rt-thread-official/bsp/cvitek/drivers/drv_hw_i2c.c

512 lines
13 KiB
C

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
*2024-02-14 ShichengChu first version
*/
#include "drv_hw_i2c.h"
#include <rtdevice.h>
#include <board.h>
#ifdef RT_USING_I2C
#define DBG_TAG "drv.i2c"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#define false 0
#define true 1
struct _i2c_bus
{
struct rt_i2c_bus_device parent;
uint8_t i2c_id;
char *device_name;
};
static struct _i2c_bus _i2c_obj[] =
{
#ifdef BSP_USING_I2C0
{
.i2c_id = I2C0,
.device_name = "i2c0",
},
#endif /* BSP_USING_I2C0 */
#ifdef BSP_USING_I2C1
{
.i2c_id = I2C1,
.device_name = "i2c1",
},
#endif /* BSP_USING_I2C1 */
};
static struct i2c_regs *get_i2c_base(uint8_t i2c_id)
{
struct i2c_regs *i2c_base = NULL;
switch (i2c_id) {
case I2C0:
i2c_base = (struct i2c_regs *)I2C0_BASE;
break;
case I2C1:
i2c_base = (struct i2c_regs *)I2C1_BASE;
break;
case I2C2:
i2c_base = (struct i2c_regs *)I2C2_BASE;
break;
case I2C3:
i2c_base = (struct i2c_regs *)I2C3_BASE;
break;
case I2C4:
i2c_base = (struct i2c_regs *)I2C4_BASE;
break;
}
return i2c_base;
}
static uint32_t get_i2c_intr(uint8_t i2c_id)
{
uint32_t i2c_intr = 0;
switch (i2c_id) {
case I2C0:
i2c_intr = I2C0_IRQ;
break;
case I2C1:
i2c_intr = I2C1_IRQ;
break;
case I2C2:
i2c_intr = I2C2_IRQ;
break;
case I2C3:
i2c_intr = I2C3_IRQ;
break;
case I2C4:
i2c_intr = I2C4_IRQ;
break;
}
return i2c_intr;
}
void i2c_write_cmd_data(struct i2c_regs *i2c, uint16_t value)
{
mmio_write_32((uintptr_t)&i2c->ic_cmd_data, value);
}
static void i2c_enable(struct i2c_regs *i2c, uint8_t enable)
{
uint32_t ena = enable ? IC_ENABLE : 0;
int timeout = 100;
do {
mmio_write_32((uintptr_t)&i2c->ic_enable, ena);
if ((mmio_read_32((uintptr_t)&i2c->ic_enable_status) & IC_ENABLE) == ena)
return;
/*
* Wait 10 times the signaling period of the highest I2C
* transfer supported by the driver (for 400KHz this is
* 25us) as described in the DesignWare I2C databook.
*/
rt_hw_us_delay(25);
} while (timeout--);
LOG_I("timeout in %sabling I2C adapter\n", enable ? "en" : "dis");
}
static void i2c_disable(struct i2c_regs *i2c)
{
int timeout = 100;
do {
mmio_write_32((uintptr_t)&i2c->ic_enable, 0x0);
if ((mmio_read_32((uintptr_t)&i2c->ic_enable_status) & IC_ENABLE) == 0x0)
return;
/*
* Wait 10 times the signaling period of the highest I2C
* transfer supported by the driver (for 400KHz this is
* 25us) as described in the DesignWare I2C databook.
*/
rt_hw_us_delay(25);
} while (timeout--);
LOG_I("timeout in disabling I2C adapter\n");
}
/*
* i2c_flush_rxfifo - Flushes the i2c RX FIFO
*
* Flushes the i2c RX FIFO
*/
static void i2c_flush_rxfifo(struct i2c_regs *i2c)
{
while (mmio_read_32((uintptr_t)&i2c->ic_status) & IC_STATUS_RFNE)
mmio_read_32((uintptr_t)&i2c->ic_cmd_data);
}
/*
* i2c_wait_for_bb - Waits for bus busy
*
* Waits for bus busy
*/
static int i2c_wait_for_bb(struct i2c_regs *i2c)
{
uint16_t timeout = 0;
while ((mmio_read_32((uintptr_t)&i2c->ic_status) & IC_STATUS_MA) ||
!(mmio_read_32((uintptr_t)&i2c->ic_status) & IC_STATUS_TFE)) {
/* Evaluate timeout */
rt_hw_us_delay(5);
timeout++;
if (timeout > 200) /* exceed 1 ms */
return 1;
}
return 0;
}
/*
* i2c_setaddress - Sets the target slave address
* @i2c_addr: target i2c address
*
* Sets the target slave address.
