mirror of
https://github.com/RT-Thread/rt-thread.git
synced 2025-01-15 18:19:22 +08:00
93e50cd8aa
git-svn-id: https://rt-thread.googlecode.com/svn/trunk@1594 bbd45198-f89e-11dd-88c7-29a3b14d5316
1146 lines
39 KiB
C
1146 lines
39 KiB
C
/* This header file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
|
|
|
|
/*This file is prepared for Doxygen automatic documentation generation.*/
|
|
/*! \file *********************************************************************
|
|
*
|
|
* \brief Compiler file for AVR32.
|
|
*
|
|
* This file defines commonly used types and macros.
|
|
*
|
|
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
|
|
* - Supported devices: All AVR32 devices can be used.
|
|
* - AppNote:
|
|
*
|
|
* \author Atmel Corporation: http://www.atmel.com \n
|
|
* Support and FAQ: http://support.atmel.no/
|
|
*
|
|
******************************************************************************/
|
|
|
|
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. The name of Atmel may not be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* 4. This software may only be redistributed and used in connection with an Atmel
|
|
* AVR product.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
|
|
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
|
|
*
|
|
*/
|
|
|
|
#ifndef _COMPILER_H_
|
|
#define _COMPILER_H_
|
|
|
|
#if ((defined __GNUC__) && (defined __AVR32__)) || (defined __ICCAVR32__ || defined __AAVR32__)
|
|
# include <avr32/io.h>
|
|
#endif
|
|
#if (defined __ICCAVR32__)
|
|
# include <intrinsics.h>
|
|
#endif
|
|
#include "preprocessor.h"
|
|
|
|
#include "parts.h"
|
|
|
|
|
|
//_____ D E C L A R A T I O N S ____________________________________________
|
|
|
|
#ifdef __AVR32_ABI_COMPILER__ // Automatically defined when compiling for AVR32, not when assembling.
|
|
|
|
#include <stddef.h>
|
|
#include <stdlib.h>
|
|
|
|
|
|
#if (defined __ICCAVR32__)
|
|
|
|
/*! \name Compiler Keywords
|
|
*
|
|
* Port of some keywords from GNU GCC for AVR32 to IAR Embedded Workbench for Atmel AVR32.
|
|
*/
|
|
//! @{
|
|
#define __asm__ asm
|
|
#define __inline__ inline
|
|
#define __volatile__
|
|
//! @}
|
|
|
|
#endif
|
|
|
|
|
|
/*! \name Usual Types
|
|
*/
|
|
//! @{
|
|
typedef unsigned char Bool; //!< Boolean.
|
|
#ifndef __cplusplus
|
|
#if !defined(__bool_true_false_are_defined)
|
|
typedef unsigned char bool; //!< Boolean.
|
|
#endif
|
|
#endif
|
|
typedef signed char S8 ; //!< 8-bit signed integer.
|
|
typedef unsigned char U8 ; //!< 8-bit unsigned integer.
|
|
typedef signed short int S16; //!< 16-bit signed integer.
|
|
typedef unsigned short int U16; //!< 16-bit unsigned integer.
|
|
typedef signed long int S32; //!< 32-bit signed integer.
|
|
typedef unsigned long int U32; //!< 32-bit unsigned integer.
|
|
typedef signed long long int S64; //!< 64-bit signed integer.
|
|
typedef unsigned long long int U64; //!< 64-bit unsigned integer.
|
|
typedef float F32; //!< 32-bit floating-point number.
|
|
typedef double F64; //!< 64-bit floating-point number.
|
|
//! @}
|
|
|
|
|
|
/*! \name Status Types
|
|
*/
|
|
//! @{
|
|
typedef Bool Status_bool_t; //!< Boolean status.
|
|
typedef U8 Status_t; //!< 8-bit-coded status.
|
|
//! @}
|
|
|
|
|
|
/*! \name Aliasing Aggregate Types
|
|
*/
|
|
//! @{
|
|
|
|
//! 16-bit union.
|
|
typedef union
|
|
{
|
|
S16 s16 ;
|
|
U16 u16 ;
|
|
S8 s8 [2];
|
|
U8 u8 [2];
|
|
} Union16;
|
|
|
|
//! 32-bit union.
|
|
typedef union
|
|
{
|
|
S32 s32 ;
|
|
U32 u32 ;
|
|
S16 s16[2];
|
|
U16 u16[2];
|
|
S8 s8 [4];
|
|
U8 u8 [4];
|
|
} Union32;
|
|
|
|
//! 64-bit union.
|
|
typedef union
|
|
{
|
|
S64 s64 ;
|
|
U64 u64 ;
|
|
S32 s32[2];
|
|
U32 u32[2];
|
|
S16 s16[4];
|
|
U16 u16[4];
|
|
S8 s8 [8];
|
|
U8 u8 [8];
|
|
} Union64;
|
|
|
|
//! Union of pointers to 64-, 32-, 16- and 8-bit unsigned integers.
|
|
typedef union
|
|
{
|
|
S64 *s64ptr;
|
|
U64 *u64ptr;
|
|
S32 *s32ptr;
|
|
U32 *u32ptr;
|
|
S16 *s16ptr;
|
|
U16 *u16ptr;
|
|
S8 *s8ptr ;
|
|
U8 *u8ptr ;
|
|
} UnionPtr;
|
|
|
|
//! Union of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers.
|
|
typedef union
|
|
{
|
|
volatile S64 *s64ptr;
|
|
volatile U64 *u64ptr;
|
|
volatile S32 *s32ptr;
|
|
volatile U32 *u32ptr;
|
|
volatile S16 *s16ptr;
|
|
volatile U16 *u16ptr;
|
|
volatile S8 *s8ptr ;
|
|
volatile U8 *u8ptr ;
|
|
} UnionVPtr;
|
|
|
|
//! Union of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers.
|
|
typedef union
|
|
{
|
|
const S64 *s64ptr;
|
|
const U64 *u64ptr;
|
|
const S32 *s32ptr;
|
|
const U32 *u32ptr;
|
|
const S16 *s16ptr;
|
|
const U16 *u16ptr;
|
|
const S8 *s8ptr ;
|
|
const U8 *u8ptr ;
|
|
} UnionCPtr;
|
|
|
|
//! Union of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers.
|
|
typedef union
|
|
{
|
|
const volatile S64 *s64ptr;
|
|
const volatile U64 *u64ptr;
|
|
const volatile S32 *s32ptr;
|
|
const volatile U32 *u32ptr;
|
|
const volatile S16 *s16ptr;
|
|
const volatile U16 *u16ptr;
|
|
const volatile S8 *s8ptr ;
|
|
const volatile U8 *u8ptr ;
|
|
} UnionCVPtr;
|
|
|
|
//! Structure of pointers to 64-, 32-, 16- and 8-bit unsigned integers.
