rt-thread-official/components/dfs/dfs_v2/filesystems/elmfat/dfs_elm.c

1273 lines
30 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2008-02-22 QiuYi The first version.
* 2011-10-08 Bernard fixed the block size in statfs.
* 2011-11-23 Bernard fixed the rename issue.
* 2012-07-26 aozima implement ff_memalloc and ff_memfree.
* 2012-12-19 Bernard fixed the O_APPEND and lseek issue.
* 2013-03-01 aozima fixed the stat(st_mtime) issue.
* 2014-01-26 Bernard Check the sector size before mount.
* 2017-02-13 Hichard Update Fatfs version to 0.12b, support exFAT.
* 2017-04-11 Bernard fix the st_blksize issue.
* 2017-05-26 Urey fix f_mount error when mount more fats
*/
#include <rtthread.h>
#include "ffconf.h"
#include "ff.h"
#include <string.h>
#include <sys/time.h>
/* ELM FatFs provide a DIR struct */
#define HAVE_DIR_STRUCTURE
#include <dfs.h>
#include <dfs_fs.h>
#include <dfs_dentry.h>
#include <dfs_file.h>
#include <dfs_mnt.h>
#ifdef RT_USING_PAGECACHE
#include "dfs_pcache.h"
#endif
static int dfs_elm_free_vnode(struct dfs_vnode *vnode);
#ifdef RT_USING_PAGECACHE
static ssize_t dfs_elm_page_read(struct dfs_file *file, struct dfs_page *page);
static ssize_t dfs_elm_page_write(struct dfs_page *page);
static struct dfs_aspace_ops dfs_elm_aspace_ops =
{
.read = dfs_elm_page_read,
.write = dfs_elm_page_write,
};
#endif
#undef SS
#if FF_MAX_SS == FF_MIN_SS
#define SS(fs) ((UINT)FF_MAX_SS) /* Fixed sector size */
#else
#define SS(fs) ((fs)->ssize) /* Variable sector size */
#endif
static rt_device_t disk[FF_VOLUMES] = {0};
int dfs_elm_unmount(struct dfs_mnt *mnt);
static int elm_result_to_dfs(FRESULT result)
{
int status = RT_EOK;
switch (result)
{
case FR_OK:
break;
case FR_NO_FILE:
case FR_NO_PATH:
case FR_NO_FILESYSTEM:
status = -ENOENT;
break;
case FR_INVALID_NAME:
status = -EINVAL;
break;
case FR_EXIST:
case FR_INVALID_OBJECT:
status = -EEXIST;
break;
case FR_DISK_ERR:
case FR_NOT_READY:
case FR_INT_ERR:
status = -EIO;
break;
case FR_WRITE_PROTECTED:
case FR_DENIED:
status = -EROFS;
break;
case FR_MKFS_ABORTED:
status = -EINVAL;
break;
default:
status = -1;
break;
}
return status;
}
/* results:
* -1, no space to install fatfs driver
* >= 0, there is an space to install fatfs driver
*/
static int get_disk(rt_device_t id)
{
int index;
for (index = 0; index < FF_VOLUMES; index ++)
{
if (disk[index] == id)
return index;
}
return -1;
}
static int dfs_elm_mount(struct dfs_mnt *mnt, unsigned long rwflag, const void *data)
{
FATFS *fat;
FRESULT result;
int index;
struct rt_device_blk_geometry geometry;
char logic_nbr[3] = {'0',':', 0};
/* open device, but do not check the status of device */
if (mnt->dev_id == RT_NULL
|| rt_device_open(mnt->dev_id, RT_DEVICE_OFLAG_RDWR) != RT_EOK)
{
return -ENODEV;
}
/* get an empty position */
index = get_disk(RT_NULL);
if (index == -1)
{
rt_device_close(mnt->dev_id);
return -ENOENT;
}
logic_nbr[0] = '0' + index;
/* save device */
disk[index] = mnt->dev_id;
/* check sector size */
if (rt_device_control(mnt->dev_id, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry) == RT_EOK)