*/
static void i2c_setaddress(struct i2c_regs *i2c, uint16_t i2c_addr)
{
/* Disable i2c */
i2c_enable(i2c, false);
mmio_write_32((uintptr_t)&i2c->ic_tar, i2c_addr);
/* Enable i2c */
i2c_enable(i2c, true);
}
static int i2c_xfer_init(struct i2c_regs *i2c, uint16_t chip, uint16_t addr, uint16_t alen)
{
if (i2c_wait_for_bb(i2c))
return 1;
i2c_setaddress(i2c, chip);
while (alen) {
alen--;
/* high byte address going out first */
i2c_write_cmd_data(i2c, (addr >> (alen * 8)) & 0xff); // TODO
//mmio_write_32((uintptr_t)&i2c_base->ic_cmd_data, (addr >> (alen * 8)) & 0xff);
}
return 0;
}
static int i2c_xfer_finish(struct i2c_regs *i2c)
{
uint16_t timeout = 0;
while (1) {
if ((mmio_read_32((uintptr_t)&i2c->ic_raw_intr_stat) & IC_STOP_DET)) {
mmio_read_32((uintptr_t)&i2c->ic_clr_stop_det);
break;
} else {
timeout++;
rt_hw_us_delay(5);
if (timeout > I2C_STOPDET_TO * 100) {
LOG_I("%s, tiemout\n", __func__);
break;
}
}
}
if (i2c_wait_for_bb(i2c))
return 1;
i2c_flush_rxfifo(i2c);
return 0;
}
/*
* i2c_read - Read from i2c memory
* @chip: target i2c address
* @addr: address to read from
* @alen:
* @buffer: buffer for read data
* @len: no of bytes to be read
*
* Read from i2c memory.
*/
static int hal_i2c_read(uint8_t i2c_id, uint8_t dev, uint16_t addr, uint16_t alen, uint8_t *buffer, uint16_t len)
{
unsigned int active = 0;
unsigned int time_count = 0;
struct i2c_regs *i2c;
int ret = 0;
i2c = get_i2c_base(i2c_id);
i2c_enable(i2c, true);
if (i2c_xfer_init(i2c, dev, addr, alen))
return 1;
while (len) {
if (!active) {
/*
* Avoid writing to ic_cmd_data multiple times
* in case this loop spins too quickly and the
* ic_status RFNE bit isn't set after the first
* write. Subsequent writes to ic_cmd_data can
* trigger spurious i2c transfer.
*/
i2c_write_cmd_data(i2c, (dev <<1) | BIT_I2C_CMD_DATA_READ_BIT | BIT_I2C_CMD_DATA_STOP_BIT);
//mmio_write_32((uintptr_t)&i2c_base->ic_cmd_data, (dev <<1) | BIT_I2C_CMD_DATA_READ_BIT | BIT_I2C_CMD_DATA_STOP_BIT);
active = 1;
}
if (mmio_read_32((uintptr_t)&i2c->ic_raw_intr_stat) & BIT_I2C_INT_RX_FULL) {
*buffer++ = (uint8_t)mmio_read_32((uintptr_t)&i2c->ic_cmd_data);
len--;
time_count = 0;
active = 0;
}
else {
rt_hw_us_delay(5);
time_count++;
if (time_count >= I2C_BYTE_TO * 100)
return 1;
}
}
ret = i2c_xfer_finish(i2c);
i2c_disable(i2c);
return ret;
}
/*
* i2c_write - Write to i2c memory
* @chip: target i2c address
* @addr: address to read from
* @alen:
* @buffer: buffer for read data
* @len: no of bytes to be read
*
* Write to i2c memory.
