4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-29 05:50:23 +08:00
2017-11-11 13:53:20 +08:00

1749 lines
46 KiB
C

/*
* File : gt9xx.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2017, RT-Thread Development Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2017-01-01 Urey first version
*/
#include <rtthread.h>
#include <rtdevice.h>
#include <rthw.h>
#include <board.h>
#include <drv_gpio.h>
#include "gt9xx.h"
#include "gt9xx_cfg.h"
#include "gt9xx_firmware.h"
#include <rtgui/event.h>
#include <rtgui/rtgui_server.h>
#include <string.h>
#include <stdint.h>
#include <stdio.h>
#ifdef RT_USING_GT9XX
static int tpd_flag = 0;
int tpd_halt = 0;
#ifdef TPD_HAVE_BUTTON
static int tpd_keys_local[TPD_KEY_COUNT] = TPD_KEYS;
static int tpd_keys_dim_local[TPD_KEY_COUNT][4] = TPD_KEYS_DIM;
#endif
#if GTP_GESTURE_WAKEUP
typedef enum
{
DOZE_DISABLED = 0,
DOZE_ENABLED = 1,
DOZE_WAKEUP = 2,
}DOZE_T;
static DOZE_T doze_status = DOZE_DISABLED;
static int8_t gtp_enter_doze(struct rt_i2c_bus_device *client);
#endif
#if GTP_HAVE_TOUCH_KEY
const uint16_t touch_key_array[] = GTP_KEY_TAB;
#define GTP_MAX_KEY_NUM ( sizeof( touch_key_array )/sizeof( touch_key_array[0] ) )
#endif
#if (defined(TPD_WARP_START) && defined(TPD_WARP_END))
static int tpd_wb_start_local[TPD_WARP_CNT] = TPD_WARP_START;
static int tpd_wb_end_local[TPD_WARP_CNT] = TPD_WARP_END;
#endif
#if (defined(TPD_HAVE_CALIBRATION) && !defined(TPD_CUSTOM_CALIBRATION))
static int tpd_calmat_local[8] = TPD_CALIBRATION_MATRIX;
static int tpd_def_calmat_local[8] = TPD_CALIBRATION_MATRIX;
#endif
static rt_mailbox_t gt9xx_mb;
int gtp_send_cfg(struct rt_i2c_bus_device *client);
void gtp_reset_guitar(struct rt_i2c_bus_device *client, int ms);
static uint8_t config[GTP_CONFIG_MAX_LENGTH + GTP_ADDR_LENGTH]
= {GTP_REG_CONFIG_DATA >> 8, GTP_REG_CONFIG_DATA & 0xff};
#pragma pack(1)
typedef struct
{
u16 pid; //product id //
u16 vid; //version id //
} st_tpd_info;
#pragma pack()
st_tpd_info tpd_info;
u8 int_type = 0;
u32 abs_x_max = 0;
u32 abs_y_max = 0;
u8 gtp_rawdiff_mode = 0;
u8 cfg_len = 0;
u8 pnl_init_error = 0;
/* proc file system */
s32 i2c_read_bytes(struct rt_i2c_bus_device *i2c, u16 addr, u8 *rxbuf, int len)
{
struct rt_i2c_msg msgs[2];
u8 buffer[MAX_TRANSACTION_LENGTH];
u8 retry;
u16 left = len;
u16 offset = 0;
msgs[0].addr = GT910_IIC_ADDR;
msgs[0].flags = RT_I2C_WR;
msgs[0].buf = &buffer[0];
msgs[0].len = 2;
msgs[1].addr = GT910_IIC_ADDR;
msgs[1].flags = RT_I2C_RD;
msgs[1].buf = rxbuf;
msgs[1].len = len;
while(left > 0)
{
buffer[0] = (addr >> 8) & 0xFF;
buffer[1] = (addr >> 0) & 0xFF;
msgs[1].buf = &rxbuf[offset];
if (left > MAX_TRANSACTION_LENGTH)
{
msgs[1].len = MAX_TRANSACTION_LENGTH;
left -= MAX_TRANSACTION_LENGTH;
offset += MAX_TRANSACTION_LENGTH;
}
else
{
msgs[1].len = left;
left = 0;
}
retry = 0;
while (rt_i2c_transfer(i2c, &msgs[0], 2) != 2)
{
retry++;
if (retry == 5)
{
GTP_ERROR("I2C read 0x%X length=%d failed\n", addr + offset, len);
return -1;
}
}
}
return 0;
}
s32 i2c_write_bytes(struct rt_i2c_bus_device *i2c, u16 addr, u8 *txbuf, int len)
{
struct rt_i2c_msg msgs[1];
u8 buffer[MAX_TRANSACTION_LENGTH];
u16 left = len;
u16 offset = 0;
u8 retry = 0;
msgs[0].addr = GT910_IIC_ADDR;
msgs[0].flags = RT_I2C_WR;
msgs[0].buf = &buffer[0];
msgs[0].len = 2;
GTP_DEBUG("i2c_write_bytes to device %02X address %04X len %d\n", GT910_IIC_ADDR, addr, len);
while (left > 0)
{
retry = 0;
buffer[0] = ((addr + offset) >> 8) & 0xFF;
buffer[1] = (addr + offset) & 0xFF;
if (left > MAX_I2C_TRANSFER_SIZE)
{
memcpy(&buffer[GTP_ADDR_LENGTH], &txbuf[offset], MAX_I2C_TRANSFER_SIZE);
msgs[0].len = MAX_TRANSACTION_LENGTH;
left -= MAX_I2C_TRANSFER_SIZE;
offset += MAX_I2C_TRANSFER_SIZE;
}
else
{
memcpy(&buffer[GTP_ADDR_LENGTH], &txbuf[offset], left);
msgs[0].len = left + GTP_ADDR_LENGTH;
left = 0;
}
//GTP_DEBUG("byte left %d offset %d\n", left, offset);
while (rt_i2c_transfer(i2c, &msgs[0], 1) != 1)
{
retry++;
//if (retry == 20)
if (retry == 5)
{
GTP_ERROR("I2C write 0x%X%X length=%d failed\n", buffer[0], buffer[1], len);