{
if (geometry.bytes_per_sector > FF_MAX_SS)
{
rt_kprintf("The sector size of device is greater than the sector size of FAT.\n");
rt_device_close(mnt->dev_id);
return -EINVAL;
}
}
fat = (FATFS *)rt_malloc(sizeof(FATFS));
if (fat == RT_NULL)
{
disk[index] = RT_NULL;
rt_device_close(mnt->dev_id);
return -ENOMEM;
}
/* mount fatfs, always 0 logic driver */
result = f_mount(fat, (const TCHAR *)logic_nbr, 1);
if (result == FR_OK)
{
char drive[8];
DIR *dir;
rt_snprintf(drive, sizeof(drive), "%d:/", index);
dir = (DIR *)rt_malloc(sizeof(DIR));
if (dir == RT_NULL)
{
f_mount(RT_NULL, (const TCHAR *)logic_nbr, 1);
disk[index] = RT_NULL;
rt_free(fat);
rt_device_close(mnt->dev_id);
return -ENOMEM;
}
/* open the root directory to test whether the fatfs is valid */
result = f_opendir(dir, drive);
if (result != FR_OK)
goto __err;
/* mount succeed! */
mnt->data = fat;
rt_free(dir);
return RT_EOK;
}
__err:
f_mount(RT_NULL, (const TCHAR *)logic_nbr, 1);
disk[index] = RT_NULL;
rt_free(fat);
rt_device_close(mnt->dev_id);
return elm_result_to_dfs(result);
}
int dfs_elm_unmount(struct dfs_mnt *mnt)
{
FATFS *fat;
FRESULT result;
int index;
char logic_nbr[3] = {'0',':', 0};
fat = (FATFS *)mnt->data;
RT_ASSERT(fat != RT_NULL);
/* find the device index and then umount it */
index = get_disk(mnt->dev_id);
if (index == -1) /* not found */
return -ENOENT;
logic_nbr[0] = '0' + index;
result = f_mount(RT_NULL, logic_nbr, (BYTE)0);
if (result != FR_OK)
return elm_result_to_dfs(result);
mnt->data = RT_NULL;
disk[index] = RT_NULL;
rt_free(fat);
rt_device_close(mnt->dev_id);
return RT_EOK;
}
int dfs_elm_mkfs(rt_device_t dev_id, const char *fs_name)
{
#define FSM_STATUS_INIT 0
#define FSM_STATUS_USE_TEMP_DRIVER 1
FATFS *fat = RT_NULL;
BYTE *work;
int flag;
FRESULT result;
int index;
char logic_nbr[3] = {'0',':', 0};
MKFS_PARM opt;
work = rt_malloc(FF_MAX_SS);
if(RT_NULL == work) {
return -ENOMEM;
}
if (dev_id == RT_NULL)
{
rt_free(work); /* release memory */
return -EINVAL;
}
/* if the device is already mounted, then just do mkfs to the drv,
* while if it is not mounted yet, then find an empty drive to do mkfs
*/
flag = FSM_STATUS_INIT;
index = get_disk(dev_id);
if (index == -1)
{
/* not found the device id */
index = get_disk(RT_NULL);
if (index == -1)
{
/* no space to store an temp driver */
rt_kprintf("sorry, there is no space to do mkfs! \n");
rt_free(work); /* release memory */
return -ENOSPC;
}
else
{
fat = (FATFS *)rt_malloc(sizeof(FATFS));
if (fat == RT_NULL)
{
rt_free(work); /* release memory */
return -ENOMEM;
}
flag = FSM_STATUS_USE_TEMP_DRIVER;
disk[index] = dev_id;
/* try to open device */
rt_device_open(dev_id, RT_DEVICE_OFLAG_RDWR);
/* just fill the FatFs[vol] in ff.c, or mkfs will failded!
* consider this condition: you just umount the elm fat,
* then the space in FatFs[index] is released, and now do mkfs
* on the disk, you will get a failure. so we need f_mount here,
* just fill the FatFS[index] in elm fatfs to make mkfs work.