*/
static int hal_i2c_write(uint8_t i2c_id, uint8_t dev, uint16_t addr, uint16_t alen, uint8_t *buffer, uint16_t len)
{
struct i2c_regs *i2c;
int ret = 0;
i2c = get_i2c_base(i2c_id);
i2c_enable(i2c, true);
if (i2c_xfer_init(i2c, dev, addr, alen))
return 1;
while (len) {
if (i2c->ic_status & IC_STATUS_TFNF) {
if (--len == 0) {
i2c_write_cmd_data(i2c, *buffer | IC_STOP);
//mmio_write_32((uintptr_t)&i2c_base->ic_cmd_data, *buffer | IC_STOP);
} else {
i2c_write_cmd_data(i2c, *buffer);
//mmio_write_32((uintptr_t)&i2c_base->ic_cmd_data, *buffer);
}
buffer++;
} else
LOG_I("len=%d, ic status is not TFNF\n", len);
}
ret = i2c_xfer_finish(i2c);
i2c_disable(i2c);
return ret;
}
/*
* hal_i2c_set_bus_speed - Set the i2c speed
* @speed: required i2c speed
*
* Set the i2c speed.
*/
static void i2c_set_bus_speed(struct i2c_regs *i2c, unsigned int speed)
{
unsigned int cntl;
unsigned int hcnt, lcnt;
int i2c_spd;
if (speed > I2C_FAST_SPEED)
i2c_spd = IC_SPEED_MODE_MAX;
else if ((speed <= I2C_FAST_SPEED) && (speed > I2C_STANDARD_SPEED))
i2c_spd = IC_SPEED_MODE_FAST;
else
i2c_spd = IC_SPEED_MODE_STANDARD;
/* to set speed cltr must be disabled */
i2c_enable(i2c, false);
cntl = (mmio_read_32((uintptr_t)&i2c->ic_con) & (~IC_CON_SPD_MSK));
switch (i2c_spd) {
case IC_SPEED_MODE_MAX:
cntl |= IC_CON_SPD_HS;
//hcnt = (u16)(((IC_CLK * MIN_HS100pF_SCL_HIGHTIME) / 1000) - 8);
/* 7 = 6+1 == MIN LEN +IC_FS_SPKLEN */
//lcnt = (u16)(((IC_CLK * MIN_HS100pF_SCL_LOWTIME) / 1000) - 1);
hcnt = 6;
lcnt = 8;
mmio_write_32((uintptr_t)&i2c->ic_hs_scl_hcnt, hcnt);
mmio_write_32((uintptr_t)&i2c->ic_hs_scl_lcnt, lcnt);
break;
case IC_SPEED_MODE_STANDARD:
cntl |= IC_CON_SPD_SS;
hcnt = (uint16_t)(((IC_CLK * MIN_SS_SCL_HIGHTIME) / 1000) - 7);
lcnt = (uint16_t)(((IC_CLK * MIN_SS_SCL_LOWTIME) / 1000) - 1);
mmio_write_32((uintptr_t)&i2c->ic_ss_scl_hcnt, hcnt);
mmio_write_32((uintptr_t)&i2c->ic_ss_scl_lcnt, lcnt);
break;
case IC_SPEED_MODE_FAST:
default:
cntl |= IC_CON_SPD_FS;
hcnt = (uint16_t)(((IC_CLK * MIN_FS_SCL_HIGHTIME) / 1000) - 7);
lcnt = (uint16_t)(((IC_CLK * MIN_FS_SCL_LOWTIME) / 1000) - 1);
mmio_write_32((uintptr_t)&i2c->ic_fs_scl_hcnt, hcnt);
mmio_write_32((uintptr_t)&i2c->ic_fs_scl_lcnt, lcnt);
break;
}
mmio_write_32((uintptr_t)&i2c->ic_con, cntl);
/* Enable back i2c now speed set */
i2c_enable(i2c, true);
}
/*
* __hal_i2c_init - Init function
* @speed: required i2c speed
* @slaveaddr: slave address for the device
*
* Initialization function.
