684 lines
25 KiB
C
684 lines
25 KiB
C
/*
|
|
* Copyright (c) 2015, Freescale Semiconductor, Inc.
|
|
* Copyright 2016-2017 NXP
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
*
|
|
* o Redistributions of source code must retain the above copyright notice, this list
|
|
* of conditions and the following disclaimer.
|
|
*
|
|
* o Redistributions in binary form must reproduce the above copyright notice, this
|
|
* list of conditions and the following disclaimer in the documentation and/or
|
|
* other materials provided with the distribution.
|
|
*
|
|
* o Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from this
|
|
* software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "fsl_pwm.h"
|
|
|
|
/*******************************************************************************
|
|
* Prototypes
|
|
******************************************************************************/
|
|
/*!
|
|
* @brief Get the instance from the base address
|
|
*
|
|
* @param base PWM peripheral base address
|
|
*
|
|
* @return The PWM module instance
|
|
*/
|
|
static uint32_t PWM_GetInstance(PWM_Type *base);
|
|
|
|
/*******************************************************************************
|
|
* Variables
|
|
******************************************************************************/
|
|
/*! @brief Pointers to PWM bases for each instance. */
|
|
static PWM_Type *const s_pwmBases[] = PWM_BASE_PTRS;
|
|
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
/*! @brief Pointers to PWM clocks for each PWM submodule. */
|
|
static const clock_ip_name_t s_pwmClocks[][FSL_FEATURE_PWM_SUBMODULE_COUNT] = PWM_CLOCKS;
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
|
|
/*******************************************************************************
|
|
* Code
|
|
******************************************************************************/
|
|
static uint32_t PWM_GetInstance(PWM_Type *base)
|
|
{
|
|
uint32_t instance;
|
|
|
|
/* Find the instance index from base address mappings. */
|
|
for (instance = 0; instance < ARRAY_SIZE(s_pwmBases); instance++)
|
|
{
|
|
if (s_pwmBases[instance] == base)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(instance < ARRAY_SIZE(s_pwmBases));
|
|
|
|
return instance;
|
|
}
|
|
|
|
status_t PWM_Init(PWM_Type *base, pwm_submodule_t subModule, const pwm_config_t *config)
|
|
{
|
|
assert(config);
|
|
|
|
uint16_t reg;
|
|
|
|
/* Source clock for submodule 0 cannot be itself */
|
|
if ((config->clockSource == kPWM_Submodule0Clock) && (subModule == kPWM_Module_0))
|
|
{
|
|
return kStatus_Fail;
|
|
}
|
|
|
|
/* Reload source select clock for submodule 0 cannot be master reload */
|
|
if ((config->reloadSelect == kPWM_MasterReload) && (subModule == kPWM_Module_0))
|
|
{
|
|
return kStatus_Fail;
|
|
}
|
|
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
/* Ungate the PWM submodule clock*/
|
|
CLOCK_EnableClock(s_pwmClocks[PWM_GetInstance(base)][subModule]);
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
|
|
/* Clear the fault status flags */
|
|
base->FSTS |= PWM_FSTS_FFLAG_MASK;
|
|
|
|
reg = base->SM[subModule].CTRL2;
|
|
|
|
/* Setup the submodule clock-source, control source of the INIT signal,
|
|
* source of the force output signal, operation in debug & wait modes and reload source select
|
|
*/
|
|
reg &= ~(PWM_CTRL2_CLK_SEL_MASK | PWM_CTRL2_FORCE_SEL_MASK | PWM_CTRL2_INIT_SEL_MASK | PWM_CTRL2_INDEP_MASK |
|
|
PWM_CTRL2_WAITEN_MASK | PWM_CTRL2_DBGEN_MASK | PWM_CTRL2_RELOAD_SEL_MASK);
|
|
reg |= (PWM_CTRL2_CLK_SEL(config->clockSource) | PWM_CTRL2_FORCE_SEL(config->forceTrigger) |
|
|
PWM_CTRL2_INIT_SEL(config->initializationControl) | PWM_CTRL2_DBGEN(config->enableDebugMode) |
|
|
PWM_CTRL2_WAITEN(config->enableWait) | PWM_CTRL2_RELOAD_SEL(config->reloadSelect));
|
|
|
|
/* Setup PWM A & B to be independent or a complementary-pair */
|
|
switch (config->pairOperation)
|
|
{
|
|
case kPWM_Independent:
|
|
reg |= PWM_CTRL2_INDEP_MASK;
|
|
break;
|
|
case kPWM_ComplementaryPwmA:
|
|
base->MCTRL &= ~(1U << (PWM_MCTRL_IPOL_SHIFT + subModule));
|
|
break;
|
|
case kPWM_ComplementaryPwmB:
|
|
base->MCTRL |= (1U << (PWM_MCTRL_IPOL_SHIFT + subModule));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
base->SM[subModule].CTRL2 = reg;
|
|
|
|
reg = base->SM[subModule].CTRL;
|
|
|
|
/* Setup the clock prescale, load mode and frequency */