*/
logic_nbr[0] = '0' + index;
f_mount(fat, logic_nbr, (BYTE)index);
}
}
else
{
logic_nbr[0] = '0' + index;
}
/* [IN] Logical drive number */
/* [IN] Format options */
/* [-] Working buffer */
/* [IN] Size of working buffer */
rt_memset(&opt, 0, sizeof(opt));
opt.fmt = FM_ANY|FM_SFD;
result = f_mkfs(logic_nbr, &opt, work, FF_MAX_SS);
rt_free(work); work = RT_NULL;
/* check flag status, we need clear the temp driver stored in disk[] */
if (flag == FSM_STATUS_USE_TEMP_DRIVER)
{
rt_free(fat);
f_mount(RT_NULL, logic_nbr, (BYTE)index);
disk[index] = RT_NULL;
/* close device */
rt_device_close(dev_id);
}
if (result != FR_OK)
{
rt_kprintf("format error, result=%d\n", result);
return elm_result_to_dfs(result);
}
return RT_EOK;
}
int dfs_elm_statfs(struct dfs_mnt *mnt, struct statfs *buf)
{
FATFS *f;
FRESULT res;
char driver[4];
DWORD fre_clust, fre_sect, tot_sect;
RT_ASSERT(mnt != RT_NULL);
RT_ASSERT(buf != RT_NULL);
f = (FATFS *)mnt->data;
rt_snprintf(driver, sizeof(driver), "%d:", f->pdrv);
res = f_getfree(driver, &fre_clust, &f);
if (res)
return elm_result_to_dfs(res);
/* Get total sectors and free sectors */
tot_sect = (f->n_fatent - 2) * f->csize;
fre_sect = fre_clust * f->csize;
buf->f_bfree = fre_sect;
buf->f_blocks = tot_sect;
#if FF_MAX_SS != 512
buf->f_bsize = f->ssize;
#else
buf->f_bsize = 512;
#endif
return 0;
}
int dfs_elm_open(struct dfs_file *file)
{
FIL *fd;
BYTE mode;
FRESULT result;
char *drivers_fn;
#if (FF_VOLUMES > 1)
int vol;
struct dfs_mnt *mnt = file->vnode->mnt;
extern int elm_get_vol(FATFS * fat);
RT_ASSERT(file->vnode->ref_count > 0);
if (file->vnode->data)
{
if (file->vnode->type == FT_DIRECTORY
&& !(file->flags & O_DIRECTORY))
{
return -ENOENT;
}
file->fpos = 0;
return 0;
}
if (mnt == NULL)
return -ENOENT;
/* add path for ELM FatFS driver support */
vol = elm_get_vol((FATFS *)mnt->data);
if (vol < 0)
return -ENOENT;
drivers_fn = (char *)rt_malloc(256);
if (drivers_fn == RT_NULL)
return -ENOMEM;
rt_snprintf(drivers_fn, 256, "%d:%s", vol, file->dentry->pathname);
#else
drivers_fn = file->dentry->pathname;
#endif
if (file->flags & O_DIRECTORY)
{
DIR *dir;
if (file->flags & O_CREAT)
{
result = f_mkdir(drivers_fn);
if (result != FR_OK)
{
#if FF_VOLUMES > 1
rt_free(drivers_fn);
#endif
return elm_result_to_dfs(result);
}
}
/* open directory */
dir = (DIR *)rt_malloc(sizeof(DIR));
if (dir == RT_NULL)
{
#if FF_VOLUMES > 1
rt_free(drivers_fn);
#endif
return -ENOMEM;
}
result = f_opendir(dir, drivers_fn);
#if FF_VOLUMES > 1
rt_free(drivers_fn);
#endif
if (result != FR_OK)
{
rt_free(dir);
return elm_result_to_dfs(result);
}
file->vnode->data = dir;
rt_mutex_init(&file->vnode->lock, file->dentry->pathname, RT_IPC_FLAG_PRIO);
return RT_EOK;
}
else
{
mode = FA_READ;
if (file->flags & O_WRONLY)
mode |= FA_WRITE;
if ((file->flags & O_ACCMODE) & O_RDWR)
mode |= FA_WRITE;
/* Opens the file, if it is existing. If not, a new file is created. */
if (file->flags & O_CREAT)
mode |= FA_OPEN_ALWAYS;
/* Creates a new file. If the file is existing, it is truncated and overwritten. */
if (file->flags & O_TRUNC)