|
|
typedef struct
|
|
{
|
|
S64 *s64ptr;
|
|
U64 *u64ptr;
|
|
S32 *s32ptr;
|
|
U32 *u32ptr;
|
|
S16 *s16ptr;
|
|
U16 *u16ptr;
|
|
S8 *s8ptr ;
|
|
U8 *u8ptr ;
|
|
} StructPtr;
|
|
|
|
//! Structure of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers.
|
|
typedef struct
|
|
{
|
|
volatile S64 *s64ptr;
|
|
volatile U64 *u64ptr;
|
|
volatile S32 *s32ptr;
|
|
volatile U32 *u32ptr;
|
|
volatile S16 *s16ptr;
|
|
volatile U16 *u16ptr;
|
|
volatile S8 *s8ptr ;
|
|
volatile U8 *u8ptr ;
|
|
} StructVPtr;
|
|
|
|
//! Structure of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers.
|
|
typedef struct
|
|
{
|
|
const S64 *s64ptr;
|
|
const U64 *u64ptr;
|
|
const S32 *s32ptr;
|
|
const U32 *u32ptr;
|
|
const S16 *s16ptr;
|
|
const U16 *u16ptr;
|
|
const S8 *s8ptr ;
|
|
const U8 *u8ptr ;
|
|
} StructCPtr;
|
|
|
|
//! Structure of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers.
|
|
typedef struct
|
|
{
|
|
const volatile S64 *s64ptr;
|
|
const volatile U64 *u64ptr;
|
|
const volatile S32 *s32ptr;
|
|
const volatile U32 *u32ptr;
|
|
const volatile S16 *s16ptr;
|
|
const volatile U16 *u16ptr;
|
|
const volatile S8 *s8ptr ;
|
|
const volatile U8 *u8ptr ;
|
|
} StructCVPtr;
|
|
|
|
//! @}
|
|
|
|
#endif // __AVR32_ABI_COMPILER__
|
|
|
|
|
|
//_____ M A C R O S ________________________________________________________
|
|
|
|
/*! \name Usual Constants
|
|
*/
|
|
//! @{
|
|
#define DISABLE 0
|
|
#define ENABLE 1
|
|
#define DISABLED 0
|
|
#define ENABLED 1
|
|
#define OFF 0
|
|
#define ON 1
|
|
#define FALSE 0
|
|
#define TRUE 1
|
|
#ifndef __cplusplus
|
|
#if !defined(__bool_true_false_are_defined)
|
|
#define false FALSE
|
|
#define true TRUE
|
|
#endif
|
|
#endif
|
|
#define KO 0
|
|
#define OK 1
|
|
#define PASS 0
|
|
#define FAIL 1
|
|
#define LOW 0
|
|
#define HIGH 1
|
|
#define CLR 0
|
|
#define SET 1
|
|
//! @}
|
|
|
|
|
|
#ifdef __AVR32_ABI_COMPILER__ // Automatically defined when compiling for AVR32, not when assembling.
|
|
|
|
/*! \name Bit-Field Handling
|
|
*/
|
|
//! @{
|
|
|
|
/*! \brief Reads the bits of a value specified by a given bit-mask.
|
|
*
|
|
* \param value Value to read bits from.
|
|
* \param mask Bit-mask indicating bits to read.
|
|
*
|
|
* \return Read bits.
|
|
*/
|
|
#define Rd_bits( value, mask) ((value) & (mask))
|
|
|
|
/*! \brief Writes the bits of a C lvalue specified by a given bit-mask.
|
|
*
|
|
* \param lvalue C lvalue to write bits to.
|
|
* \param mask Bit-mask indicating bits to write.
|
|
* \param bits Bits to write.
|
|
*
|
|
* \return Resulting value with written bits.
|
|
*/
|
|
#define Wr_bits(lvalue, mask, bits) ((lvalue) = ((lvalue) & ~(mask)) |\
|
|
((bits ) & (mask)))
|
|
|
|
/*! \brief Tests the bits of a value specified by a given bit-mask.
|
|
*
|
|
* \param value Value of which to test bits.
|
|
* \param mask Bit-mask indicating bits to test.
|
|
*
|
|
* \return \c 1 if at least one of the tested bits is set, else \c 0.
|
|
*/
|
|
#define Tst_bits( value, mask) (Rd_bits(value, mask) != 0)
|
|
|
|
/*! \brief Clears the bits of a C lvalue specified by a given bit-mask.
|
|
*
|
|
* \param lvalue C lvalue of which to clear bits.
|
|
* \param mask Bit-mask indicating bits to clear.
|
|
*
|
|
* \return Resulting value with cleared bits.
|
|
*/
|
|
#define Clr_bits(lvalue, mask) ((lvalue) &= ~(mask))
|
|
|
|
/*! \brief Sets the bits of a C lvalue specified by a given bit-mask.
|
|
*
|
|
* \param lvalue C lvalue of which to set bits.
|
|
* \param mask Bit-mask indicating bits to set.
|
|
*
|
|
* \return Resulting value with set bits.
|
|
*/
|
|
#define Set_bits(lvalue, mask) ((lvalue) |= (mask))
|
|
|
|
/*! \brief Toggles the bits of a C lvalue specified by a given bit-mask.
|
|
*
|
|
* \param lvalue C lvalue of which to toggle bits.
|
|
* \param mask Bit-mask indicating bits to toggle.
|
|
*
|
|
* \return Resulting value with toggled bits.
|
|
*/
|
|
#define Tgl_bits(lvalue, mask) ((lvalue) ^= (mask))
|
|
|
|
/*! \brief Reads the bit-field of a value specified by a given bit-mask.
|
|
*
|
|
* \param value Value to read a bit-field from.
|
|
* \param mask Bit-mask indicating the bit-field to read.
|
|
*
|
|
* \return Read bit-field.
|
|
*/
|
|
#define Rd_bitfield( value, mask) (Rd_bits( value, mask) >> ctz(mask))
|
|
|
|
/*! \brief Writes the bit-field of a C lvalue specified by a given bit-mask.
|
|
*
|
|
* \param lvalue C lvalue to write a bit-field to.
|
|
* \param mask Bit-mask indicating the bit-field to write.
|
|
* \param bitfield Bit-field to write.
|
|
*
|
|
* \return Resulting value with written bit-field.
|
|
*/
|
|
#define Wr_bitfield(lvalue, mask, bitfield) (Wr_bits(lvalue, mask, (U32)(bitfield) << ctz(mask)))
|
|
|
|
//! @}
|
|
|
|
|
|
/*! \brief This macro is used to test fatal errors.
