rt-thread-official/components/external/SQLite-3.8.1/src/tokenize.c

525 lines
15 KiB
C

/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** An tokenizer for SQL
**
** This file contains C code that splits an SQL input string up into
** individual tokens and sends those tokens one-by-one over to the
** parser for analysis.
*/
#include "sqliteInt.h"
#include <stdlib.h>
/*
** The charMap() macro maps alphabetic characters into their
** lower-case ASCII equivalent. On ASCII machines, this is just
** an upper-to-lower case map. On EBCDIC machines we also need
** to adjust the encoding. Only alphabetic characters and underscores
** need to be translated.
*/
#ifdef SQLITE_ASCII
# define charMap(X) sqlite3UpperToLower[(unsigned char)X]
#endif
#ifdef SQLITE_EBCDIC
# define charMap(X) ebcdicToAscii[(unsigned char)X]
const unsigned char ebcdicToAscii[] = {
/* 0 1 2 3 4 5 6 7 8 9 A B C D E F */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 3x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 4x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 5x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 95, 0, 0, /* 6x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 7x */
0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* 8x */
0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* 9x */
0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ax */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */
0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* Cx */
0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* Dx */
0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ex */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Fx */
};
#endif
/*
** The sqlite3KeywordCode function looks up an identifier to determine if
** it is a keyword. If it is a keyword, the token code of that keyword is
** returned. If the input is not a keyword, TK_ID is returned.
**
** The implementation of this routine was generated by a program,
** mkkeywordhash.h, located in the tool subdirectory of the distribution.
** The output of the mkkeywordhash.c program is written into a file
** named keywordhash.h and then included into this source file by
** the #include below.
*/
#include "keywordhash.h"
/*
** If X is a character that can be used in an identifier then
** IdChar(X) will be true. Otherwise it is false.
**
** For ASCII, any character with the high-order bit set is
** allowed in an identifier. For 7-bit characters,
** sqlite3IsIdChar[X] must be 1.
**
** For EBCDIC, the rules are more complex but have the same
** end result.
**
** Ticket #1066. the SQL standard does not allow '$' in the
** middle of identfiers. But many SQL implementations do.
** SQLite will allow '$' in identifiers for compatibility.
** But the feature is undocumented.
*/
#ifdef SQLITE_ASCII
#define IdChar(C) ((sqlite3CtypeMap[(unsigned char)C]&0x46)!=0)
#endif
#ifdef SQLITE_EBCDIC
const char sqlite3IsEbcdicIdChar[] = {
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 4x */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, /* 5x */
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, /* 6x */
0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, /* 7x */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, /* 8x */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, /* 9x */
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, /* Ax */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Cx */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Dx */
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Ex */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, /* Fx */
};
#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
#endif
/*
** Return the length of the token that begins at z[0].
** Store the token type in *tokenType before returning.
*/
int sqlite3GetToken(const unsigned char *z, int *tokenType){
int i, c;
switch( *z ){
case ' ': case '\t': case '\n': case '\f': case '\r': {
testcase( z[0]==' ' );
testcase( z[0]=='\t' );
testcase( z[0]=='\n' );
testcase( z[0]=='\f' );
testcase( z[0]=='\r' );
for(i=1; sqlite3Isspace(z[i]); i++){}
*tokenType = TK_SPACE;
return i;
}
case '-': {
if( z[1]=='-' ){
for(i=2; (c=z[i])!=0 && c!='\n'; i++){}
*tokenType = TK_SPACE; /* IMP: R-22934-25134 */
return i;
