;
csd->write_bl_len = 9;
/* host should not use this factor and should use 250ms for write timeout */
csd->r2w_factor = 2;
#endif
break;
default:
rt_kprintf("unrecognised CSD structure version %d\n", csd->csd_structure);
return -RT_ERROR;
}
rt_kprintf("SD card capacity %d KB\n", card->card_capacity);
return 0;
}
static rt_int32_t mmcsd_parse_scr(struct rt_mmcsd_card *card)
{
struct rt_sd_scr *scr = &card->scr;
rt_uint32_t resp[4];
resp[3] = card->resp_scr[1];
resp[2] = card->resp_scr[0];
scr->sd_version = GET_BITS(resp, 56, 4);
scr->sd_bus_widths = GET_BITS(resp, 48, 4);
return 0;
}
static rt_int32_t mmcsd_switch(struct rt_mmcsd_card *card)
{
rt_int32_t err;
struct rt_mmcsd_host *host = card->host;
struct rt_mmcsd_req req;
struct rt_mmcsd_cmd cmd;
struct rt_mmcsd_data data;
rt_uint8_t *buf;
buf = (rt_uint8_t*)rt_malloc(64);
if (!buf)
{
rt_kprintf("alloc memory failed\n");
return -RT_ENOMEM;
}
if (card->card_type != CARD_TYPE_SD)
goto err;
if (card->scr.sd_version < SCR_SPEC_VER_1)
goto err;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SD_SWITCH;
cmd.arg = 0x00FFFFF1;
cmd.flags = RESP_R1 | CMD_ADTC;
rt_memset(&data, 0, sizeof(struct rt_mmcsd_data));
mmcsd_set_data_timeout(&data, card);
data.blksize = 64;
data.blks = 1;
data.flags = DATA_DIR_READ;
data.buf = (rt_uint32_t *)buf;
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
req.cmd = &cmd;
req.data = &data;
mmcsd_send_request(host, &req);
if (cmd.err || data.err)
{
goto err1;
}
if (buf[13] & 0x02)
card->hs_max_data_rate = 50000000;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SD_SWITCH;
cmd.arg = 0x80FFFFF1;
cmd.flags = RESP_R1 | CMD_ADTC;
rt_memset(&data, 0, sizeof(struct rt_mmcsd_data));
mmcsd_set_data_timeout(&data, card);
data.blksize = 64;
data.blks = 1;
data.flags = DATA_DIR_READ;
data.buf = (rt_uint32_t *)buf;
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
req.cmd = &cmd;
req.data = &data;
mmcsd_send_request(host, &req);
if (cmd.err || data.err)
{
goto err1;
}
if ((buf[16] & 0xF) != 1)
{
rt_kprintf("switching card to high speed failed\n");
goto err;
}
card->flags |= CARD_FLAG_HIGHSPEED;
err:
rt_free(buf);
return 0;
err1:
if (cmd.err) err = cmd.err;
if (data.err) err = data.err;
return err;
}
static rt_err_t mmcsd_app_cmd(struct rt_mmcsd_host *host, struct rt_mmcsd_card *card)
{
rt_err_t err;
struct rt_mmcsd_cmd cmd = {0};
cmd.cmd_code = APP_CMD;
if (card)
{
cmd.arg = card->rca << 16;
cmd.flags = RESP_R1 | CMD_AC;
}
else
{
cmd.arg = 0;
cmd.flags = RESP_R1 | CMD_BCR;
}
err = mmcsd_send_cmd(host, &cmd, 0);
if (err)
return err;
/* Check that card supported application commands */
if (!controller_is_spi(host) && !(cmd.resp[0] & R1_APP_CMD))
return -RT_ERROR;
return RT_EOK;
}
rt_err_t mmcsd_send_app_cmd(struct rt_mmcsd_host *host, struct rt_mmcsd_card *card,
struct rt_mmcsd_cmd *cmd, int retry)
{
struct rt_mmcsd_req req;
rt_uint32_t i;
rt_err_t err;
err = -RT_ERROR;
/*
* We have to resend MMC_APP_CMD for each attempt so
* we cannot use the retries field in mmc_command.