|
|
*
|
|
* The macro tests if the expression is FALSE. If it is, a fatal error is
|
|
* detected and the application hangs up.
|
|
*
|
|
* \param expr Expression to evaluate and supposed to be nonzero.
|
|
*/
|
|
#ifdef _ASSERT_ENABLE_
|
|
#define Assert(expr) \
|
|
{\
|
|
if (!(expr)) while (TRUE);\
|
|
}
|
|
#else
|
|
#define Assert(expr)
|
|
#endif
|
|
|
|
|
|
/*! \name Zero-Bit Counting
|
|
*
|
|
* Under AVR32-GCC, __builtin_clz and __builtin_ctz behave like macros when
|
|
* applied to constant expressions (values known at compile time), so they are
|
|
* more optimized than the use of the corresponding assembly instructions and
|
|
* they can be used as constant expressions e.g. to initialize objects having
|
|
* static storage duration, and like the corresponding assembly instructions
|
|
* when applied to non-constant expressions (values unknown at compile time), so
|
|
* they are more optimized than an assembly periphrasis. Hence, clz and ctz
|
|
* ensure a possible and optimized behavior for both constant and non-constant
|
|
* expressions.
|
|
*/
|
|
//! @{
|
|
|
|
/*! \brief Counts the leading zero bits of the given value considered as a 32-bit integer.
|
|
*
|
|
* \param u Value of which to count the leading zero bits.
|
|
*
|
|
* \return The count of leading zero bits in \a u.
|
|
*/
|
|
#if (defined __GNUC__)
|
|
#define clz(u) __builtin_clz(u)
|
|
#elif (defined __ICCAVR32__)
|
|
#define clz(u) __count_leading_zeros(u)
|
|
#endif
|
|
|
|
/*! \brief Counts the trailing zero bits of the given value considered as a 32-bit integer.
|
|
*
|
|
* \param u Value of which to count the trailing zero bits.
|
|
*
|
|
* \return The count of trailing zero bits in \a u.
|
|
*/
|
|
#if (defined __GNUC__)
|
|
#define ctz(u) __builtin_ctz(u)
|
|
#elif (defined __ICCAVR32__)
|
|
#define ctz(u) __count_trailing_zeros(u)
|
|
#endif
|
|
|
|
//! @}
|
|
|
|
|
|
/*! \name Bit Reversing
|
|
*/
|
|
//! @{
|
|
|
|
/*! \brief Reverses the bits of \a u8.
|
|
*
|
|
* \param u8 U8 of which to reverse the bits.
|
|
*
|
|
* \return Value resulting from \a u8 with reversed bits.
|
|
*/
|
|
#define bit_reverse8(u8) ((U8)(bit_reverse32((U8)(u8)) >> 24))
|
|
|
|
/*! \brief Reverses the bits of \a u16.
|
|
*
|
|
* \param u16 U16 of which to reverse the bits.
|
|
*
|
|
* \return Value resulting from \a u16 with reversed bits.
|
|
*/
|
|
#define bit_reverse16(u16) ((U16)(bit_reverse32((U16)(u16)) >> 16))
|
|
|
|
/*! \brief Reverses the bits of \a u32.
|
|
*
|
|
* \param u32 U32 of which to reverse the bits.
|
|
*
|
|
* \return Value resulting from \a u32 with reversed bits.
|
|
*/
|
|
#if (defined __GNUC__)
|
|
#define bit_reverse32(u32) \
|
|
(\
|
|
{\
|
|
unsigned int __value = (U32)(u32);\
|
|
__asm__ ("brev\t%0" : "+r" (__value) : : "cc");\
|
|
(U32)__value;\
|
|
}\
|
|
)
|
|
#elif (defined __ICCAVR32__)
|
|
#define bit_reverse32(u32) ((U32)__bit_reverse((U32)(u32)))
|
|
#endif
|
|
|
|
/*! \brief Reverses the bits of \a u64.
|
|
*
|
|
* \param u64 U64 of which to reverse the bits.
|
|
*
|
|
* \return Value resulting from \a u64 with reversed bits.
|
|
*/
|
|
#define bit_reverse64(u64) ((U64)(((U64)bit_reverse32((U64)(u64) >> 32)) |\
|
|
((U64)bit_reverse32((U64)(u64)) << 32)))
|
|
|
|
//! @}
|
|
|
|
|
|
/*! \name Alignment
|
|
*/
|
|
//! @{
|
|
|
|
/*! \brief Tests alignment of the number \a val with the \a n boundary.
|
|
*
|
|
* \param val Input value.
|
|
* \param n Boundary.
|
|
*
|
|
* \return \c 1 if the number \a val is aligned with the \a n boundary, else \c 0.
|
|
*/
|
|
#define Test_align(val, n ) (!Tst_bits( val, (n) - 1 ) )
|
|
|
|
/*! \brief Gets alignment of the number \a val with respect to the \a n boundary.
|
|
*
|
|
* \param val Input value.
|
|
* \param n Boundary.
|
|
*
|
|
* \return Alignment of the number \a val with respect to the \a n boundary.
|
|
*/
|
|
#define Get_align( val, n ) ( Rd_bits( val, (n) - 1 ) )
|
|
|
|
/*! \brief Sets alignment of the lvalue number \a lval to \a alg with respect to the \a n boundary.
|
|
*
|
|
* \param lval Input/output lvalue.
|
|
* \param n Boundary.
|
|
* \param alg Alignment.
|
|
*
|
|
* \return New value of \a lval resulting from its alignment set to \a alg with respect to the \a n boundary.
|
|
*/
|
|
#define Set_align(lval, n, alg) ( Wr_bits(lval, (n) - 1, alg) )
|
|
|
|
/*! \brief Aligns the number \a val with the upper \a n boundary.
|
|
*
|
|
* \param val Input value.
|
|
* \param n Boundary.
|
|
*
|
|
* \return Value resulting from the number \a val aligned with the upper \a n boundary.
|
|
*/
|
|
#define Align_up( val, n ) (((val) + ((n) - 1)) & ~((n) - 1))
|
|
|
|
/*! \brief Aligns the number \a val with the lower \a n boundary.
|
|
*
|
|
* \param val Input value.
|
|
* \param n Boundary.
|
|
*
|
|
* \return Value resulting from the number \a val aligned with the lower \a n boundary.
|
|
*/
|
|
#define Align_down(val, n ) ( (val) & ~((n) - 1))
|
|
|
|
//! @}
|
|
|
|
|
|
/*! \name Mathematics
|
|
*
|
|
* The same considerations as for clz and ctz apply here but AVR32-GCC does not
|
|
* provide built-in functions to access the assembly instructions abs, min and
|
|
* max and it does not produce them by itself in most cases, so two sets of
|
|
* macros are defined here:
|
|
* - Abs, Min and Max to apply to constant expressions (values known at
|
|
* compile time);
|
|
* - abs, min and max to apply to non-constant expressions (values unknown at
|
|
* compile time).