}
*tokenType = TK_MINUS;
return 1;
}
case '(': {
*tokenType = TK_LP;
return 1;
}
case ')': {
*tokenType = TK_RP;
return 1;
}
case ';': {
*tokenType = TK_SEMI;
return 1;
}
case '+': {
*tokenType = TK_PLUS;
return 1;
}
case '*': {
*tokenType = TK_STAR;
return 1;
}
case '/': {
if( z[1]!='*' || z[2]==0 ){
*tokenType = TK_SLASH;
return 1;
}
for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){}
if( c ) i++;
*tokenType = TK_SPACE; /* IMP: R-22934-25134 */
return i;
}
case '%': {
*tokenType = TK_REM;
return 1;
}
case '=': {
*tokenType = TK_EQ;
return 1 + (z[1]=='=');
}
case '<': {
if( (c=z[1])=='=' ){
*tokenType = TK_LE;
return 2;
}else if( c=='>' ){
*tokenType = TK_NE;
return 2;
}else if( c=='<' ){
*tokenType = TK_LSHIFT;
return 2;
}else{
*tokenType = TK_LT;
return 1;
}
}
case '>': {
if( (c=z[1])=='=' ){
*tokenType = TK_GE;
return 2;
}else if( c=='>' ){
*tokenType = TK_RSHIFT;
return 2;
}else{
*tokenType = TK_GT;
return 1;
}
}
case '!': {
if( z[1]!='=' ){
*tokenType = TK_ILLEGAL;
return 2;
}else{
*tokenType = TK_NE;
return 2;
}
}
case '|': {
if( z[1]!='|' ){
*tokenType = TK_BITOR;
return 1;
}else{
*tokenType = TK_CONCAT;
return 2;
}
}
case ',': {
*tokenType = TK_COMMA;
return 1;
}
case '&': {
*tokenType = TK_BITAND;
return 1;
}
case '~': {
*tokenType = TK_BITNOT;
return 1;
}
case '`':
case '\'':
case '"': {
int delim = z[0];
testcase( delim=='`' );
testcase( delim=='\'' );
testcase( delim=='"' );
for(i=1; (c=z[i])!=0; i++){
if( c==delim ){
if( z[i+1]==delim ){
i++;
}else{
break;
}
}
}
if( c=='\'' ){
*tokenType = TK_STRING;
return i+1;
}else if( c!=0 ){
*tokenType = TK_ID;
return i+1;
}else{
*tokenType = TK_ILLEGAL;
return i;
}
}
case '.': {
#ifndef SQLITE_OMIT_FLOATING_POINT
if( !sqlite3Isdigit(z[1]) )
#endif
{
*tokenType = TK_DOT;
return 1;
}
/* If the next character is a digit, this is a floating point
** number that begins with ".". Fall thru into the next case */
}
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9': {
testcase( z[0]=='0' ); testcase( z[0]=='1' ); testcase( z[0]=='2' );
testcase( z[0]=='3' ); testcase( z[0]=='4' ); testcase( z[0]=='5' );
testcase( z[0]=='6' ); testcase( z[0]=='7' ); testcase( z[0]=='8' );
testcase( z[0]=='9' );
*tokenType = TK_INTEGER;
for(i=0; sqlite3Isdigit(z[i]); i++){}
#ifndef SQLITE_OMIT_FLOATING_POINT
if( z[i]=='.' ){
i++;
while( sqlite3Isdigit(z[i]) ){ i++; }
*tokenType = TK_FLOAT;
}
if( (z[i]=='e' || z[i]=='E') &&
( sqlite3Isdigit(z[i+1])
|| ((z[i+1]=='+' || z[i+1]=='-') && sqlite3Isdigit(z[i+2]))
)
){
i += 2;
while( sqlite3Isdigit(z[i]) ){ i++; }
*tokenType = TK_FLOAT;
}
#endif
while( IdChar(z[i]) ){
*tokenType = TK_ILLEGAL;
i++;
}
return i;
}
case '[': {
for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
*tokenType = c==']' ? TK_ID : TK_ILLEGAL;
return i;
}
case '?': {
*tokenType = TK_VARIABLE;
for(i=1; sqlite3Isdigit(z[i]); i++){}
return i;
}
case '#': {
for(i=1; sqlite3Isdigit(z[i]); i++){}
if( i>1 ){
/* Parameters of the form #NNN (where NNN is a number) are used
** internally by sqlite3NestedParse. */
*tokenType = TK_REGISTER;
return i;
}
/* Fall through into the next case if the '#' is not followed by
** a digit. Try to match #AAAA where AAAA is a parameter name. */
}
#ifndef SQLITE_OMIT_TCL_VARIABLE
case '$':
#endif
case '@': /* For compatibility with MS SQL Server */
case ':': {
int n = 0;
testcase( z[0]=='$' ); testcase( z[0]=='@' ); testcase( z[0]==':' );
*tokenType = TK_VARIABLE;
for(i=1; (c=z[i])!=0; i++){
if( IdChar(c) ){
n++;
#ifndef SQLITE_OMIT_TCL_VARIABLE
}else if( c=='(' && n>0 ){
do{
i++;
}while( (c=z[i])!=0 && !sqlite3Isspace(c) && c!=')' );
if( c==')' ){
i++;
}else{
*tokenType = TK_ILLEGAL;
}
break;
}else if( c==':' && z[i+1]==':' ){
i++;
#endif
}else{
break;
}
}
if( n==0 ) *tokenType = TK_ILLEGAL;
return i;
}
#ifndef SQLITE_OMIT_BLOB_LITERAL
case 'x': case 'X': {
testcase( z[0]=='x' ); testcase( z[0]=='X' );
if( z[1]=='\'' ){
*tokenType = TK_BLOB;
for(i=2; sqlite3Isxdigit(z[i]); i++){}
if( z[i]!='\'' || i%2 ){
*tokenType = TK_ILLEGAL;
while( z[i] && z[i]!='\'' ){ i++; }
}
if( z[i] ) i++;
return i;
}
/* Otherwise fall through to the next case */
}
#endif
default: {
if( !IdChar(*z) ){
break;
}
for(i=1; IdChar(z[i]); i++){}
*tokenType = keywordCode((char*)z, i);
return i;
}
}
*tokenType = TK_ILLEGAL;
return 1;