mode |= FA_CREATE_ALWAYS;
/* Creates a new file. The function fails if the file is already existing. */
if (file->flags & O_EXCL)
mode |= FA_CREATE_NEW;
/* allocate a fd */
fd = (FIL *)rt_malloc(sizeof(FIL));
if (fd == RT_NULL)
{
#if FF_VOLUMES > 1
rt_free(drivers_fn);
#endif
return -ENOMEM;
}
result = f_open(fd, drivers_fn, mode);
#if FF_VOLUMES > 1
rt_free(drivers_fn);
#endif
if (result == FR_OK)
{
file->fpos = fd->fptr;
file->vnode->size = f_size(fd);
file->vnode->type = FT_REGULAR;
file->vnode->data = fd;
rt_mutex_init(&file->vnode->lock, file->dentry->pathname, RT_IPC_FLAG_PRIO);
if (file->flags & O_APPEND)
{
/* seek to the end of file */
f_lseek(fd, f_size(fd));
file->fpos = fd->fptr;
}
}
else
{
/* open failed, return */
rt_free(fd);
return elm_result_to_dfs(result);
}
}
return RT_EOK;
}
int dfs_elm_close(struct dfs_file *file)
{
FRESULT result;
RT_ASSERT(file->vnode->ref_count > 0);
if (file->vnode->ref_count > 1)
{
return 0;
}
result = FR_OK;
if (file->vnode->type == FT_DIRECTORY)
{
DIR *dir = RT_NULL;
dir = (DIR *)(file->vnode->data);
RT_ASSERT(dir != RT_NULL);
/* release memory */
rt_free(dir);
}
else if (file->vnode->type == FT_REGULAR)
{
FIL *fd = RT_NULL;
fd = (FIL *)(file->vnode->data);
RT_ASSERT(fd != RT_NULL);
f_close(fd);
/* release memory */
rt_free(fd);
}
file->vnode->data = RT_NULL;
rt_mutex_detach(&file->vnode->lock);
return elm_result_to_dfs(result);
}
int dfs_elm_ioctl(struct dfs_file *file, int cmd, void *args)
{
switch (cmd)
{
case RT_FIOFTRUNCATE:
{
FIL *fd;
FSIZE_t fptr, length;
FRESULT result = FR_OK;
fd = (FIL *)(file->vnode->data);
RT_ASSERT(fd != RT_NULL);
/* save file read/write point */
fptr = fd->fptr;
length = *(off_t*)args;
if (length <= fd->obj.objsize)
{
fd->fptr = length;
result = f_truncate(fd);
}
else
{
result = f_lseek(fd, length);
}
/* restore file read/write point */
fd->fptr = fptr;
return elm_result_to_dfs(result);
}
case F_GETLK:
return 0;
case F_SETLK:
return 0;
}
return -ENOSYS;
}
ssize_t dfs_elm_read(struct dfs_file *file, void *buf, size_t len, off_t *pos)
{
FIL *fd;
FRESULT result = FR_OK;
UINT byte_read;
if (file->vnode->type == FT_DIRECTORY)
{
return -EISDIR;
}
if (file->vnode->size > *pos)
{
fd = (FIL *)(file->vnode->data);
RT_ASSERT(fd != RT_NULL);
rt_mutex_take(&file->vnode->lock, RT_WAITING_FOREVER);
f_lseek(fd, *pos);
result = f_read(fd, buf, len, &byte_read);
/* update position */
*pos = fd->fptr;
rt_mutex_release(&file->vnode->lock);
if (result == FR_OK)
return byte_read;
}
return elm_result_to_dfs(result);
}
ssize_t dfs_elm_write(struct dfs_file *file, const void *buf, size_t len, off_t *pos)
{
FIL *fd;
FRESULT result;
UINT byte_write;
if (file->vnode->type == FT_DIRECTORY)
{
return -EISDIR;
}
fd = (FIL *)(file->vnode->data);
RT_ASSERT(fd != RT_NULL);
rt_mutex_take(&file->vnode->lock, RT_WAITING_FOREVER);
f_lseek(fd, *pos);
result = f_write(fd, buf, len, &byte_write);
/* update position and file size */
*pos = fd->fptr;
file->vnode->size = f_size(fd);
rt_mutex_release(&file->vnode->lock);
if (result == FR_OK)
return byte_write;
return elm_result_to_dfs(result);