return -1;
}
}
}
return 0;
}
s32 gtp_i2c_write(struct rt_i2c_bus_device *i2c, u8 *buf, s32 len)
{
s32 ret = -1;
u16 addr = (buf[0] << 8) + buf[1];
ret = i2c_write_bytes(i2c, addr, &buf[2], len - 2);
if (!ret)
{
return 1;
}
else
{
#if GTP_GESTURE_WAKEUP
if (DOZE_ENABLED == doze_status)
{
return ret;
}
#endif
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == gtp_chip_type)
{
gtp_recovery_reset(client);
}
else
#endif
{
gtp_reset_guitar(i2c, 20);
}
return ret;
}
}
s32 gtp_i2c_read(struct rt_i2c_bus_device *i2c, u8 *buf, s32 len)
{
s32 ret = -1;
u16 addr = (buf[0] << 8) + buf[1];
ret = i2c_read_bytes(i2c, addr, &buf[2], len - 2);
if (!ret)
{
return 2;
}
else
{
#if GTP_GESTURE_WAKEUP
if (DOZE_ENABLED == doze_status)
{
return ret;
}
#endif
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == gtp_chip_type)
{
gtp_recovery_reset(client);
}
else
#endif
{
gtp_reset_guitar(i2c, 20);
}
return ret;
}
}
s32 gtp_i2c_read_dbl_check(struct rt_i2c_bus_device *i2c, u16 addr, u8 *rxbuf, int len)
{
u8 buf[16] = {0};
u8 confirm_buf[16] = {0};
u8 retry = 0;
while (retry++ < 3)
{
memset(buf, 0xAA, 16);
buf[0] = (u8)(addr >> 8);
buf[1] = (u8)(addr & 0xFF);
gtp_i2c_read(i2c, buf, len + 2);
memset(confirm_buf, 0xAB, 16);
confirm_buf[0] = (u8)(addr >> 8);
confirm_buf[1] = (u8)(addr & 0xFF);
gtp_i2c_read(i2c, confirm_buf, len + 2);
if (!memcmp(buf, confirm_buf, len+2))
{
memcpy(rxbuf, confirm_buf+2, len);
return SUCCESS;
}
}
GTP_ERROR("i2c read 0x%04X, %d bytes, double check failed!", addr, len);
return FAIL;
}
s32 gtp_send_cfg(struct rt_i2c_bus_device *i2c)
{
s32 ret = 1;
#if GTP_DRIVER_SEND_CFG
s32 retry = 0;
if (pnl_init_error)
{
GTP_INFO("Error occurred in init_panel, no config sent!");
return 0;
}
GTP_INFO("Driver Send Config");
for (retry = 0; retry < 5; retry++)
{
ret = gtp_i2c_write(i2c, config, GTP_CONFIG_MAX_LENGTH + GTP_ADDR_LENGTH);
if (ret > 0)
{
break;
}
}
#endif
return ret;
}
#if GTP_CHARGER_SWITCH
static int gtp_send_chr_cfg(struct rt_i2c_bus_device *i2c)
{
s32 ret = 1;
#if GTP_DRIVER_SEND_CFG
s32 retry = 0;
if (pnl_init_error) {
GTP_INFO("Error occurred in init_panel, no config sent!");
return 0;
}
GTP_INFO("Driver Send Config");
for (retry = 0; retry < 5; retry++) {
ret = gtp_i2c_write(i2c, gtp_charger_config, GTP_CONFIG_MAX_LENGTH + GTP_ADDR_LENGTH);
if (ret > 0) {
break;
}
}
#endif
return ret;
}
#endif
s32 gtp_read_version(struct rt_i2c_bus_device *i2c, u16 *version)
{
s32 ret = -1;
s32 i;
u8 buf[8] = {GTP_REG_VERSION >> 8, GTP_REG_VERSION & 0xff};
GTP_DEBUG_FUNC();
ret = gtp_i2c_read(i2c, buf, sizeof(buf));
if (ret < 0)
{
GTP_ERROR("GTP read version failed");
return ret;
}
if (version)
{
*version = (buf[7] << 8) | buf[6];
}
tpd_info.vid = *version;
tpd_info.pid = 0x00;
for (i = 0; i < 4; i++)
{
if (buf[i + 2] < 0x30)break;
tpd_info.pid |= ((buf[i + 2] - 0x30) << ((3 - i) * 4));
}
if (buf[5] == 0x00)
{
GTP_INFO("IC VERSION: %c%c%c_%02x%02x",
buf[2], buf[3], buf[4], buf[7], buf[6]);
}
else
{
GTP_INFO("IC VERSION:%c%c%c%c_%02x%02x",
buf[2], buf[3], buf[4], buf[5], buf[7], buf[6]);
}
return ret;
}
static s32 gtp_init_panel(struct rt_i2c_bus_device *i2c)
{
s32 ret = 0;
#if GTP_DRIVER_SEND_CFG
s32 i;
u8 check_sum = 0;
u8 opr_buf[16];
u8 sensor_id = 0;
u8 drv_cfg_version;
u8 flash_cfg_version;
u8 cfg_info_group0[] = CTP_CFG_GROUP0;
u8 cfg_info_group1[] = CTP_CFG_GROUP1;
u8 cfg_info_group2[] = CTP_CFG_GROUP2;
u8 cfg_info_group3[] = CTP_CFG_GROUP3;
u8 cfg_info_group4[] = CTP_CFG_GROUP4;
u8 cfg_info_group5[] = CTP_CFG_GROUP5;
u8 *send_cfg_buf[] = {
cfg_info_group0,
cfg_info_group1,
cfg_info_group2,
cfg_info_group3,
cfg_info_group4,
cfg_info_group5
};
u8 cfg_info_len[] = {
CFG_GROUP_LEN(cfg_info_group0),
CFG_GROUP_LEN(cfg_info_group1),
CFG_GROUP_LEN(cfg_info_group2),
CFG_GROUP_LEN(cfg_info_group3),
CFG_GROUP_LEN(cfg_info_group4),
CFG_GROUP_LEN(cfg_info_group5)
};
#if GTP_CHARGER_SWITCH
const u8 cfg_grp0_charger[] = GTP_CFG_GROUP0_CHARGER;
const u8 cfg_grp1_charger[] = GTP_CFG_GROUP1_CHARGER;
const u8 cfg_grp2_charger[] = GTP_CFG_GROUP2_CHARGER;