|
|
*/
|
|
//! @{
|
|
|
|
/*! \brief Takes the absolute value of \a a.
|
|
*
|
|
* \param a Input value.
|
|
*
|
|
* \return Absolute value of \a a.
|
|
*
|
|
* \note More optimized if only used with values known at compile time.
|
|
*/
|
|
#define Abs(a) (((a) < 0 ) ? -(a) : (a))
|
|
|
|
/*! \brief Takes the minimal value of \a a and \a b.
|
|
*
|
|
* \param a Input value.
|
|
* \param b Input value.
|
|
*
|
|
* \return Minimal value of \a a and \a b.
|
|
*
|
|
* \note More optimized if only used with values known at compile time.
|
|
*/
|
|
#define Min(a, b) (((a) < (b)) ? (a) : (b))
|
|
|
|
/*! \brief Takes the maximal value of \a a and \a b.
|
|
*
|
|
* \param a Input value.
|
|
* \param b Input value.
|
|
*
|
|
* \return Maximal value of \a a and \a b.
|
|
*
|
|
* \note More optimized if only used with values known at compile time.
|
|
*/
|
|
#define Max(a, b) (((a) > (b)) ? (a) : (b))
|
|
|
|
/*! \brief Takes the absolute value of \a a.
|
|
*
|
|
* \param a Input value.
|
|
*
|
|
* \return Absolute value of \a a.
|
|
*
|
|
* \note More optimized if only used with values unknown at compile time.
|
|
*/
|
|
#if (defined __GNUC__)
|
|
#define abs(a) \
|
|
(\
|
|
{\
|
|
int __value = (a);\
|
|
__asm__ ("abs\t%0" : "+r" (__value) : : "cc");\
|
|
__value;\
|
|
}\
|
|
)
|
|
#elif (defined __ICCAVR32__)
|
|
#define abs(a) Abs(a)
|
|
#endif
|
|
|
|
/*! \brief Takes the minimal value of \a a and \a b.
|
|
*
|
|
* \param a Input value.
|
|
* \param b Input value.
|
|
*
|
|
* \return Minimal value of \a a and \a b.
|
|
*
|
|
* \note More optimized if only used with values unknown at compile time.
|
|
*/
|
|
#if (defined __GNUC__)
|
|
#define min(a, b) \
|
|
(\
|
|
{\
|
|
int __value, __arg_a = (a), __arg_b = (b);\
|
|
__asm__ ("min\t%0, %1, %2" : "=r" (__value) : "r" (__arg_a), "r" (__arg_b));\
|
|
__value;\
|
|
}\
|
|
)
|
|
#elif (defined __ICCAVR32__)
|
|
#define min(a, b) __min(a, b)
|
|
#endif
|
|
|
|
/*! \brief Takes the maximal value of \a a and \a b.
|
|
*
|
|
* \param a Input value.
|
|
* \param b Input value.
|
|
*
|
|
* \return Maximal value of \a a and \a b.
|
|
*
|
|
* \note More optimized if only used with values unknown at compile time.
|
|
*/
|
|
#if (defined __GNUC__)
|
|
#define max(a, b) \
|
|
(\
|
|
{\
|
|
int __value, __arg_a = (a), __arg_b = (b);\
|
|
__asm__ ("max\t%0, %1, %2" : "=r" (__value) : "r" (__arg_a), "r" (__arg_b));\
|
|
__value;\
|
|
}\
|
|
)
|
|
#elif (defined __ICCAVR32__)
|
|
#define max(a, b) __max(a, b)
|
|
#endif
|
|
|
|
//! @}
|
|
|
|
|
|
/*! \brief Calls the routine at address \a addr.
|
|
*
|
|
* It generates a long call opcode.
|
|
*
|
|
* For example, `Long_call(0x80000000)' generates a software reset on a UC3 if
|
|
* it is invoked from the CPU supervisor mode.
|
|
*
|
|
* \param addr Address of the routine to call.
|
|
*
|
|
* \note It may be used as a long jump opcode in some special cases.
|
|
*/
|
|
#define Long_call(addr) ((*(void (*)(void))(addr))())
|
|
|
|
/*! \brief Resets the CPU by software.
|
|
*
|
|
* \warning It shall not be called from the CPU application mode.
|
|
*/
|
|
#if (defined __GNUC__)
|
|
#define Reset_CPU() \
|
|
(\
|
|
{\
|
|
__asm__ __volatile__ (\
|
|
"lddpc r9, 3f\n\t"\
|
|
"mfsr r8, %[SR]\n\t"\
|
|
"bfextu r8, r8, %[SR_M_OFFSET], %[SR_M_SIZE]\n\t"\
|
|
"cp.w r8, 0b001\n\t"\
|
|
"breq 0f\n\t"\
|
|
"sub r8, pc, $ - 1f\n\t"\
|
|
"pushm r8-r9\n\t"\
|
|
"rete\n"\
|
|
"0:\n\t"\
|
|
"mtsr %[SR], r9\n"\
|
|
"1:\n\t"\
|
|
"mov r0, 0\n\t"\
|
|
"mov r1, 0\n\t"\
|
|
"mov r2, 0\n\t"\
|
|
"mov r3, 0\n\t"\
|
|
"mov r4, 0\n\t"\
|
|
"mov r5, 0\n\t"\
|
|
"mov r6, 0\n\t"\
|
|
"mov r7, 0\n\t"\
|
|
"mov r8, 0\n\t"\
|
|
"mov r9, 0\n\t"\
|
|
"mov r10, 0\n\t"\
|
|
"mov r11, 0\n\t"\
|
|
"mov r12, 0\n\t"\
|
|
"mov sp, 0\n\t"\
|
|
"stdsp sp[0], sp\n\t"\
|
|
"ldmts sp, sp\n\t"\
|
|
"mov lr, 0\n\t"\
|
|
"lddpc pc, 2f\n\t"\
|
|
".balign 4\n"\
|
|
"2:\n\t"\
|
|
".word _start\n"\
|
|
"3:\n\t"\
|
|
".word %[RESET_SR]"\
|
|
:\
|
|
: [SR] "i" (AVR32_SR),\
|
|
[SR_M_OFFSET] "i" (AVR32_SR_M_OFFSET),\
|
|
[SR_M_SIZE] "i" (AVR32_SR_M_SIZE),\
|
|
[RESET_SR] "i" (AVR32_SR_GM_MASK | AVR32_SR_EM_MASK | (AVR32_SR_M_SUP << AVR32_SR_M_OFFSET))\
|
|
);\
|
|
}\
|
|
)
|
|
#elif (defined __ICCAVR32__)
|
|
#define Reset_CPU() \
|
|
{\
|
|