}
int dfs_elm_flush(struct dfs_file *file)
{
FIL *fd;
FRESULT result;
fd = (FIL *)(file->vnode->data);
RT_ASSERT(fd != RT_NULL);
result = f_sync(fd);
return elm_result_to_dfs(result);
}
off_t dfs_elm_lseek(struct dfs_file *file, off_t offset, int wherece)
{
FRESULT result = FR_OK;
switch (wherece)
{
case SEEK_SET:
break;
case SEEK_CUR:
offset += file->fpos;
break;
case SEEK_END:
offset += file->vnode->size;
break;
default:
return -EINVAL;
}
if (file->vnode->type == FT_REGULAR)
{
FIL *fd;
/* regular file type */
fd = (FIL *)(file->vnode->data);
RT_ASSERT(fd != RT_NULL);
rt_mutex_take(&file->vnode->lock, RT_WAITING_FOREVER);
result = f_lseek(fd, offset);
rt_mutex_release(&file->vnode->lock);
if (result == FR_OK)
{
/* return current position */
return fd->fptr;
}
}
else if (file->vnode->type == FT_DIRECTORY)
{
/* which is a directory */
DIR *dir = RT_NULL;
dir = (DIR *)(file->vnode->data);
RT_ASSERT(dir != RT_NULL);
rt_mutex_take(&file->vnode->lock, RT_WAITING_FOREVER);
result = f_seekdir(dir, offset / sizeof(struct dirent));
rt_mutex_release(&file->vnode->lock);
if (result == FR_OK)
{
/* update file position */
return offset;
}
}
return elm_result_to_dfs(result);
}
int dfs_elm_getdents(struct dfs_file *file, struct dirent *dirp, uint32_t count)
{
DIR *dir;
FILINFO fno;
FRESULT result;
rt_uint32_t index;
struct dirent *d;
dir = (DIR *)(file->vnode->data);
RT_ASSERT(dir != RT_NULL);
/* make integer count */
count = (count / sizeof(struct dirent)) * sizeof(struct dirent);
if (count == 0)
return -EINVAL;
index = 0;
while (1)
{
char *fn;
d = dirp + index;
result = f_readdir(dir, &fno);
if (result != FR_OK || fno.fname[0] == 0)
break;
#if FF_USE_LFN
fn = *fno.fname ? fno.fname : fno.altname;
#else
fn = fno.fname;
#endif
d->d_type = DT_UNKNOWN;
if (fno.fattrib & AM_DIR)
d->d_type = DT_DIR;
else
d->d_type = DT_REG;
d->d_namlen = (rt_uint8_t)rt_strlen(fn);
d->d_reclen = (rt_uint16_t)sizeof(struct dirent);
rt_strncpy(d->d_name, fn, DIRENT_NAME_MAX);
index ++;
if (index * sizeof(struct dirent) >= count)
break;
}
if (index == 0)
return elm_result_to_dfs(result);
file->fpos += index * sizeof(struct dirent);
return index * sizeof(struct dirent);
}
int dfs_elm_unlink(struct dfs_dentry *dentry)
{
FRESULT result;
#if FF_VOLUMES > 1
int vol;
char *drivers_fn;
extern int elm_get_vol(FATFS * fat);
/* add path for ELM FatFS driver support */
vol = elm_get_vol((FATFS *)dentry->mnt->data);
if (vol < 0)
return -ENOENT;
drivers_fn = (char *)rt_malloc(256);
if (drivers_fn == RT_NULL)
return -ENOMEM;
rt_snprintf(drivers_fn, 256, "%d:%s", vol, dentry->pathname);
#else
const char *drivers_fn;
drivers_fn = path;
#endif
result = f_unlink(drivers_fn);
#if FF_VOLUMES > 1
rt_free(drivers_fn);
#endif
return elm_result_to_dfs(result);
}
int dfs_elm_rename(struct dfs_dentry *old_dentry, struct dfs_dentry *new_dentry)
{
FRESULT result;
#if FF_VOLUMES > 1
char *drivers_oldfn;
const char *drivers_newfn;
int vol;
extern int elm_get_vol(FATFS * fat);
/* add path for ELM FatFS driver support */
vol = elm_get_vol((FATFS *)old_dentry->mnt->data);
if (vol < 0)