const u8 cfg_grp3_charger[] = GTP_CFG_GROUP3_CHARGER;
const u8 cfg_grp4_charger[] = GTP_CFG_GROUP4_CHARGER;
const u8 cfg_grp5_charger[] = GTP_CFG_GROUP5_CHARGER;
const u8 *cfgs_charger[] = {
cfg_grp0_charger,
cfg_grp1_charger,
cfg_grp2_charger,
cfg_grp3_charger,
cfg_grp4_charger,
cfg_grp5_charger
};
u8 cfg_lens_charger[] = {
CFG_GROUP_LEN(cfg_grp0_charger),
CFG_GROUP_LEN(cfg_grp1_charger),
CFG_GROUP_LEN(cfg_grp2_charger),
CFG_GROUP_LEN(cfg_grp3_charger),
CFG_GROUP_LEN(cfg_grp4_charger),
CFG_GROUP_LEN(cfg_grp5_charger)
};
#endif
GTP_DEBUG("Config Groups\' Lengths: %d, %d, %d, %d, %d, %d",
cfg_info_len[0],
cfg_info_len[1],
cfg_info_len[2],
cfg_info_len[3],
cfg_info_len[4],
cfg_info_len[5] );
if ((!cfg_info_len[1]) && (!cfg_info_len[2]) && (!cfg_info_len[3]) && (!cfg_info_len[4]) && (!cfg_info_len[5]))
{
sensor_id = 0;
}
else
{
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == gtp_chip_type)
{
rt_thread_delay(rt_tick_from_millisecond(50));
}
#endif
ret = gtp_i2c_read_dbl_check(i2c, GTP_REG_SENSOR_ID, &sensor_id, 1);
if (SUCCESS == ret)
{
if (sensor_id >= 0x06)
{
GTP_ERROR("Invalid sensor_id(0x%02X), No Config Sent!", sensor_id);
pnl_init_error = 1;
return -1;
}
}
else
{
GTP_ERROR("Failed to get sensor_id, No config sent!");
pnl_init_error = 1;
return -1;
}
GTP_INFO("Sensor_ID: %d", sensor_id);
}
cfg_len = cfg_info_len[sensor_id];
GTP_INFO("CTP_CONFIG_GROUP%d used, config length: %d", sensor_id, cfg_len);
if (cfg_len < GTP_CONFIG_MIN_LENGTH)
{
GTP_ERROR("CTP_CONFIG_GROUP%d is INVALID CONFIG GROUP! NO Config Sent! You need to check you header file CFG_GROUP section!",
sensor_id);
pnl_init_error = 1;
return -1;
}
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F != gtp_chip_type)
#endif
{
ret = gtp_i2c_read_dbl_check(i2c, GTP_REG_CONFIG_DATA, &opr_buf[0], 1);
if (ret == SUCCESS)
{
GTP_DEBUG("CFG_CONFIG_GROUP%d Config Version: %d, 0x%02X; IC Config Version: %d, 0x%02X",
sensor_id,
send_cfg_buf[sensor_id][0],
send_cfg_buf[sensor_id][0],
opr_buf[0],
opr_buf[0]);
flash_cfg_version = opr_buf[0];
drv_cfg_version = send_cfg_buf[sensor_id][0]; // backup config version
if (flash_cfg_version < 90 && flash_cfg_version > drv_cfg_version)
{
send_cfg_buf[sensor_id][0] = 0x00;
}
}
else
{
GTP_ERROR("Failed to get ic config version!No config sent!");
return -1;
}
}
memset(&config[GTP_ADDR_LENGTH], 0, GTP_CONFIG_MAX_LENGTH);
memcpy(&config[GTP_ADDR_LENGTH], send_cfg_buf[sensor_id], cfg_len);
#if GTP_CUSTOM_CFG
config[RESOLUTION_LOC] = (u8)GTP_MAX_WIDTH;
config[RESOLUTION_LOC + 1] = (u8)(GTP_MAX_WIDTH>>8);
config[RESOLUTION_LOC + 2] = (u8)GTP_MAX_HEIGHT;
config[RESOLUTION_LOC + 3] = (u8)(GTP_MAX_HEIGHT>>8);
if (GTP_INT_TRIGGER == 0) //RISING
{
config[TRIGGER_LOC] &= 0xfe;
}
else if (GTP_INT_TRIGGER == 1) //FALLING
{
config[TRIGGER_LOC] |= 0x01;
}
#endif // GTP_CUSTOM_CFG
check_sum = 0;
for (i = GTP_ADDR_LENGTH; i < cfg_len; i++)
{
check_sum += config[i];
}
config[cfg_len] = (~check_sum) + 1;
#if GTP_CHARGER_SWITCH
GTP_DEBUG("Charger Config Groups Length: %d, %d, %d, %d, %d, %d",
cfg_lens_charger[0], cfg_lens_charger[1],
cfg_lens_charger[2], cfg_lens_charger[3],
cfg_lens_charger[4], cfg_lens_charger[5]);
memset(&gtp_charger_config[GTP_ADDR_LENGTH], 0, GTP_CONFIG_MAX_LENGTH);
if (cfg_lens_charger[sensor_id] == cfg_len)
memcpy(&gtp_charger_config[GTP_ADDR_LENGTH], cfgs_charger[sensor_id], cfg_len);
#if GTP_CUSTOM_CFG
gtp_charger_config[RESOLUTION_LOC] = (u8) GTP_MAX_WIDTH;
gtp_charger_config[RESOLUTION_LOC + 1] = (u8) (GTP_MAX_WIDTH >> 8);
gtp_charger_config[RESOLUTION_LOC + 2] = (u8) GTP_MAX_HEIGHT;
gtp_charger_config[RESOLUTION_LOC + 3] = (u8) (GTP_MAX_HEIGHT >> 8);
if (GTP_INT_TRIGGER == 0) /* RISING */
gtp_charger_config[TRIGGER_LOC] &= 0xfe;
else if (GTP_INT_TRIGGER == 1) /* FALLING */
gtp_charger_config[TRIGGER_LOC] |= 0x01;
#endif /* END GTP_CUSTOM_CFG */
if (cfg_lens_charger[sensor_id] != cfg_len)
memset(&gtp_charger_config[GTP_ADDR_LENGTH], 0, GTP_CONFIG_MAX_LENGTH);
check_sum = 0;
for (i = GTP_ADDR_LENGTH; i < cfg_len; i++)
{