extern void *volatile __program_start;\
|
|
__asm__ __volatile__ (\
|
|
"mov r7, LWRD(__program_start)\n\t"\
|
|
"orh r7, HWRD(__program_start)\n\t"\
|
|
"mov r9, LWRD("ASTRINGZ(AVR32_SR_GM_MASK | AVR32_SR_EM_MASK | (AVR32_SR_M_SUP << AVR32_SR_M_OFFSET))")\n\t"\
|
|
"orh r9, HWRD("ASTRINGZ(AVR32_SR_GM_MASK | AVR32_SR_EM_MASK | (AVR32_SR_M_SUP << AVR32_SR_M_OFFSET))")\n\t"\
|
|
"mfsr r8, "ASTRINGZ(AVR32_SR)"\n\t"\
|
|
"bfextu r8, r8, "ASTRINGZ(AVR32_SR_M_OFFSET)", "ASTRINGZ(AVR32_SR_M_SIZE)"\n\t"\
|
|
"cp.w r8, 001b\n\t"\
|
|
"breq $ + 10\n\t"\
|
|
"sub r8, pc, -12\n\t"\
|
|
"pushm r8-r9\n\t"\
|
|
"rete\n\t"\
|
|
"mtsr "ASTRINGZ(AVR32_SR)", r9\n\t"\
|
|
"mov r0, 0\n\t"\
|
|
"mov r1, 0\n\t"\
|
|
"mov r2, 0\n\t"\
|
|
"mov r3, 0\n\t"\
|
|
"mov r4, 0\n\t"\
|
|
"mov r5, 0\n\t"\
|
|
"mov r6, 0\n\t"\
|
|
"st.w r0[4], r7\n\t"\
|
|
"mov r7, 0\n\t"\
|
|
"mov r8, 0\n\t"\
|
|
"mov r9, 0\n\t"\
|
|
"mov r10, 0\n\t"\
|
|
"mov r11, 0\n\t"\
|
|
"mov r12, 0\n\t"\
|
|
"mov sp, 0\n\t"\
|
|
"stdsp sp[0], sp\n\t"\
|
|
"ldmts sp, sp\n\t"\
|
|
"mov lr, 0\n\t"\
|
|
"ld.w pc, lr[4]"\
|
|
);\
|
|
__program_start;\
|
|
}
|
|
#endif
|
|
|
|
|
|
/*! \name System Register Access
|
|
*/
|
|
//! @{
|
|
|
|
/*! \brief Gets the value of the \a sysreg system register.
|
|
*
|
|
* \param sysreg Address of the system register of which to get the value.
|
|
*
|
|
* \return Value of the \a sysreg system register.
|
|
*/
|
|
#if (defined __GNUC__)
|
|
#define Get_system_register(sysreg) __builtin_mfsr(sysreg)
|
|
#elif (defined __ICCAVR32__)
|
|
#define Get_system_register(sysreg) __get_system_register(sysreg)
|
|
#endif
|
|
|
|
/*! \brief Sets the value of the \a sysreg system register to \a value.
|
|
*
|
|
* \param sysreg Address of the system register of which to set the value.
|
|
* \param value Value to set the \a sysreg system register to.
|
|
*/
|
|
#if (defined __GNUC__)
|
|
#define Set_system_register(sysreg, value) __builtin_mtsr(sysreg, value)
|
|
#elif (defined __ICCAVR32__)
|
|
#define Set_system_register(sysreg, value) __set_system_register(sysreg, value)
|
|
#endif
|
|
|
|
//! @}
|
|
|
|
|
|
/*! \name CPU Status Register Access
|
|
*/
|
|
//! @{
|
|
|
|
/*! \brief Tells whether exceptions are globally enabled.
|
|
*
|
|
* \return \c 1 if exceptions are globally enabled, else \c 0.
|
|
*/
|
|
#define Is_global_exception_enabled() (!Tst_bits(Get_system_register(AVR32_SR), AVR32_SR_EM_MASK))
|
|
|
|
/*! \brief Disables exceptions globally.
|
|
*/
|
|
#if (defined __GNUC__)
|
|
#define Disable_global_exception() ({__asm__ __volatile__ ("ssrf\t%0" : : "i" (AVR32_SR_EM_OFFSET));})
|
|
#elif (defined __ICCAVR32__)
|
|
#define Disable_global_exception() (__set_status_flag(AVR32_SR_EM_OFFSET))
|
|
#endif
|
|
|
|
/*! \brief Enables exceptions globally.
|
|
*/
|
|
#if (defined __GNUC__)
|
|
#define Enable_global_exception() ({__asm__ __volatile__ ("csrf\t%0" : : "i" (AVR32_SR_EM_OFFSET));})
|
|
#elif (defined __ICCAVR32__)
|
|
#define Enable_global_exception() (__clear_status_flag(AVR32_SR_EM_OFFSET))
|
|
#endif
|
|
|
|
/*! \brief Tells whether interrupts are globally enabled.
|
|
*
|
|
* \return \c 1 if interrupts are globally enabled, else \c 0.
|
|
*/
|
|
#define Is_global_interrupt_enabled() (!Tst_bits(Get_system_register(AVR32_SR), AVR32_SR_GM_MASK))
|
|
|
|
/*! \brief Disables interrupts globally.
|
|
*/
|
|
#if (defined __GNUC__)
|
|
#define Disable_global_interrupt() ({__asm__ __volatile__ ("ssrf\t%0" : : "i" (AVR32_SR_GM_OFFSET));})
|
|
#elif (defined __ICCAVR32__)
|
|
#define Disable_global_interrupt() (__disable_interrupt())
|
|
#endif
|
|
|
|
/*! \brief Enables interrupts globally.
|
|
*/
|
|
#if (defined __GNUC__)
|
|
#define Enable_global_interrupt() ({__asm__ __volatile__ ("csrf\t%0" : : "i" (AVR32_SR_GM_OFFSET));})
|
|
#elif (defined __ICCAVR32__)
|
|
#define Enable_global_interrupt() (__enable_interrupt())
|
|
#endif
|
|
|
|
/*! \brief Tells whether interrupt level \a int_level is enabled.
|
|
*
|
|
* \param int_level Interrupt level (0 to 3).
|
|
*
|
|
* \return \c 1 if interrupt level \a int_level is enabled, else \c 0.
|
|
*/
|
|
#define Is_interrupt_level_enabled(int_level) (!Tst_bits(Get_system_register(AVR32_SR), TPASTE3(AVR32_SR_I, int_level, M_MASK)))
|
|
|
|
/*! \brief Disables interrupt level \a int_level.