*/
static void hal_i2c_init(uint8_t i2c_id)
{
struct i2c_regs *i2c;
uint32_t i2c_intr;
LOG_I("%s, i2c-%d\n", __func__, i2c_id);
/* Disable i2c */
//Need to acquire lock here
i2c = get_i2c_base(i2c_id);
i2c_intr = get_i2c_intr(i2c_id);
// request_irq(i2c_intr, i2c_dw_isr, 0, "IC2_INTR int", &dw_i2c[i2c_id]);
i2c_enable(i2c, false);
mmio_write_32((uintptr_t)&i2c->ic_con, (IC_CON_SD | IC_CON_SPD_FS | IC_CON_MM | IC_CON_RE));
mmio_write_32((uintptr_t)&i2c->ic_rx_tl, IC_RX_TL);
mmio_write_32((uintptr_t)&i2c->ic_tx_tl, IC_TX_TL);
mmio_write_32((uintptr_t)&i2c->ic_intr_mask, 0x0);
i2c_set_bus_speed(i2c, I2C_SPEED);
//mmio_write_32((uintptr_t)&i2c->ic_sar, slaveaddr);
/* Enable i2c */
i2c_enable(i2c, false);
//Need to release lock here
}
static rt_ssize_t _master_xfer(struct rt_i2c_bus_device *bus,
struct rt_i2c_msg msgs[],
rt_uint32_t num)
{
struct rt_i2c_msg *msg;
rt_uint32_t i;
rt_ssize_t ret = -RT_ERROR;
struct _i2c_bus *i2c = (struct _i2c_bus *)bus;
for (i = 0; i < num; i++)
{
msg = &msgs[i];
if (msg->flags & RT_I2C_RD)
{
hal_i2c_read(i2c->i2c_id, msg->addr, RT_NULL, 1, msg->buf, msg->len);
}
else
{
hal_i2c_write(i2c->i2c_id, msg->addr, RT_NULL, 1, msg->buf, msg->len);
}
}
return ret;
}
static void rt_hw_i2c_isr(int irqno, void *param)
{
uint32_t stat, enabled;
struct i2c_regs *i2c = (struct i2c_regs *)param;
enabled = mmio_read_32((uintptr_t)&i2c->ic_enable);
stat = mmio_read_32((uintptr_t)&i2c->ic_intr_stat);
LOG_I("i2c interrupt stat: 0x%08x", stat);
}
static const struct rt_i2c_bus_device_ops i2c_ops =
{
.master_xfer = _master_xfer,
.slave_xfer = RT_NULL,
.i2c_bus_control = RT_NULL
};
int rt_hw_i2c_init(void)
{
int result = RT_EOK;
#ifdef BSP_USING_I2C0
PINMUX_CONFIG(IIC0_SCL, IIC0_SCL);
PINMUX_CONFIG(IIC0_SDA, IIC0_SDA);
#endif /* BSP_USING_I2C0 */
#ifdef BSP_USING_I2C1
PINMUX_CONFIG(PAD_MIPIRX1P, IIC1_SDA);
PINMUX_CONFIG(PAD_MIPIRX0N, IIC1_SCL);
#endif /* BSP_USING_I2C1 */
for (rt_size_t i = 0; i < sizeof(_i2c_obj) / sizeof(struct _i2c_bus); i++)
{
hal_i2c_init(_i2c_obj->i2c_id);
_i2c_obj[i].parent.ops = &i2c_ops;
/* register i2c device */
if (rt_i2c_bus_device_register(&_i2c_obj[i].parent, _i2c_obj[i].device_name) == RT_EOK)
{
LOG_D("%s init success", _i2c_obj[i].device_name);
}
else
{
LOG_E("%s register failed", _i2c_obj[i].device_name);
result = -RT_ERROR;
}
uint32_t irqno = get_i2c_intr(_i2c_obj[i].i2c_id);
struct i2c_regs *_i2c = get_i2c_base(_i2c_obj[i].i2c_id);
rt_hw_interrupt_install(irqno, rt_hw_i2c_isr, _i2c, _i2c_obj[i].device_name);
}
return result;
}
INIT_BOARD_EXPORT(rt_hw_i2c_init);
#endif /* RT_USING_I2C */