check_sum += gtp_charger_config[i];
}
gtp_charger_config[cfg_len] = (~check_sum) + 1;
#endif /* END GTP_CHARGER_SWITCH */
#else // DRIVER NOT SEND CONFIG
cfg_len = GTP_CONFIG_MAX_LENGTH;
ret = gtp_i2c_read(client, config, cfg_len + GTP_ADDR_LENGTH);
if (ret < 0)
{
GTP_ERROR("Read Config Failed, Using DEFAULT Resolution & INT Trigger!");
abs_x_max = GTP_MAX_WIDTH;
abs_y_max = GTP_MAX_HEIGHT;
int_type = GTP_INT_TRIGGER;
}
#endif // GTP_DRIVER_SEND_CFG
GTP_DEBUG_FUNC();
if ((abs_x_max == 0) && (abs_y_max == 0))
{
abs_x_max = (config[RESOLUTION_LOC + 1] << 8) + config[RESOLUTION_LOC];
abs_y_max = (config[RESOLUTION_LOC + 3] << 8) + config[RESOLUTION_LOC + 2];
int_type = (config[TRIGGER_LOC]) & 0x03;
}
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == gtp_chip_type)
{
u8 have_key = 0;
if (is_950)
{
driver_num = config[GTP_REG_MATRIX_DRVNUM - GTP_REG_CONFIG_DATA + 2];
sensor_num = config[GTP_REG_MATRIX_SENNUM - GTP_REG_CONFIG_DATA + 2];
}
else
{
driver_num = (config[CFG_LOC_DRVA_NUM]&0x1F) + (config[CFG_LOC_DRVB_NUM]&0x1F);
sensor_num = (config[CFG_LOC_SENS_NUM]&0x0F) + ((config[CFG_LOC_SENS_NUM]>>4)&0x0F);
}
have_key = config[GTP_REG_HAVE_KEY - GTP_REG_CONFIG_DATA + 2] & 0x01; // have key or not
if (1 == have_key)
{
driver_num--;
}
GTP_INFO("Driver * Sensor: %d * %d(Key: %d), X_MAX = %d, Y_MAX = %d, TRIGGER = 0x%02x",
driver_num, sensor_num, have_key, abs_x_max,abs_y_max,int_type);
}
else
#endif
{
#if GTP_DRIVER_SEND_CFG
ret = gtp_send_cfg(i2c);
if (ret < 0)
{
GTP_ERROR("Send config error.");
}
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F != gtp_chip_type)
#endif
{
/* for resume to send config */
if (flash_cfg_version < 90 && flash_cfg_version > drv_cfg_version)
{
config[GTP_ADDR_LENGTH] = drv_cfg_version;
check_sum = 0;
for (i = GTP_ADDR_LENGTH; i < cfg_len; i++)
{
check_sum += config[i];
}
config[cfg_len] = (~check_sum) + 1;
}
}
#endif
GTP_INFO("X_MAX = %d, Y_MAX = %d, TRIGGER = 0x%02x", abs_x_max, abs_y_max, int_type);
}
rt_thread_delay(RT_TICK_PER_SECOND / 20);
return 0;
}
static s8 gtp_i2c_test(struct rt_i2c_bus_device *i2c)
{
u8 retry = 0;
s8 ret = -1;
u32 hw_info = 0;
GTP_DEBUG_FUNC();
while (retry++ < 5)
{
ret = i2c_read_bytes(i2c, GTP_REG_HW_INFO, (u8 *)&hw_info, sizeof(hw_info));
if ((!ret) && (hw_info == 0x00900600)) //20121212
{
return ret;
}
GTP_ERROR("GTP_REG_HW_INFO : %08X", hw_info);
GTP_ERROR("GTP i2c test failed time %d.", retry);
rt_thread_delay(rt_tick_from_millisecond(10));
}
return -1;
}
void gtp_int_sync(s32 ms)
{
gpio_direction_output(GTP_INT_PORT,GTP_INT_PIN,0);
rt_thread_delay(rt_tick_from_millisecond(ms));
gpio_set_func(GTP_INT_PORT, GTP_INT_PIN, GPIO_INPUT | GPIO_INT_FE);
}
void gtp_reset_guitar(struct rt_i2c_bus_device *i2c, s32 ms)
{
GTP_INFO("GTP RESET!\n");
/* RESET skip */
// GTP_GPIO_OUTPUT(GTP_RST_PORT, 0);
// rt_thread_delay(rt_tick_from_millisecond(ms));
// GTP_GPIO_OUTPUT(GTP_INT_PORT, client->addr == 0x14);
//
// rt_thread_delay(rt_tick_from_millisecond(2));
// GTP_GPIO_OUTPUT(GTP_RST_PORT, 1);
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == gtp_chip_type)
{
return;
}
#endif
gtp_int_sync(50);
}
#if GTP_GESTURE_WAKEUP
static s8 gtp_enter_doze(struct rt_i2c_bus_device *i2c)
{
s8 ret = -1;
s8 retry = 0;
u8 i2c_control_buf[3] = {(u8)(GTP_REG_SLEEP >> 8), (u8)GTP_REG_SLEEP, 8};
GTP_DEBUG_FUNC();
GTP_DEBUG("Entering gesture mode...");
while(retry++ < 5)
{
i2c_control_buf[0] = 0x80;
i2c_control_buf[1] = 0x46;
ret = gtp_i2c_write(i2c, i2c_control_buf, 3);
if (ret < 0)
{
GTP_DEBUG("Failed to set gesture flag into 0x8046, %d", retry);
continue;
}
i2c_control_buf[0] = 0x80;
i2c_control_buf[1] = 0x40;
ret = gtp_i2c_write(i2c, i2c_control_buf, 3);
if (ret > 0)
{
doze_status = DOZE_ENABLED;
GTP_INFO("Gesture mode enabled.");
return ret;
}
rt_thread_delay(rt_tick_from_millisecond(10));
}
GTP_ERROR("GTP send gesture cmd failed.");
return ret;
}
#else
/*******************************************************
Function:
Eter sleep function.
Input:
client:i2c_client.
Output:
Executive outcomes.0--success,non-0--fail.