|
|
*
|
|
* \param int_level Interrupt level to disable (0 to 3).
|
|
*/
|
|
#if (defined __GNUC__)
|
|
#define Disable_interrupt_level(int_level) ({__asm__ __volatile__ ("ssrf\t%0" : : "i" (TPASTE3(AVR32_SR_I, int_level, M_OFFSET)));})
|
|
#elif (defined __ICCAVR32__)
|
|
#define Disable_interrupt_level(int_level) (__set_status_flag(TPASTE3(AVR32_SR_I, int_level, M_OFFSET)))
|
|
#endif
|
|
|
|
/*! \brief Enables interrupt level \a int_level.
|
|
*
|
|
* \param int_level Interrupt level to enable (0 to 3).
|
|
*/
|
|
#if (defined __GNUC__)
|
|
#define Enable_interrupt_level(int_level) ({__asm__ __volatile__ ("csrf\t%0" : : "i" (TPASTE3(AVR32_SR_I, int_level, M_OFFSET)));})
|
|
#elif (defined __ICCAVR32__)
|
|
#define Enable_interrupt_level(int_level) (__clear_status_flag(TPASTE3(AVR32_SR_I, int_level, M_OFFSET)))
|
|
#endif
|
|
|
|
/*! \brief Protects subsequent code from interrupts.
|
|
*/
|
|
#define AVR32_ENTER_CRITICAL_REGION( ) \
|
|
{ \
|
|
Bool global_interrupt_enabled = Is_global_interrupt_enabled(); \
|
|
Disable_global_interrupt(); // Disable the appropriate interrupts.
|
|
|
|
/*! \brief This macro must always be used in conjunction with AVR32_ENTER_CRITICAL_REGION
|
|
* so that interrupts are enabled again.
|
|
*/
|
|
#define AVR32_LEAVE_CRITICAL_REGION( ) \
|
|
if (global_interrupt_enabled) Enable_global_interrupt(); \
|
|
}
|
|
|
|
//! @}
|
|
|
|
|
|
/*! \name Debug Register Access
|
|
*/
|
|
//! @{
|
|
|
|
/*! \brief Gets the value of the \a dbgreg debug register.
|
|
*
|
|
* \param dbgreg Address of the debug register of which to get the value.
|
|
*
|
|
* \return Value of the \a dbgreg debug register.
|
|
*/
|
|
#if (defined __GNUC__)
|
|
#define Get_debug_register(dbgreg) __builtin_mfdr(dbgreg)
|
|
#elif (defined __ICCAVR32__)
|
|
#define Get_debug_register(dbgreg) __get_debug_register(dbgreg)
|
|
#endif
|
|
|
|
/*! \brief Sets the value of the \a dbgreg debug register to \a value.
|
|
*
|
|
* \param dbgreg Address of the debug register of which to set the value.
|
|
* \param value Value to set the \a dbgreg debug register to.
|
|
*/
|
|
#if (defined __GNUC__)
|
|
#define Set_debug_register(dbgreg, value) __builtin_mtdr(dbgreg, value)
|
|
#elif (defined __ICCAVR32__)
|
|
#define Set_debug_register(dbgreg, value) __set_debug_register(dbgreg, value)
|
|
#endif
|
|
|
|
//! @}
|
|
|
|
#endif // __AVR32_ABI_COMPILER__
|
|
|
|
|
|
//! Boolean evaluating MCU little endianism.
|
|
#if ((defined __GNUC__) && (defined __AVR32__)) || ((defined __ICCAVR32__) || (defined __AAVR32__))
|
|
#define LITTLE_ENDIAN_MCU FALSE
|
|
#else
|
|
#error If you are here, you should check what is exactly the processor you are using...
|
|
#define LITTLE_ENDIAN_MCU FALSE
|
|
#endif
|
|
|
|
// Check that MCU endianism is correctly defined.
|
|
#ifndef LITTLE_ENDIAN_MCU
|
|
#error YOU MUST define the MCU endianism with LITTLE_ENDIAN_MCU: either FALSE or TRUE
|
|
#endif
|
|
|
|
//! Boolean evaluating MCU big endianism.
|
|
#define BIG_ENDIAN_MCU (!LITTLE_ENDIAN_MCU)
|
|
|
|
|
|
#ifdef __AVR32_ABI_COMPILER__ // Automatically defined when compiling for AVR32, not when assembling.
|
|
|
|
/*! \name MCU Endianism Handling
|
|
*/
|
|
//! @{
|
|
|
|
#if (LITTLE_ENDIAN_MCU==TRUE)
|
|
#define LSB(u16) (((U8 *)&(u16))[0]) //!< Least significant byte of \a u16.
|
|
#define MSB(u16) (((U8 *)&(u16))[1]) //!< Most significant byte of \a u16.
|
|
|
|
#define LSH(u32) (((U16 *)&(u32))[0]) //!< Least significant half-word of \a u32.
|
|
#define MSH(u32) (((U16 *)&(u32))[1]) //!< Most significant half-word of \a u32.
|
|
#define LSB0W(u32) (((U8 *)&(u32))[0]) //!< Least significant byte of 1st rank of \a u32.
|
|
#define LSB1W(u32) (((U8 *)&(u32))[1]) //!< Least significant byte of 2nd rank of \a u32.
|
|
#define LSB2W(u32) (((U8 *)&(u32))[2]) //!< Least significant byte of 3rd rank of \a u32.
|
|
#define LSB3W(u32) (((U8 *)&(u32))[3]) //!< Least significant byte of 4th rank of \a u32.
|
|
#define MSB3W(u32) LSB0W(u32) //!< Most significant byte of 4th rank of \a u32.
|
|
#define MSB2W(u32) LSB1W(u32) //!< Most significant byte of 3rd rank of \a u32.
|
|
#define MSB1W(u32) LSB2W(u32) //!< Most significant byte of 2nd rank of \a u32.
|
|
#define MSB0W(u32) LSB3W(u32) //!< Most significant byte of 1st rank of \a u32.
|
|
|
|
#define LSW(u64) (((U32 *)&(u64))[0]) //!< Least significant word of \a u64.
|
|
#define MSW(u64) (((U32 *)&(u64))[1]) //!< Most significant word of \a u64.
|
|
#define LSH0(u64) (((U16 *)&(u64))[0]) //!< Least significant half-word of 1st rank of \a u64.
|
|
#define LSH1(u64) (((U16 *)&(u64))[1]) //!< Least significant half-word of 2nd rank of \a u64.
|
|
#define LSH2(u64) (((U16 *)&(u64))[2]) //!< Least significant half-word of 3rd rank of \a u64.
|
|
#define LSH3(u64) (((U16 *)&(u64))[3]) //!< Least significant half-word of 4th rank of \a u64.