}
/*
** Run the parser on the given SQL string. The parser structure is
** passed in. An SQLITE_ status code is returned. If an error occurs
** then an and attempt is made to write an error message into
** memory obtained from sqlite3_malloc() and to make *pzErrMsg point to that
** error message.
*/
int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
int nErr = 0; /* Number of errors encountered */
int i; /* Loop counter */
void *pEngine; /* The LEMON-generated LALR(1) parser */
int tokenType; /* type of the next token */
int lastTokenParsed = -1; /* type of the previous token */
u8 enableLookaside; /* Saved value of db->lookaside.bEnabled */
sqlite3 *db = pParse->db; /* The database connection */
int mxSqlLen; /* Max length of an SQL string */
mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
if( db->nVdbeActive==0 ){
db->u1.isInterrupted = 0;
}
pParse->rc = SQLITE_OK;
pParse->zTail = zSql;
i = 0;
assert( pzErrMsg!=0 );
pEngine = sqlite3ParserAlloc((void*(*)(size_t))sqlite3Malloc);
if( pEngine==0 ){
db->mallocFailed = 1;
return SQLITE_NOMEM;
}
assert( pParse->pNewTable==0 );
assert( pParse->pNewTrigger==0 );
assert( pParse->nVar==0 );
assert( pParse->nzVar==0 );
assert( pParse->azVar==0 );
enableLookaside = db->lookaside.bEnabled;
if( db->lookaside.pStart ) db->lookaside.bEnabled = 1;
while( !db->mallocFailed && zSql[i]!=0 ){
assert( i>=0 );
pParse->sLastToken.z = &zSql[i];
pParse->sLastToken.n = sqlite3GetToken((unsigned char*)&zSql[i],&tokenType);
i += pParse->sLastToken.n;
if( i>mxSqlLen ){
pParse->rc = SQLITE_TOOBIG;
break;
}
switch( tokenType ){
case TK_SPACE: {
if( db->u1.isInterrupted ){
sqlite3ErrorMsg(pParse, "interrupt");
pParse->rc = SQLITE_INTERRUPT;
goto abort_parse;
}
break;
}
case TK_ILLEGAL: {
sqlite3DbFree(db, *pzErrMsg);
*pzErrMsg = sqlite3MPrintf(db, "unrecognized token: \"%T\"",
&pParse->sLastToken);
nErr++;
goto abort_parse;
}
case TK_SEMI: {
pParse->zTail = &zSql[i];
/* Fall thru into the default case */
}
default: {
sqlite3Parser(pEngine, tokenType, pParse->sLastToken, pParse);
lastTokenParsed = tokenType;
if( pParse->rc!=SQLITE_OK ){
goto abort_parse;
}
break;
}
}
}
abort_parse:
if( zSql[i]==0 && nErr==0 && pParse->rc==SQLITE_OK ){
if( lastTokenParsed!=TK_SEMI ){
sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
pParse->zTail = &zSql[i];
}
sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
}
#ifdef YYTRACKMAXSTACKDEPTH
sqlite3StatusSet(SQLITE_STATUS_PARSER_STACK,
sqlite3ParserStackPeak(pEngine)
);
#endif /* YYDEBUG */
sqlite3ParserFree(pEngine, sqlite3_free);
db->lookaside.bEnabled = enableLookaside;
if( db->mallocFailed ){
pParse->rc = SQLITE_NOMEM;
}
if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
sqlite3SetString(&pParse->zErrMsg, db, "%s", sqlite3ErrStr(pParse->rc));
}
assert( pzErrMsg!=0 );
if( pParse->zErrMsg ){
*pzErrMsg = pParse->zErrMsg;
sqlite3_log(pParse->rc, "%s", *pzErrMsg);
pParse->zErrMsg = 0;
nErr++;
}
if( pParse->pVdbe && pParse->nErr>0 && pParse->nested==0 ){
sqlite3VdbeDelete(pParse->pVdbe);
pParse->pVdbe = 0;
}
#ifndef SQLITE_OMIT_SHARED_CACHE
if( pParse->nested==0 ){
sqlite3DbFree(db, pParse->aTableLock);
pParse->aTableLock = 0;
pParse->nTableLock = 0;
}
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
sqlite3_free(pParse->apVtabLock);
#endif
if( !IN_DECLARE_VTAB ){
/* If the pParse->declareVtab flag is set, do not delete any table
** structure built up in pParse->pNewTable. The calling code (see vtab.c)
** will take responsibility for freeing the Table structure.
*/
sqlite3DeleteTable(db, pParse->pNewTable);
}
sqlite3DeleteTrigger(db, pParse->pNewTrigger);
for(i=pParse->nzVar-1; i>=0; i--) sqlite3DbFree(db, pParse->azVar[i]);
sqlite3DbFree(db, pParse->azVar);
sqlite3DbFree(db, pParse->aAlias);
while( pParse->pAinc ){
AutoincInfo *p = pParse->pAinc;
pParse->pAinc = p->pNext;
sqlite3DbFree(db, p);
}
while( pParse->pZombieTab ){
Table *p = pParse->pZombieTab;
pParse->pZombieTab = p->pNextZombie;
sqlite3DeleteTable(db, p);
}
if( nErr>0 && pParse->rc==SQLITE_OK ){
pParse->rc = SQLITE_ERROR;
}
return nErr;
}