*******************************************************/
static s8 gtp_enter_sleep(struct rt_i2c_bus_device *i2c)
{
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == gtp_chip_type)
{
u8 i2c_status_buf[3] = {0x80, 0x44, 0x00};
s32 ret = 0;
ret = gtp_i2c_read(i2c, i2c_status_buf, 3);
if(ret <= 0)
{
GTP_ERROR("[gtp_enter_sleep]Read ref status reg error.");
}
if (i2c_status_buf[2] & 0x80)
{
//Store bak ref
ret = gtp_bak_ref_proc(i2c, GTP_BAK_REF_STORE);
if(FAIL == ret)
{
GTP_ERROR("[gtp_enter_sleep]Store bak ref failed.");
}
}
}
#endif
#if GTP_POWER_CTRL_SLEEP
GTP_GPIO_OUTPUT(GTP_RST_PORT, 0);
GTP_GPIO_OUTPUT(GTP_INT_PORT, 0);
rt_thread_delay(rt_tick_from_millisecond(10));
#ifdef MT6573
mt_set_gpio_mode(GPIO_CTP_EN_PIN, GPIO_CTP_EN_PIN_M_GPIO);
mt_set_gpio_dir(GPIO_CTP_EN_PIN, GPIO_DIR_OUT);
mt_set_gpio_out(GPIO_CTP_EN_PIN, GPIO_OUT_ZERO);
rt_thread_delay(rt_tick_from_millisecond(30));
#else // ( defined(MT6575) || defined(MT6577) || defined(MT6589) )
#ifdef TPD_POWER_SOURCE_1800
hwPowerDown(TPD_POWER_SOURCE_1800, "TP");
#endif
#ifdef TPD_POWER_SOURCE_CUSTOM
hwPowerDown(TPD_POWER_SOURCE_CUSTOM, "TP");
#else
hwPowerDown(MT65XX_POWER_LDO_VGP2, "TP");
#endif
#endif
GTP_INFO("GTP enter sleep by poweroff!");
return 0;
#else
{
s8 ret = -1;
s8 retry = 0;
u8 i2c_control_buf[3] = {(u8)(GTP_REG_SLEEP >> 8), (u8)GTP_REG_SLEEP, 5};
GTP_GPIO_OUTPUT(GTP_INT_PORT, 0);
rt_thread_delay(rt_tick_from_millisecond(5));
while (retry++ < 5)
{
ret = gtp_i2c_write(i2c, i2c_control_buf, 3);
if (ret > 0)
{
GTP_INFO("GTP enter sleep!");
return ret;
}
rt_thread_delay(rt_tick_from_millisecond(10));
}
GTP_ERROR("GTP send sleep cmd failed.");
return ret;
}
#endif
}
#endif
static s8 gtp_wakeup_sleep(struct rt_i2c_bus_device *i2c)
{
u8 retry = 0;
s8 ret = -1;
GTP_DEBUG("GTP wakeup begin.");
#if (GTP_POWER_CTRL_SLEEP)
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == gtp_chip_type)
{
force_reset_guitar();
GTP_INFO("Esd recovery wakeup.");
return 0;
}
#endif
while (retry++ < 5)
{
ret = tpd_power_on(client);
if (ret < 0)
{
GTP_ERROR("I2C Power on ERROR!");
continue;
}
GTP_INFO("Ic wakeup by poweron");
return 0;
}
#else
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == gtp_chip_type)
{
u8 opr_buf[2] = {0};
while (retry++ < 10)
{
GTP_GPIO_OUTPUT(GTP_INT_PORT, 1);
rt_thread_delay(rt_tick_from_millisecond(5));
ret = gtp_i2c_test(client);
if (ret >= 0)
{
// Hold ss51 & dsp
opr_buf[0] = 0x0C;
ret = i2c_write_bytes(i2c, 0x4180, opr_buf, 1);
if (ret < 0)
{
GTP_DEBUG("Hold ss51 & dsp I2C error,retry:%d", retry);
continue;
}
// Confirm hold
opr_buf[0] = 0x00;
ret = i2c_read_bytes(i2c, 0x4180, opr_buf, 1);
if (ret < 0)
{
GTP_DEBUG("confirm ss51 & dsp hold, I2C error,retry:%d", retry);
continue;
}
if (0x0C != opr_buf[0])
{
GTP_DEBUG("ss51 & dsp not hold, val: %d, retry: %d", opr_buf[0], retry);
continue;
}
GTP_DEBUG("ss51 & dsp has been hold");
ret = gtp_fw_startup(i2c);
if (FAIL == ret)
{
GTP_ERROR("[gtp_wakeup_sleep]Startup fw failed.");
continue;
}
GTP_INFO("flashless wakeup sleep success");
return ret;
}
force_reset_guitar();
retry = 0;
break;
}
if (retry >= 10)
{
GTP_ERROR("wakeup retry timeout, process esd reset");
force_reset_guitar();
}
GTP_ERROR("GTP wakeup sleep failed.");
return ret;
}
#endif
while (retry++ < 10)
{
#if GTP_GESTURE_WAKEUP
if (DOZE_WAKEUP != doze_status)
{
GTP_INFO("Powerkey wakeup.");
}
else
{
GTP_INFO("Gesture wakeup.");
}
doze_status = DOZE_DISABLED;
gtp_reset_guitar(i2c, 20);
#else
GTP_GPIO_OUTPUT(GTP_INT_PORT, 1);
rt_thread_delay(rt_tick_from_millisecond(5));
#endif
ret = gtp_i2c_test(i2c);
if (ret >= 0)
{
GTP_INFO("GTP wakeup sleep.");
#if (!GTP_GESTURE_WAKEUP)
{
gtp_int_sync(25);
#if GTP_ESD_PROTECT
gtp_init_ext_watchdog(client);
#endif
}
#endif
return ret;
}
gtp_reset_guitar(i2c, 20);
}
#endif
GTP_ERROR("GTP wakeup sleep failed.");
return ret;
}
static struct rtgui_event_mouse emouse = {0};
static int xx = 0, yy = 0, zz = 0;
static int touch_down_up_status;
static void tpd_down(s32 x, s32 y, s32 size, s32 id)
{
int result;
if ((!size) && (!id))
{
// input_report_abs(tpd->dev, ABS_MT_PRESSURE, 100);
// input_report_abs(tpd->dev, ABS_MT_TOUCH_MAJOR, 100);
}
else
{
// input_report_abs(tpd->dev, ABS_MT_PRESSURE, size);
// input_report_abs(tpd->dev, ABS_MT_TOUCH_MAJOR, size);
// /* track id Start 0 */
// input_report_abs(tpd->dev, ABS_MT_TRACKING_ID, id);
}
// input_report_key(tpd->dev, BTN_TOUCH, 1);