|
|
#define MSH3(u64) LSH0(u64) //!< Most significant half-word of 4th rank of \a u64.
|
|
#define MSH2(u64) LSH1(u64) //!< Most significant half-word of 3rd rank of \a u64.
|
|
#define MSH1(u64) LSH2(u64) //!< Most significant half-word of 2nd rank of \a u64.
|
|
#define MSH0(u64) LSH3(u64) //!< Most significant half-word of 1st rank of \a u64.
|
|
#define LSB0D(u64) (((U8 *)&(u64))[0]) //!< Least significant byte of 1st rank of \a u64.
|
|
#define LSB1D(u64) (((U8 *)&(u64))[1]) //!< Least significant byte of 2nd rank of \a u64.
|
|
#define LSB2D(u64) (((U8 *)&(u64))[2]) //!< Least significant byte of 3rd rank of \a u64.
|
|
#define LSB3D(u64) (((U8 *)&(u64))[3]) //!< Least significant byte of 4th rank of \a u64.
|
|
#define LSB4D(u64) (((U8 *)&(u64))[4]) //!< Least significant byte of 5th rank of \a u64.
|
|
#define LSB5D(u64) (((U8 *)&(u64))[5]) //!< Least significant byte of 6th rank of \a u64.
|
|
#define LSB6D(u64) (((U8 *)&(u64))[6]) //!< Least significant byte of 7th rank of \a u64.
|
|
#define LSB7D(u64) (((U8 *)&(u64))[7]) //!< Least significant byte of 8th rank of \a u64.
|
|
#define MSB7D(u64) LSB0D(u64) //!< Most significant byte of 8th rank of \a u64.
|
|
#define MSB6D(u64) LSB1D(u64) //!< Most significant byte of 7th rank of \a u64.
|
|
#define MSB5D(u64) LSB2D(u64) //!< Most significant byte of 6th rank of \a u64.
|
|
#define MSB4D(u64) LSB3D(u64) //!< Most significant byte of 5th rank of \a u64.
|
|
#define MSB3D(u64) LSB4D(u64) //!< Most significant byte of 4th rank of \a u64.
|
|
#define MSB2D(u64) LSB5D(u64) //!< Most significant byte of 3rd rank of \a u64.
|
|
#define MSB1D(u64) LSB6D(u64) //!< Most significant byte of 2nd rank of \a u64.
|
|
#define MSB0D(u64) LSB7D(u64) //!< Most significant byte of 1st rank of \a u64.
|
|
|
|
#elif (BIG_ENDIAN_MCU==TRUE)
|
|
#define MSB(u16) (((U8 *)&(u16))[0]) //!< Most significant byte of \a u16.
|
|
#define LSB(u16) (((U8 *)&(u16))[1]) //!< Least significant byte of \a u16.
|
|
|
|
#define MSH(u32) (((U16 *)&(u32))[0]) //!< Most significant half-word of \a u32.
|
|
#define LSH(u32) (((U16 *)&(u32))[1]) //!< Least significant half-word of \a u32.
|
|
#define MSB0W(u32) (((U8 *)&(u32))[0]) //!< Most significant byte of 1st rank of \a u32.
|
|
#define MSB1W(u32) (((U8 *)&(u32))[1]) //!< Most significant byte of 2nd rank of \a u32.
|
|
#define MSB2W(u32) (((U8 *)&(u32))[2]) //!< Most significant byte of 3rd rank of \a u32.
|
|
#define MSB3W(u32) (((U8 *)&(u32))[3]) //!< Most significant byte of 4th rank of \a u32.
|
|
#define LSB3W(u32) MSB0W(u32) //!< Least significant byte of 4th rank of \a u32.
|
|
#define LSB2W(u32) MSB1W(u32) //!< Least significant byte of 3rd rank of \a u32.
|
|
#define LSB1W(u32) MSB2W(u32) //!< Least significant byte of 2nd rank of \a u32.
|
|
#define LSB0W(u32) MSB3W(u32) //!< Least significant byte of 1st rank of \a u32.
|
|
|
|
#define MSW(u64) (((U32 *)&(u64))[0]) //!< Most significant word of \a u64.
|
|
#define LSW(u64) (((U32 *)&(u64))[1]) //!< Least significant word of \a u64.
|
|
#define MSH0(u64) (((U16 *)&(u64))[0]) //!< Most significant half-word of 1st rank of \a u64.
|
|
#define MSH1(u64) (((U16 *)&(u64))[1]) //!< Most significant half-word of 2nd rank of \a u64.
|
|
#define MSH2(u64) (((U16 *)&(u64))[2]) //!< Most significant half-word of 3rd rank of \a u64.
|
|
#define MSH3(u64) (((U16 *)&(u64))[3]) //!< Most significant half-word of 4th rank of \a u64.
|
|
#define LSH3(u64) MSH0(u64) //!< Least significant half-word of 4th rank of \a u64.
|
|
#define LSH2(u64) MSH1(u64) //!< Least significant half-word of 3rd rank of \a u64.
|
|
#define LSH1(u64) MSH2(u64) //!< Least significant half-word of 2nd rank of \a u64.
|
|
#define LSH0(u64) MSH3(u64) //!< Least significant half-word of 1st rank of \a u64.
|
|
#define MSB0D(u64) (((U8 *)&(u64))[0]) //!< Most significant byte of 1st rank of \a u64.
|
|
#define MSB1D(u64) (((U8 *)&(u64))[1]) //!< Most significant byte of 2nd rank of \a u64.
|
|
#define MSB2D(u64) (((U8 *)&(u64))[2]) //!< Most significant byte of 3rd rank of \a u64.
|
|
#define MSB3D(u64) (((U8 *)&(u64))[3]) //!< Most significant byte of 4th rank of \a u64.
|
|
#define MSB4D(u64) (((U8 *)&(u64))[4]) //!< Most significant byte of 5th rank of \a u64.
|
|
#define MSB5D(u64) (((U8 *)&(u64))[5]) //!< Most significant byte of 6th rank of \a u64.
|
|
#define MSB6D(u64) (((U8 *)&(u64))[6]) //!< Most significant byte of 7th rank of \a u64.
|
|
#define MSB7D(u64) (((U8 *)&(u64))[7]) //!< Most significant byte of 8th rank of \a u64.
|
|
#define LSB7D(u64) MSB0D(u64) //!< Least significant byte of 8th rank of \a u64.
|
|
#define LSB6D(u64) MSB1D(u64) //!< Least significant byte of 7th rank of \a u64.
|
|
#define LSB5D(u64) MSB2D(u64) //!< Least significant byte of 6th rank of \a u64.
|
|
#define LSB4D(u64) MSB3D(u64) //!< Least significant byte of 5th rank of \a u64.