return -ENOENT;
drivers_oldfn = (char *)rt_malloc(256);
if (drivers_oldfn == RT_NULL)
return -ENOMEM;
drivers_newfn = new_dentry->pathname;
rt_snprintf(drivers_oldfn, 256, "%d:%s", vol, old_dentry->pathname);
#else
const char *drivers_oldfn, *drivers_newfn;
drivers_oldfn = old_dentry->pathname;
drivers_newfn = new_dentry->pathname;
#endif
result = f_rename(drivers_oldfn, drivers_newfn);
#if FF_VOLUMES > 1
rt_free(drivers_oldfn);
#endif
return elm_result_to_dfs(result);
}
int dfs_elm_stat(struct dfs_dentry *dentry, struct stat *st)
{
FATFS *fat;
FILINFO file_info;
FRESULT result;
fat = (FATFS *)dentry->mnt->data;
#if FF_VOLUMES > 1
int vol;
char *drivers_fn;
extern int elm_get_vol(FATFS * fat);
/* add path for ELM FatFS driver support */
vol = elm_get_vol(fat);
if (vol < 0)
return -ENOENT;
drivers_fn = (char *)rt_malloc(256);
if (drivers_fn == RT_NULL)
return -ENOMEM;
rt_snprintf(drivers_fn, 256, "%d:%s", vol, dentry->pathname);
#else
const char *drivers_fn;
drivers_fn = dentry->pathname;
#endif
result = f_stat(drivers_fn, &file_info);
#if FF_VOLUMES > 1
rt_free(drivers_fn);
#endif
if (result == FR_OK)
{
/* convert to dfs stat structure */
st->st_dev = (dev_t)(size_t)(dentry->mnt->dev_id);
st->st_ino = (ino_t)dfs_dentry_full_path_crc32(dentry);
if (file_info.fattrib & AM_DIR)
{
st->st_mode = S_IFDIR | (S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH);
}
else
{
st->st_mode = S_IFREG | (S_IRWXU | S_IRWXG | S_IRWXO);
}
if (file_info.fattrib & AM_RDO)
st->st_mode &= ~(S_IWUSR | S_IWGRP | S_IWOTH);
if (S_IFDIR & st->st_mode)
{
st->st_size = file_info.fsize;
}
else
{
#ifdef RT_USING_PAGECACHE
st->st_size = (dentry->vnode && dentry->vnode->aspace) ? dentry->vnode->size : file_info.fsize;
#else
st->st_size = file_info.fsize;
#endif
}
st->st_blksize = fat->csize * SS(fat);
if (file_info.fattrib & AM_ARC)
{
st->st_blocks = st->st_size ? ((st->st_size - 1) / SS(fat) / fat->csize + 1) : 0;
st->st_blocks *= (st->st_blksize / 512); // man say st_blocks is number of 512B blocks allocated
}
else
{
st->st_blocks = fat->csize;
}
/* get st_mtime. */
{
struct tm tm_file;
int year, mon, day, hour, min, sec;
WORD tmp;
tmp = file_info.fdate;
day = tmp & 0x1F; /* bit[4:0] Day(1..31) */
tmp >>= 5;
mon = tmp & 0x0F; /* bit[8:5] Month(1..12) */
tmp >>= 4;
year = (tmp & 0x7F) + 1980; /* bit[15:9] Year origin from 1980(0..127) */
tmp = file_info.ftime;
sec = (tmp & 0x1F) * 2; /* bit[4:0] Second/2(0..29) */
tmp >>= 5;
min = tmp & 0x3F; /* bit[10:5] Minute(0..59) */
tmp >>= 6;
hour = tmp & 0x1F; /* bit[15:11] Hour(0..23) */
rt_memset(&tm_file, 0, sizeof(tm_file));
tm_file.tm_year = year - 1900; /* Years since 1900 */
tm_file.tm_mon = mon - 1; /* Months *since* january: 0-11 */
tm_file.tm_mday = day; /* Day of the month: 1-31 */
tm_file.tm_hour = hour; /* Hours since midnight: 0-23 */
tm_file.tm_min = min; /* Minutes: 0-59 */
tm_file.tm_sec = sec; /* Seconds: 0-59 */
st->st_mtime = timegm(&tm_file);
} /* get st_mtime. */
}
return elm_result_to_dfs(result);
}
static struct dfs_vnode *dfs_elm_lookup(struct dfs_dentry *dentry)
{