// input_report_abs(tpd->dev, ABS_MT_POSITION_X, x);
// input_report_abs(tpd->dev, ABS_MT_POSITION_Y, y);
// input_mt_sync(tpd->dev);
// TPD_EM_PRINT(x, y, x, y, id, 1);
x = x + y;
y = x - y;
x = x - y;
x = 479 - x;
if(touch_down_up_status)
{
emouse.parent.type = RTGUI_EVENT_MOUSE_MOTION;
emouse.x = x;
emouse.y = y;
emouse.ts = rt_tick_get();
if (xx != 0 || yy != 0 || (xx == 0 && yy == 0))
{
if (xx != emouse.x || emouse.y != yy)
{
rtgui_server_post_event(&emouse.parent, sizeof(emouse));
zz = 0;
}
else
{
zz ++;
}
}
xx = emouse.x;
yy = emouse.y;
if (zz >= 10)
{
xx = 0;
yy = 0;
}
}
else
{
touch_down_up_status = 1;
//send mouse down event
emouse.parent.sender = RT_NULL;
emouse.wid = RT_NULL;
emouse.parent.type = RTGUI_EVENT_MOUSE_BUTTON;
emouse.button = RTGUI_MOUSE_BUTTON_LEFT | RTGUI_MOUSE_BUTTON_DOWN;
emouse.x = x;
emouse.y = y;
emouse.ts = rt_tick_get();
emouse.id = emouse.ts;
do
{
result = rtgui_server_post_event(&emouse.parent, sizeof(emouse));
if (result != RT_EOK)
{
rt_thread_delay(RT_TICK_PER_SECOND / 10);
}
}
while (result != RT_EOK);
}
}
static void tpd_up(s32 x, s32 y, s32 id)
{
int result;
// input_report_key(tpd->dev, BTN_TOUCH, 0);
// input_mt_sync(tpd->dev);
// TPD_EM_PRINT(x, y, x, y, id, 0);
#if (defined(MT6575) || defined(MT6577))
if (FACTORY_BOOT == get_boot_mode() || RECOVERY_BOOT == get_boot_mode())
{
tpd_button(x, y, 0);
}
#endif
touch_down_up_status = 0;
/* Always send touch up event. */
emouse.parent.type = RTGUI_EVENT_MOUSE_BUTTON;
emouse.button = RTGUI_MOUSE_BUTTON_LEFT | RTGUI_MOUSE_BUTTON_UP;
emouse.x = xx;
emouse.y = yy;
emouse.ts = rt_tick_get();
do
{
result = rtgui_server_post_event(&emouse.parent, sizeof(emouse));
if (result != RT_EOK)
{
rt_thread_delay(RT_TICK_PER_SECOND / 10);
}
}
while (result != RT_EOK);
}
static int tpd_power_on(struct rt_i2c_bus_device *client)
{
int ret = 0;
int reset_count = 0;
reset_proc:
GTP_GPIO_OUTPUT(GTP_RST_PORT, 0);
GTP_GPIO_OUTPUT(GTP_INT_PORT, 0);
rt_thread_delay(rt_tick_from_millisecond(10));
gtp_reset_guitar(client, 20);
#if GTP_COMPATIBLE_MODE
gtp_get_chip_type(client);
if (CHIP_TYPE_GT9F == gtp_chip_type)
{
ret = gup_fw_download_proc(NULL, GTP_FL_FW_BURN);
if(FAIL == ret)
{
GTP_ERROR("[tpd_power_on]Download fw failed.");
if(reset_count++ < TPD_MAX_RESET_COUNT)
{
goto reset_proc;
}
else
{
return -1;
}
}
ret = gtp_fw_startup(client);
if(FAIL == ret)
{
GTP_ERROR("[tpd_power_on]Startup fw failed.");
if(reset_count++ < TPD_MAX_RESET_COUNT)
{
goto reset_proc;
}
else
{
return -1;
}
}
}
else
#endif
{
ret = gtp_i2c_test(client);
if (ret < 0)
{
GTP_ERROR("I2C communication ERROR!");
if (reset_count < TPD_MAX_RESET_COUNT)
{
reset_count++;
goto reset_proc;
}
}
}
return ret;
}
static int tpd_local_init(void)
{
#if GTP_ESD_PROTECT
clk_tick_cnt = 2 * HZ; // HZ: clock ticks in 1 second generated by system
GTP_DEBUG("Clock ticks for an esd cycle: %d", clk_tick_cnt);
INIT_DELAYED_WORK(&gtp_esd_check_work, gtp_esd_check_func);
gtp_esd_check_workqueue = create_workqueue("gtp_esd_check");
spin_lock_init(&esd_lock); // 2.6.39 & later
// esd_lock = SPIN_LOCK_UNLOCKED; // 2.6.39 & before
#endif
#ifdef TPD_HAVE_BUTTON
tpd_button_setting(TPD_KEY_COUNT, tpd_keys_local, tpd_keys_dim_local);// initialize tpd button data
#endif
#if (defined(TPD_WARP_START) && defined(TPD_WARP_END))
TPD_DO_WARP = 1;
memcpy(tpd_wb_start, tpd_wb_start_local, TPD_WARP_CNT * 4);
memcpy(tpd_wb_end, tpd_wb_start_local, TPD_WARP_CNT * 4);
#endif
#if (defined(TPD_HAVE_CALIBRATION) && !defined(TPD_CUSTOM_CALIBRATION))
// memcpy(tpd_calmat, tpd_def_calmat_local, 8 * 4);
// memcpy(tpd_def_calmat, tpd_def_calmat_local, 8 * 4);
#endif
GTP_INFO("end %s, %d\n", __FUNCTION__, __LINE__);
}
static void tpd_int_srv(void *param)
{
if(gt9xx_mb)
{
rt_mb_send(gt9xx_mb, 0);
gpio_mask_irq(GTP_INT_PORT, GTP_INT_PIN);
}
}
static void tpd_event_process(void *param)
{
struct rt_i2c_bus_device *i2c = (struct rt_i2c_bus_device *)param;
u8 end_cmd[3] = {GTP_READ_COOR_ADDR >> 8, GTP_READ_COOR_ADDR & 0xFF, 0};
u8 point_data[2 + 1 + 8 * GTP_MAX_TOUCH + 1] = {GTP_READ_COOR_ADDR >> 8, GTP_READ_COOR_ADDR & 0xFF};
u8 touch_num = 0;
u8 finger = 0;
static u8 pre_touch = 0;
static u8 pre_key = 0;
#if GTP_WITH_PEN
u8 pen_active = 0;
static u8 pre_pen = 0;
#endif
u8 key_value = 0;
u8 *coor_data = NULL;
s32 input_x = 0;
s32 input_y = 0;
s32 input_w = 0;
s32 id = 0;
s32 i = 0;
s32 ret = -1;
#if GTP_COMPATIBLE_MODE