*/
for (i = 0;i <= retry;i++)
{
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
err = mmcsd_app_cmd(host, card);
if (err)
{
/* no point in retrying; no APP commands allowed */
if (controller_is_spi(host))
{
if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
break;
}
continue;
}
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
rt_memset(cmd->resp, 0, sizeof(cmd->resp));
req.cmd = cmd;
//cmd->data = NULL;
mmcsd_send_request(host, &req);
err = cmd->err;
if (!cmd->err)
break;
/* no point in retrying illegal APP commands */
if (controller_is_spi(host))
{
if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
break;
}
}
return err;
}
rt_err_t mmcsd_app_set_bus_width(struct rt_mmcsd_card *card, rt_int32_t width)
{
rt_err_t err;
struct rt_mmcsd_cmd cmd;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SD_APP_SET_BUS_WIDTH;
cmd.flags = RESP_R1 | CMD_AC;
switch (width)
{
case MMCSD_BUS_WIDTH_1:
cmd.arg = MMCSD_BUS_WIDTH_1;
break;
case MMCSD_BUS_WIDTH_4:
cmd.arg = MMCSD_BUS_WIDTH_4;
break;
default:
return -RT_ERROR;
}
err = mmcsd_send_app_cmd(card->host, card, &cmd, 3);
if (err)
return err;
return RT_EOK;
}
rt_err_t mmcsd_send_app_op_cond(struct rt_mmcsd_host *host, rt_uint32_t ocr, rt_uint32_t *rocr)
{
struct rt_mmcsd_cmd cmd;
rt_uint32_t i;
rt_err_t err = RT_EOK;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SD_APP_OP_COND;
if (controller_is_spi(host))
cmd.arg = ocr & (1 << 30); /* SPI only defines one bit */
else
cmd.arg = ocr;
cmd.flags = RESP_SPI_R1 | RESP_R3 | CMD_BCR;
for (i = 100; i; i--)
{
err = mmcsd_send_app_cmd(host, RT_NULL, &cmd, 3);
if (err)
break;
/* if we're just probing, do a single pass */
if (ocr == 0)
break;
/* otherwise wait until reset completes */
if (controller_is_spi(host))
{
if (!(cmd.resp[0] & R1_SPI_IDLE))
break;
}
else
{
if (cmd.resp[0] & CARD_BUSY)
break;
}
err = -RT_ETIMEOUT;
mmcsd_delay_ms(10); //delay 10ms
}
if (rocr && !controller_is_spi(host))
*rocr = cmd.resp[0];
return err;
}
/*
* To support SD 2.0 cards, we must always invoke SD_SEND_IF_COND
* before SD_APP_OP_COND. This command will harmlessly fail for
* SD 1.0 cards.
*/
rt_err_t mmcsd_send_if_cond(struct rt_mmcsd_host *host, rt_uint32_t ocr)
{
struct rt_mmcsd_cmd cmd;
rt_err_t err;
rt_uint8_t pattern;
cmd.cmd_code = SD_SEND_IF_COND;
cmd.arg = ((ocr & 0xFF8000) != 0) << 8 | 0xAA;
cmd.flags = RESP_SPI_R7 | RESP_R7 | CMD_BCR;
err = mmcsd_send_cmd(host, &cmd, 0);
if (err)
return err;
if (controller_is_spi(host))
pattern = cmd.resp[1] & 0xFF;
else
pattern = cmd.resp[0] & 0xFF;
if (pattern != 0xAA)
return -RT_ERROR;
return RT_EOK;
}
rt_err_t mmcsd_get_card_addr(struct rt_mmcsd_host *host, rt_uint32_t *rca)
{
rt_err_t err;
struct rt_mmcsd_cmd cmd;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SD_SEND_RELATIVE_ADDR;
cmd.arg = 0;
cmd.flags = RESP_R6 | CMD_BCR;
err = mmcsd_send_cmd(host, &cmd, 3);
if (err)
return err;
*rca = cmd.resp[0] >> 16;
return RT_EOK;
}
#define be32_to_cpu(x) ((rt_uint32_t)( \
(((rt_uint32_t)(x) & (rt_uint32_t)0x000000ffUL) << 24) | \
(((rt_uint32_t)(x) & (rt_uint32_t)0x0000ff00UL) << 8) | \
(((rt_uint32_t)(x) & (rt_uint32_t)0x00ff0000UL) >> 8) | \
(((rt_uint32_t)(x) & (rt_uint32_t)0xff000000UL) >> 24)))
rt_int32_t mmcsd_get_scr(struct rt_mmcsd_card *card, rt_uint32_t *scr)
{
rt_int32_t err;
struct rt_mmcsd_req req;
struct rt_mmcsd_cmd cmd;
struct rt_mmcsd_data data;
err = mmcsd_app_cmd(card->host, card);
if (err)
return err;
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
rt_memset(&data, 0, sizeof(struct rt_mmcsd_data));
req.cmd = &cmd;
req.data = &data;
cmd.cmd_code = SD_APP_SEND_SCR;
cmd.arg = 0;
cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC;
data.blksize = 8;
data.blks = 1;
data.flags = DATA_DIR_READ;
data.buf = scr;
mmcsd_set_data_timeout(&data, card);
mmcsd_send_request(card->host, &req);
if (cmd.err)
return cmd.err;
if (data.err)
return data.err;
scr[0] = be32_to_cpu(scr[0]);
scr[1] = be32_to_cpu(scr[1]);
return 0;
}
static rt_int32_t mmcsd_sd_init_card(struct rt_mmcsd_host *host, rt_uint32_t ocr)
{
struct rt_mmcsd_card *card;
rt_int32_t err;
rt_uint32_t resp[4];
rt_uint32_t max_data_rate;
mmcsd_go_idle(host);
/*
* If SD_SEND_IF_COND indicates an SD 2.0
* compliant card and we should set bit 30
* of the ocr to indicate that we can handle
* block-addressed SDHC cards.