struct stat st;
struct dfs_vnode *vnode = RT_NULL;
if (dentry == NULL || dentry->mnt == NULL || dentry->mnt->data == NULL)
{
return NULL;
}
if (dfs_elm_stat(dentry, &st) != 0)
{
return vnode;
}
vnode = dfs_vnode_create();
if (vnode)
{
vnode->mnt = dentry->mnt;
vnode->size = st.st_size;
vnode->data = NULL;
if (S_ISDIR(st.st_mode))
{
vnode->mode = S_IFDIR | (S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH);
vnode->type = FT_DIRECTORY;
}
else
{
vnode->mode = S_IFREG | (S_IRWXU | S_IRWXG | S_IRWXO);
vnode->type = FT_REGULAR;
#ifdef RT_USING_PAGECACHE
vnode->aspace = dfs_aspace_create(dentry, vnode, &dfs_elm_aspace_ops);
#endif
}
}
return vnode;
}
static struct dfs_vnode *dfs_elm_create_vnode(struct dfs_dentry *dentry, int type, mode_t mode)
{
struct dfs_vnode *vnode = RT_NULL;
if (dentry == NULL || dentry->mnt == NULL || dentry->mnt->data == NULL)
{
return NULL;
}
vnode = dfs_vnode_create();
if (vnode)
{
if (type == FT_DIRECTORY)
{
/* fat directory force mode 0555 */
vnode->mode = S_IFDIR | (S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH);
vnode->type = FT_DIRECTORY;
}
else
{
/* fat REGULAR file mode force mode 0777 */
vnode->mode = S_IFREG | (S_IRWXU | S_IRWXG | S_IRWXO);
vnode->type = FT_REGULAR;
#ifdef RT_USING_PAGECACHE
vnode->aspace = dfs_aspace_create(dentry, vnode, &dfs_elm_aspace_ops);
#endif
}
vnode->mnt = dentry->mnt;
vnode->data = NULL;
vnode->size = 0;
}
return vnode;
}
static int dfs_elm_free_vnode(struct dfs_vnode *vnode)
{
/* nothing to be freed */
if (vnode && vnode->ref_count <= 1)
{
vnode->data = NULL;
}
return 0;
}
#ifdef RT_USING_PAGECACHE
static ssize_t dfs_elm_page_read(struct dfs_file *file, struct dfs_page *page)
{
int ret = -EINVAL;
if (page->page)
{
off_t fpos = page->fpos;
ret = dfs_elm_read(file, page->page, page->size, &fpos);
}
return ret;
}
ssize_t dfs_elm_page_write(struct dfs_page *page)
{
FIL *fd;
FRESULT result;
UINT byte_write;
if (page->aspace->vnode->type == FT_DIRECTORY)
{
return -EISDIR;
}
fd = (FIL *)(page->aspace->vnode->data);
RT_ASSERT(fd != RT_NULL);
rt_mutex_take(&page->aspace->vnode->lock, RT_WAITING_FOREVER);
f_lseek(fd, page->fpos);
result = f_write(fd, page->page, page->len, &byte_write);
rt_mutex_release(&page->aspace->vnode->lock);
if (result == FR_OK)
{
return byte_write;
}
return elm_result_to_dfs(result);
}
#endif
static const struct dfs_file_ops dfs_elm_fops =
{
.open = dfs_elm_open,
.close = dfs_elm_close,
.ioctl = dfs_elm_ioctl,
.read = dfs_elm_read,
.write = dfs_elm_write,
.flush = dfs_elm_flush,
.lseek = dfs_elm_lseek,
.getdents = dfs_elm_getdents,
};
static const struct dfs_filesystem_ops dfs_elm =
{
"elm",
FS_NEED_DEVICE,
&dfs_elm_fops,
.mount = dfs_elm_mount,
.umount = dfs_elm_unmount,
.mkfs = dfs_elm_mkfs,
.statfs = dfs_elm_statfs,
.unlink = dfs_elm_unlink,
.stat = dfs_elm_stat,
.rename = dfs_elm_rename,
.lookup = dfs_elm_lookup,
.create_vnode = dfs_elm_create_vnode,
.free_vnode = dfs_elm_free_vnode
};
static struct dfs_filesystem_type _elmfs =
{
.fs_ops = &dfs_elm,
};
int elm_init(void)
{
/* register fatfs file system */
dfs_register(&_elmfs);