u8 rqst_data[3] = {(u8)(GTP_REG_RQST >> 8), (u8)(GTP_REG_RQST & 0xFF), 0};
#endif
#ifdef TPD_PROXIMITY
s32 err = 0;
hwm_sensor_data sensor_data;
u8 proximity_status;
#endif
#if GTP_GESTURE_WAKEUP
u8 doze_buf[3] = {0x81, 0x4B};
#endif
while(1)
{
while (tpd_halt)
{
#if GTP_GESTURE_WAKEUP
if (DOZE_ENABLED == doze_status)
{
break;
}
#endif
tpd_flag = 0;
rt_thread_delay(rt_tick_from_millisecond(20));
}
// wait_event_interruptible(waiter, tpd_flag != 0);
/* wait */
tpd_flag = 0;
#if GTP_CHARGER_SWITCH
gtp_charger_switch(0);
#endif
#if GTP_GESTURE_WAKEUP
if (DOZE_ENABLED == doze_status)
{
ret = gtp_i2c_read(i2c, doze_buf, 3);
GTP_DEBUG("0x814B = 0x%02X", doze_buf[2]);
if (ret > 0)
{
if ((doze_buf[2] == 'a') || (doze_buf[2] == 'b') || (doze_buf[2] == 'c') ||
(doze_buf[2] == 'd') || (doze_buf[2] == 'e') || (doze_buf[2] == 'g') ||
(doze_buf[2] == 'h') || (doze_buf[2] == 'm') || (doze_buf[2] == 'o') ||
(doze_buf[2] == 'q') || (doze_buf[2] == 's') || (doze_buf[2] == 'v') ||
(doze_buf[2] == 'w') || (doze_buf[2] == 'y') || (doze_buf[2] == 'z') ||
(doze_buf[2] == 0x5E) /* ^ */
)
{
if (doze_buf[2] != 0x5E)
{
GTP_INFO("Wakeup by gesture(%c), light up the screen!", doze_buf[2]);
}
else
{
GTP_INFO("Wakeup by gesture(^), light up the screen!");
}
doze_status = DOZE_WAKEUP;
// input_report_key(tpd->dev, KEY_POWER, 1);
// input_sync(tpd->dev);
// input_report_key(tpd->dev, KEY_POWER, 0);
// input_sync(tpd->dev);
// clear 0x814B
doze_buf[2] = 0x00;
gtp_i2c_write(i2c, doze_buf, 3);
}
else if ( (doze_buf[2] == 0xAA) || (doze_buf[2] == 0xBB) ||
(doze_buf[2] == 0xAB) || (doze_buf[2] == 0xBA) )
{
char *direction[4] = {"Right", "Down", "Up", "Left"};
u8 type = ((doze_buf[2] & 0x0F) - 0x0A) + (((doze_buf[2] >> 4) & 0x0F) - 0x0A) * 2;
GTP_INFO("%s slide to light up the screen!", direction[type]);
doze_status = DOZE_WAKEUP;
// input_report_key(tpd->dev, KEY_POWER, 1);
// input_sync(tpd->dev);
// input_report_key(tpd->dev, KEY_POWER, 0);
// input_sync(tpd->dev);
// clear 0x814B
doze_buf[2] = 0x00;
gtp_i2c_write(i2c, doze_buf, 3);
}
else if (0xCC == doze_buf[2])
{
GTP_INFO("Double click to light up the screen!");
doze_status = DOZE_WAKEUP;
// input_report_key(tpd->dev, KEY_POWER, 1);
// input_sync(tpd->dev);
// input_report_key(tpd->dev, KEY_POWER, 0);
// input_sync(tpd->dev);
// clear 0x814B
doze_buf[2] = 0x00;
gtp_i2c_write(i2c, doze_buf, 3);
}
else
{
// clear 0x814B
doze_buf[2] = 0x00;
gtp_i2c_write(i2c, doze_buf, 3);
gtp_enter_doze(i2c);
}
}
continue;
}
#endif
ret = gtp_i2c_read(i2c, point_data, 12);
if (ret < 0)
{
GTP_ERROR("I2C transfer error. errno:%d\n ", ret);
continue;
}
finger = point_data[GTP_ADDR_LENGTH];
#if GTP_COMPATIBLE_MODE
if ((finger == 0x00) && (CHIP_TYPE_GT9F == gtp_chip_type))
{
ret = gtp_i2c_read(i2c_client_point, rqst_data, 3);
if(ret < 0)
{
GTP_ERROR("I2C transfer error. errno:%d\n ", ret);
continue;
}
switch (rqst_data[2])
{
case GTP_RQST_BAK_REF:
GTP_INFO("Request Ref.");
rqst_processing = 1;
ret = gtp_bak_ref_proc(i2c_client_point, GTP_BAK_REF_SEND);
if(SUCCESS == ret)
{
GTP_INFO("Send ref success.");
rqst_data[2] = GTP_RQST_RESPONDED;
gtp_i2c_write(i2c_client_point, rqst_data, 3);
rqst_processing = 0;
}
goto exit_work_func;
case GTP_RQST_CONFIG:
GTP_INFO("Request Config.");
ret = gtp_send_cfg(i2c_client_point);
if (ret < 0)
{
GTP_ERROR("Send config error.");
}
else
{
GTP_INFO("Send config success.");
rqst_data[2] = GTP_RQST_RESPONDED;
gtp_i2c_write(i2c_client_point, rqst_data, 3);
}
goto exit_work_func;
case GTP_RQST_MAIN_CLOCK:
GTP_INFO("Request main clock.");
rqst_processing = 1;
ret = gtp_main_clk_proc(i2c_client_point);
if(SUCCESS == ret)
{
GTP_INFO("Send main clk success.");
rqst_data[2] = GTP_RQST_RESPONDED;
gtp_i2c_write(i2c_client_point, rqst_data, 3);
rqst_processing = 0;
}
goto exit_work_func;
case GTP_RQST_RESET:
GTP_INFO("Request Reset.");
gtp_recovery_reset(i2c_client_point);
goto exit_work_func;
default:
GTP_INFO("Undefined request code: 0x%02X", rqst_data[2]);
rqst_data[2] = GTP_RQST_RESPONDED;
gtp_i2c_write(i2c_client_point, rqst_data, 3);
break;
}
}
#endif
if (finger == 0x00)
{
continue;
}
if ((finger & 0x80) == 0)
{
goto exit_work_func;
}
#ifdef TPD_PROXIMITY
if (tpd_proximity_flag == 1)
{
proximity_status = point_data[GTP_ADDR_LENGTH];
GTP_DEBUG("REG INDEX[0x814E]:0x%02X\n", proximity_status);
if (proximity_status & 0x60) //proximity or large touch detect,enable hwm_sensor.