|
|
#define LSB3D(u64) MSB4D(u64) //!< Least significant byte of 4th rank of \a u64.
|
|
#define LSB2D(u64) MSB5D(u64) //!< Least significant byte of 3rd rank of \a u64.
|
|
#define LSB1D(u64) MSB6D(u64) //!< Least significant byte of 2nd rank of \a u64.
|
|
#define LSB0D(u64) MSB7D(u64) //!< Least significant byte of 1st rank of \a u64.
|
|
|
|
#else
|
|
#error Unknown endianism.
|
|
#endif
|
|
|
|
//! @}
|
|
|
|
|
|
/*! \name Endianism Conversion
|
|
*
|
|
* The same considerations as for clz and ctz apply here but AVR32-GCC's
|
|
* __builtin_bswap_16 and __builtin_bswap_32 do not behave like macros when
|
|
* applied to constant expressions, so two sets of macros are defined here:
|
|
* - Swap16, Swap32 and Swap64 to apply to constant expressions (values known
|
|
* at compile time);
|
|
* - swap16, swap32 and swap64 to apply to non-constant expressions (values
|
|
* unknown at compile time).
|
|
*/
|
|
//! @{
|
|
|
|
/*! \brief Toggles the endianism of \a u16 (by swapping its bytes).
|
|
*
|
|
* \param u16 U16 of which to toggle the endianism.
|
|
*
|
|
* \return Value resulting from \a u16 with toggled endianism.
|
|
*
|
|
* \note More optimized if only used with values known at compile time.
|
|
*/
|
|
#define Swap16(u16) ((U16)(((U16)(u16) >> 8) |\
|
|
((U16)(u16) << 8)))
|
|
|
|
/*! \brief Toggles the endianism of \a u32 (by swapping its bytes).
|
|
*
|
|
* \param u32 U32 of which to toggle the endianism.
|
|
*
|
|
* \return Value resulting from \a u32 with toggled endianism.
|
|
*
|
|
* \note More optimized if only used with values known at compile time.
|
|
*/
|
|
#define Swap32(u32) ((U32)(((U32)Swap16((U32)(u32) >> 16)) |\
|
|
((U32)Swap16((U32)(u32)) << 16)))
|
|
|
|
/*! \brief Toggles the endianism of \a u64 (by swapping its bytes).
|
|
*
|
|
* \param u64 U64 of which to toggle the endianism.
|
|
*
|
|
* \return Value resulting from \a u64 with toggled endianism.
|
|
*
|
|
* \note More optimized if only used with values known at compile time.
|
|
*/
|
|
#define Swap64(u64) ((U64)(((U64)Swap32((U64)(u64) >> 32)) |\
|
|
((U64)Swap32((U64)(u64)) << 32)))
|
|
|
|
/*! \brief Toggles the endianism of \a u16 (by swapping its bytes).
|
|
*
|
|
* \param u16 U16 of which to toggle the endianism.
|
|
*
|
|
* \return Value resulting from \a u16 with toggled endianism.
|
|
*
|
|
* \note More optimized if only used with values unknown at compile time.
|
|
*/
|
|
#if (defined __GNUC__)
|
|
#define swap16(u16) ((U16)__builtin_bswap_16((U16)(u16)))
|
|
#elif (defined __ICCAVR32__)
|
|
#define swap16(u16) ((U16)__swap_bytes_in_halfwords((U16)(u16)))
|
|
#endif
|
|
|
|
/*! \brief Toggles the endianism of \a u32 (by swapping its bytes).
|
|
*
|
|
* \param u32 U32 of which to toggle the endianism.
|
|
*
|
|
* \return Value resulting from \a u32 with toggled endianism.
|
|
*
|
|
* \note More optimized if only used with values unknown at compile time.
|
|
*/
|
|
#if (defined __GNUC__)
|
|
#define swap32(u32) ((U32)__builtin_bswap_32((U32)(u32)))
|
|
#elif (defined __ICCAVR32__)
|
|
#define swap32(u32) ((U32)__swap_bytes((U32)(u32)))
|
|
#endif
|
|
|
|
/*! \brief Toggles the endianism of \a u64 (by swapping its bytes).
|
|
*
|
|
* \param u64 U64 of which to toggle the endianism.
|
|
*
|
|
* \return Value resulting from \a u64 with toggled endianism.
|
|
*
|
|
* \note More optimized if only used with values unknown at compile time.
|
|
*/
|
|
#define swap64(u64) ((U64)(((U64)swap32((U64)(u64) >> 32)) |\
|
|
((U64)swap32((U64)(u64)) << 32)))
|
|
|
|
//! @}
|
|
|
|
|
|
/*! \name Target Abstraction
|
|
*/
|
|
//! @{
|
|
|
|
#define _GLOBEXT_ extern //!< extern storage-class specifier.
|
|
#define _CONST_TYPE_ const //!< const type qualifier.
|
|
#define _MEM_TYPE_SLOW_ //!< Slow memory type.
|
|
#define _MEM_TYPE_MEDFAST_ //!< Fairly fast memory type.
|
|
#define _MEM_TYPE_FAST_ //!< Fast memory type.
|
|
|
|
typedef U8 Byte; //!< 8-bit unsigned integer.
|
|
|
|
#define memcmp_ram2ram memcmp //!< Target-specific memcmp of RAM to RAM.
|
|
#define memcmp_code2ram memcmp //!< Target-specific memcmp of RAM to NVRAM.
|
|
#define memcpy_ram2ram memcpy //!< Target-specific memcpy from RAM to RAM.
|
|
#define memcpy_code2ram memcpy //!< Target-specific memcpy from NVRAM to RAM.
|
|
|
|
#define LSB0(u32) LSB0W(u32) //!< Least significant byte of 1st rank of \a u32.
|
|
#define LSB1(u32) LSB1W(u32) //!< Least significant byte of 2nd rank of \a u32.
|
|
#define LSB2(u32) LSB2W(u32) //!< Least significant byte of 3rd rank of \a u32.
|
|
#define LSB3(u32) LSB3W(u32) //!< Least significant byte of 4th rank of \a u32.
|
|
#define MSB3(u32) MSB3W(u32) //!< Most significant byte of 4th rank of \a u32.
|
|
#define MSB2(u32) MSB2W(u32) //!< Most significant byte of 3rd rank of \a u32.
|
|
#define MSB1(u32) MSB1W(u32) //!< Most significant byte of 2nd rank of \a u32.
|
|
#define MSB0(u32) MSB0W(u32) //!< Most significant byte of 1st rank of \a u32.
|
|
|
|
//! @}
|
|
|
|
#endif // __AVR32_ABI_COMPILER__
|
|
|
|
|
|
#endif // _COMPILER_H_
|