return 0;
}
INIT_COMPONENT_EXPORT(elm_init);
/*
* RT-Thread Device Interface for ELM FatFs
*/
#include "diskio.h"
/* Initialize a Drive */
DSTATUS disk_initialize(BYTE drv)
{
return 0;
}
/* Return Disk Status */
DSTATUS disk_status(BYTE drv)
{
return 0;
}
/* Read Sector(s) */
DRESULT disk_read(BYTE drv, BYTE *buff, DWORD sector, UINT count)
{
rt_size_t result;
rt_device_t device = disk[drv];
result = rt_device_read(device, sector, buff, count);
if (result == count)
{
return RES_OK;
}
return RES_ERROR;
}
/* Write Sector(s) */
DRESULT disk_write(BYTE drv, const BYTE *buff, DWORD sector, UINT count)
{
rt_size_t result;
rt_device_t device = disk[drv];
result = rt_device_write(device, sector, buff, count);
if (result == count)
{
return RES_OK;
}
return RES_ERROR;
}
/* Miscellaneous Functions */
DRESULT disk_ioctl(BYTE drv, BYTE ctrl, void *buff)
{
rt_device_t device = disk[drv];
if (device == RT_NULL)
return RES_ERROR;
if (ctrl == GET_SECTOR_COUNT)
{
struct rt_device_blk_geometry geometry;
rt_memset(&geometry, 0, sizeof(geometry));
rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
*(DWORD *)buff = geometry.sector_count;
if (geometry.sector_count == 0)
return RES_ERROR;
}
else if (ctrl == GET_SECTOR_SIZE)
{
struct rt_device_blk_geometry geometry;
rt_memset(&geometry, 0, sizeof(geometry));
rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
*(WORD *)buff = (WORD)(geometry.bytes_per_sector);
}
else if (ctrl == GET_BLOCK_SIZE) /* Get erase block size in unit of sectors (DWORD) */
{
struct rt_device_blk_geometry geometry;
rt_memset(&geometry, 0, sizeof(geometry));
rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
*(DWORD *)buff = geometry.block_size / geometry.bytes_per_sector;
}
else if (ctrl == CTRL_SYNC)
{
rt_device_control(device, RT_DEVICE_CTRL_BLK_SYNC, RT_NULL);
}
else if (ctrl == CTRL_TRIM)
{
rt_device_control(device, RT_DEVICE_CTRL_BLK_ERASE, buff);
}
return RES_OK;
}
DWORD get_fattime(void)
{
DWORD fat_time = 0;
time_t now;
struct tm tm_now;
now = time(RT_NULL);
gmtime_r(&now, &tm_now);
fat_time = (DWORD)(tm_now.tm_year - 80) << 25 |
(DWORD)(tm_now.tm_mon + 1) << 21 |
(DWORD)tm_now.tm_mday << 16 |
(DWORD)tm_now.tm_hour << 11 |
(DWORD)tm_now.tm_min << 5 |
(DWORD)tm_now.tm_sec / 2 ;
return fat_time;
}
#if FF_FS_REENTRANT
static rt_mutex_t Mutex[FF_VOLUMES + 1];
int ff_mutex_create (int vol)
{
char name[8];
rt_mutex_t mutex;
rt_snprintf(name, sizeof(name), "fat%d", vol);
mutex = rt_mutex_create(name, RT_IPC_FLAG_PRIO);
if (mutex != RT_NULL)
{
Mutex[vol] = mutex;
return RT_TRUE;
}
return RT_FALSE;
}
void ff_mutex_delete (int vol)
{
if (Mutex[vol] != RT_NULL)
rt_mutex_delete(Mutex[vol]);
}
int ff_mutex_take (int vol)
{
if (rt_mutex_take(Mutex[vol], FF_FS_TIMEOUT) == RT_EOK)
return RT_TRUE;
return RT_FALSE;
}
void ff_mutex_give (int vol)
{
rt_mutex_release(Mutex[vol]);
}
#endif
/* Memory functions */
#if FF_USE_LFN == 3
/* Allocate memory block */
void *ff_memalloc(UINT size)
{
return rt_malloc(size);
}
/* Free memory block */
void ff_memfree(void *mem)
{
rt_free(mem);
}
#endif /* FF_USE_LFN == 3 */