{
tpd_proximity_detect = 0;
//sensor_data.values[0] = 0;
}
else
{
tpd_proximity_detect = 1;
//sensor_data.values[0] = 1;
}
//get raw data
GTP_DEBUG(" ps change\n");
GTP_DEBUG("PROXIMITY STATUS:0x%02X\n", tpd_proximity_detect);
//map and store data to hwm_sensor_data
sensor_data.values[0] = tpd_get_ps_value();
sensor_data.value_divide = 1;
sensor_data.status = SENSOR_STATUS_ACCURACY_MEDIUM;
//report to the up-layer
ret = hwmsen_get_interrupt_data(ID_PROXIMITY, &sensor_data);
if (ret)
{
GTP_ERROR("Call hwmsen_get_interrupt_data fail = %d\n", err);
}
}
#endif
touch_num = finger & 0x0f;
if (touch_num > GTP_MAX_TOUCH)
{
goto exit_work_func;
}
if (touch_num > 1)
{
u8 buf[8 * GTP_MAX_TOUCH] = {(GTP_READ_COOR_ADDR + 10) >> 8, (GTP_READ_COOR_ADDR + 10) & 0xff};
ret = gtp_i2c_read(i2c, buf, 2 + 8 * (touch_num - 1));
memcpy(&point_data[12], &buf[2], 8 * (touch_num - 1));
}
#if (GTP_HAVE_TOUCH_KEY || GTP_PEN_HAVE_BUTTON)
key_value = point_data[3 + 8 * touch_num];
if (key_value || pre_key)
{
#if GTP_PEN_HAVE_BUTTON
if (key_value == 0x40)
{
GTP_DEBUG("BTN_STYLUS & BTN_STYLUS2 Down.");
input_report_key(pen_dev, BTN_STYLUS, 1);
input_report_key(pen_dev, BTN_STYLUS2, 1);
pen_active = 1;
}
else if (key_value == 0x10)
{
GTP_DEBUG("BTN_STYLUS Down, BTN_STYLUS2 Up.");
input_report_key(pen_dev, BTN_STYLUS, 1);
input_report_key(pen_dev, BTN_STYLUS2, 0);
pen_active = 1;
}
else if (key_value == 0x20)
{
GTP_DEBUG("BTN_STYLUS Up, BTN_STYLUS2 Down.");
input_report_key(pen_dev, BTN_STYLUS, 0);
input_report_key(pen_dev, BTN_STYLUS2, 1);
pen_active = 1;
}
else
{
GTP_DEBUG("BTN_STYLUS & BTN_STYLUS2 Up.");
input_report_key(pen_dev, BTN_STYLUS, 0);
input_report_key(pen_dev, BTN_STYLUS2, 0);
if ( (pre_key == 0x40) || (pre_key == 0x20) ||
(pre_key == 0x10)
)
{
pen_active = 1;
}
}
if (pen_active)
{
touch_num = 0; // shield pen point
//pre_touch = 0; // clear last pen status
}
#endif
#if GTP_HAVE_TOUCH_KEY
if (!pre_touch)
{
for (i = 0; i < GTP_MAX_KEY_NUM; i++)
{
input_report_key(tpd->dev, touch_key_array[i], key_value & (0x01 << i));
}
touch_num = 0; // shiled fingers
}
#endif
}
#endif
pre_key = key_value;
GTP_DEBUG("pre_touch:%02x, finger:%02x.", pre_touch, finger);
if (touch_num)
{
for (i = 0; i < touch_num; i++)
{
coor_data = &point_data[i * 8 + 3];
id = coor_data[0] & 0x0F;
input_x = coor_data[1] | coor_data[2] << 8;
input_y = coor_data[3] | coor_data[4] << 8;
input_w = coor_data[5] | coor_data[6] << 8;
input_x = TPD_WARP_X(abs_x_max, input_x);
input_y = TPD_WARP_Y(abs_y_max, input_y);
#if GTP_WITH_PEN
id = coor_data[0];
if ((id & 0x80)) // pen/stylus is activated
{
GTP_DEBUG("Pen touch DOWN!");
pre_pen = 1;
//id &= 0x7F;
id = 0;
GTP_DEBUG("(%d)(%d, %d)[%d]", id, input_x, input_y, input_w);
gtp_pen_down(input_x, input_y, input_w, id);
pen_active = 1;
}
else
#endif
{
GTP_DEBUG(" (%d)(%d, %d)[%d]", id, input_x, input_y, input_w);
tpd_down(input_x, input_y, input_w, id);
}
}
}
else
{
if (pre_touch)
{
#if GTP_WITH_PEN
if (pre_pen)
{
GTP_DEBUG("Pen touch UP!");
gtp_pen_up();
pre_pen = 0;
pen_active = 1;
}
else
#endif
{
GTP_DEBUG("Touch Release!");
tpd_up(0, 0, 0);
}
}
}
pre_touch = touch_num;
#if GTP_WITH_PEN
if (pen_active)
{
pen_active = 0;
input_sync(pen_dev);
}
else
#endif
{
// input_sync(tpd->dev);
}
exit_work_func:
if (!gtp_rawdiff_mode)
{
ret = gtp_i2c_write(i2c, end_cmd, 3);
if (ret < 0)
{
GTP_INFO("I2C write end_cmd error!");
}
}
}
}
static int tpd_i2c_probe(struct rt_i2c_bus_device *i2c)
{
s32 err = 0;
s32 ret = 0;
u16 version_info;
#if GTP_HAVE_TOUCH_KEY
s32 idx = 0;
#endif
#ifdef TPD_PROXIMITY
struct hwmsen_object obj_ps;
#endif
ret = tpd_power_on(i2c);
if (ret < 0)
{
GTP_ERROR("I2C communication ERROR!");
}
ret = gtp_read_version(i2c, &version_info);
if (ret < 0)
{
GTP_ERROR("Read version failed.");
}
ret = gtp_init_panel(i2c);
if (ret < 0)
{
GTP_ERROR("GTP init panel failed.");
}
#if GTP_HAVE_TOUCH_KEY
for (idx = 0; idx < GTP_MAX_KEY_NUM; idx++)
{
input_set_capability(tpd->dev, EV_KEY, touch_key_array[idx]);
}
#endif
#if GTP_GESTURE_WAKEUP
// input_set_capability(tpd->dev, EV_KEY, KEY_POWER);
#endif
#if GTP_WITH_PEN
gtp_pen_init();
#endif
// set INT mode
gpio_direction_input(GTP_INT_PORT, GTP_INT_PIN);
gpio_set_func(GTP_INT_PORT, GTP_INT_PIN, GPIO_INPUT | GPIO_INT_FE);
gpio_set_irq_callback(GTP_INT_PORT, GTP_INT_PIN, tpd_int_srv, RT_NULL);
rt_thread_delay(50);
gpio_unmask_irq(GTP_INT_PORT, GTP_INT_PIN);
#if GTP_ESD_PROTECT
gtp_esd_switch(client, SWITCH_ON);
#endif
#if GTP_AUTO_UPDATE
ret = gup_init_update_proc(client);
if (ret < 0)
{
GTP_ERROR("Create update thread error.");
}
#endif
#ifdef TPD_PROXIMITY
//obj_ps.self = cm3623_obj;
obj_ps.polling = 0; //0--interrupt mode;1--polling mode;
obj_ps.sensor_operate = tpd_ps_operate;
if ((err = hwmsen_attach(ID_PROXIMITY, &obj_ps)))
{
GTP_ERROR("hwmsen attach fail, return:%d.", err);
}
#endif
return 0;
}
/******************************************************************************/
// Description: rt_hw_touch_init
// Dependence:
// Note: GPIO_PROD_TP_INT_ID
/******************************************************************************/
int rt_hw_touch_init(void)
{
uint32_t reset_count;
rt_thread_t tid;
struct rt_i2c_bus_device *i2c_bus;
i2c_bus = rt_i2c_bus_device_find("i2c0");
if(i2c_bus == RT_NULL)
{
rt_kprintf("can't find the i2c bus:%s\n","i2c0");
return -RT_EIO;
}
gt9xx_mb = rt_mb_create("tp_mb",8,RT_IPC_FLAG_FIFO);
tid = rt_thread_create("tp_serv",
tpd_event_process, i2c_bus,
4096,
RT_TOUCH_THREAD_PRIORITY,10);
if (tid != RT_NULL)
rt_thread_startup(tid);
tpd_i2c_probe(i2c_bus);
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_touch_init);
#endif