*/
err = mmcsd_send_if_cond(host, ocr);
if (!err)
ocr |= 1 << 30;
err = mmcsd_send_app_op_cond(host, ocr, RT_NULL);
if (err)
goto err;
if (controller_is_spi(host))
err = mmcsd_get_cid(host, resp);
else
err = mmcsd_all_get_cid(host, resp);
if (err)
goto err;
card = rt_malloc(sizeof(struct rt_mmcsd_card));
if (!card)
{
rt_kprintf("malloc card failed\n");
err = -RT_ENOMEM;
goto err;
}
rt_memset(card, 0, sizeof(struct rt_mmcsd_card));
card->card_type = CARD_TYPE_SD;
card->host = host;
rt_memcpy(card->resp_cid, resp, sizeof(card->resp_cid));
/*
* For native busses: get card RCA and quit open drain mode.
*/
if (!controller_is_spi(host))
{
err = mmcsd_get_card_addr(host, &card->rca);
if (err)
goto err1;
mmcsd_set_bus_mode(host, MMCSD_BUSMODE_PUSHPULL);
}
err = mmcsd_get_csd(card, card->resp_csd);
if (err)
goto err1;
err = mmcsd_parse_csd(card);
if (err)
goto err1;
if (!controller_is_spi(host))
{
err = mmcsd_select_card(card);
if (err)
goto err1;
}
err = mmcsd_get_scr(card, card->resp_scr);
if (err)
goto err1;
mmcsd_parse_scr(card);
if (controller_is_spi(host))
{
err = mmcsd_spi_use_crc(host, 1);
if (err)
goto err1;
}
/*
* change SD card to high-speed, only SD2.0 spec
*/
err = mmcsd_switch(card);
if (err)
goto err1;
/* set bus speed */
max_data_rate = (unsigned int)-1;
if (card->flags & CARD_FLAG_HIGHSPEED)
{
if (max_data_rate > card->hs_max_data_rate)
max_data_rate = card->hs_max_data_rate;
}
else if (max_data_rate > card->max_data_rate)
{
max_data_rate = card->max_data_rate;
}
mmcsd_set_clock(host, max_data_rate);
/*switch bus width*/
if ((host->flags & MMCSD_BUSWIDTH_4) &&
(card->scr.sd_bus_widths & SD_SCR_BUS_WIDTH_4))
{
err = mmcsd_app_set_bus_width(card, MMCSD_BUS_WIDTH_4);
if (err)
goto err1;
mmcsd_set_bus_width(host, MMCSD_BUS_WIDTH_4);
}
host->card = card;
return 0;
err1:
rt_free(card);
err:
return err;
}
/*
* Starting point for SD card init.
*/
rt_int32_t init_sd(struct rt_mmcsd_host *host, rt_uint32_t ocr)
{
rt_int32_t err;
rt_uint32_t current_ocr;
/*
* We need to get OCR a different way for SPI.
*/
if (controller_is_spi(host)) {
mmcsd_go_idle(host);
err = mmcsd_spi_read_ocr(host, 0, &ocr);
if (err)
goto err;
}
if (ocr & VDD_165_195) {
rt_kprintf(" SD card claims to support the "
"incompletely defined 'low voltage range'. This "
"will be ignored.\n");
ocr &= ~VDD_165_195;
}
current_ocr = mmcsd_select_voltage(host, ocr);
/*
* Can we support the voltage(s) of the card(s)?
*/
if (!current_ocr) {
err = -RT_ERROR;
goto err;
}
/*
* Detect and init the card.
*/
err = mmcsd_sd_init_card(host, current_ocr);
if (err)
goto err;
mmcsd_host_unlock(host);
err = rt_mmcsd_blk_probe(host->card);
if (err)
goto remove_card;
mmcsd_host_lock(host);
return 0;
remove_card:
mmcsd_host_lock(host);
rt_mmcsd_blk_remove(host->card);
rt_free(host->card);
host->card = RT_NULL;
err:
rt_kprintf("init SD card failed\n");
return err;
}