|
|
reg &= ~(PWM_CTRL_PRSC_MASK | PWM_CTRL_LDFQ_MASK | PWM_CTRL_LDMOD_MASK);
|
|
reg |= (PWM_CTRL_PRSC(config->prescale) | PWM_CTRL_LDFQ(config->reloadFrequency));
|
|
|
|
/* Setup register reload logic */
|
|
switch (config->reloadLogic)
|
|
{
|
|
case kPWM_ReloadImmediate:
|
|
reg |= PWM_CTRL_LDMOD_MASK;
|
|
break;
|
|
case kPWM_ReloadPwmHalfCycle:
|
|
reg |= PWM_CTRL_HALF_MASK;
|
|
reg &= ~PWM_CTRL_FULL_MASK;
|
|
break;
|
|
case kPWM_ReloadPwmFullCycle:
|
|
reg &= ~PWM_CTRL_HALF_MASK;
|
|
reg |= PWM_CTRL_FULL_MASK;
|
|
break;
|
|
case kPWM_ReloadPwmHalfAndFullCycle:
|
|
reg |= PWM_CTRL_HALF_MASK;
|
|
reg |= PWM_CTRL_FULL_MASK;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
base->SM[subModule].CTRL = reg;
|
|
|
|
/* Setup the fault filter */
|
|
if (base->FFILT & PWM_FFILT_FILT_PER_MASK)
|
|
{
|
|
/* When changing values for fault period from a non-zero value, first write a value of 0
|
|
* to clear the filter
|
|
*/
|
|
base->FFILT &= ~(PWM_FFILT_FILT_PER_MASK);
|
|
}
|
|
|
|
base->FFILT = (PWM_FFILT_FILT_CNT(config->faultFilterCount) | PWM_FFILT_FILT_PER(config->faultFilterPeriod));
|
|
|
|
/* Issue a Force trigger event when configured to trigger locally */
|
|
if (config->forceTrigger == kPWM_Force_Local)
|
|
{
|
|
base->SM[subModule].CTRL2 |= PWM_CTRL2_FORCE(1U);
|
|
}
|
|
|
|
return kStatus_Success;
|
|
}
|
|
|
|
void PWM_Deinit(PWM_Type *base, pwm_submodule_t subModule)
|
|
{
|
|
/* Stop the submodule */
|
|
base->MCTRL &= ~(1U << (PWM_MCTRL_RUN_SHIFT + subModule));
|
|
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
/* Gate the PWM submodule clock*/
|
|
CLOCK_DisableClock(s_pwmClocks[PWM_GetInstance(base)][subModule]);
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
}
|
|
|
|
void PWM_GetDefaultConfig(pwm_config_t *config)
|
|
{
|
|
assert(config);
|
|
|
|
/* PWM is paused in debug mode */
|
|
config->enableDebugMode = false;
|
|
/* PWM is paused in wait mode */
|
|
config->enableWait = false;
|
|
/* PWM module uses the local reload signal to reload registers */
|
|
config->reloadSelect = kPWM_LocalReload;
|
|
/* Fault filter count is set to 0 */
|
|
config->faultFilterCount = 0;
|
|
/* Fault filter period is set to 0 which disables the fault filter */
|
|
config->faultFilterPeriod = 0;
|
|
/* Use the IP Bus clock as source clock for the PWM submodule */
|
|
config->clockSource = kPWM_BusClock;
|
|
/* Clock source prescale is set to divide by 1*/
|
|
config->prescale = kPWM_Prescale_Divide_1;
|
|
/* Local sync causes initialization */
|
|
config->initializationControl = kPWM_Initialize_LocalSync;
|
|
/* The local force signal, CTRL2[FORCE], from the submodule is used to force updates */
|
|
config->forceTrigger = kPWM_Force_Local;
|
|
/* PWM reload frequency, reload opportunity is PWM half cycle or full cycle.
|
|
* This field is not used in Immediate reload mode
|
|
*/
|
|
config->reloadFrequency = kPWM_LoadEveryOportunity;
|
|
/* Buffered-registers get loaded with new values as soon as LDOK bit is set */
|
|
config->reloadLogic = kPWM_ReloadImmediate;
|
|
/* PWM A & PWM B operate as 2 independent channels */
|
|
config->pairOperation = kPWM_Independent;
|
|
}
|
|
|
|
status_t PWM_SetupPwm(PWM_Type *base,
|
|
pwm_submodule_t subModule,
|
|
const pwm_signal_param_t *chnlParams,
|
|
uint8_t numOfChnls,
|
|
pwm_mode_t mode,
|
|
uint32_t pwmFreq_Hz,
|
|
uint32_t srcClock_Hz)
|
|
{
|
|
assert(chnlParams);
|
|
assert(pwmFreq_Hz);
|
|
assert(numOfChnls);
|
|
assert(srcClock_Hz);
|
|
|
|
uint32_t pwmClock;
|
|
uint16_t pulseCnt = 0, pwmHighPulse = 0;
|
|
int16_t modulo = 0;
|
|
uint8_t i, polarityShift = 0, outputEnableShift = 0;
|
|
|
|
if (numOfChnls > 2)
|
|
{
|
|
/* Each submodule has 2 signals; PWM A & PWM B */
|
|
return kStatus_Fail;
|
|
}
|
|
|
|
/* Divide the clock by the prescale value */
|
|
pwmClock = (srcClock_Hz / (1U << ((base->SM[subModule].CTRL & PWM_CTRL_PRSC_MASK) >> PWM_CTRL_PRSC_SHIFT)));
|
|
pulseCnt = (pwmClock / pwmFreq_Hz);
|
|
|
|
/* Setup each PWM channel */
|
|
for (i = 0; i < numOfChnls; i++)
|
|
{
|
|
/* Calculate pulse width */
|
|
pwmHighPulse = (pulseCnt * chnlParams->dutyCyclePercent) / 100;
|
|
|
|
/* Setup the different match registers to generate the PWM signal */
|
|
switch (mode)
|
|
{
|
|
case kPWM_SignedCenterAligned:
|
|
/* Setup the PWM period for a signed center aligned signal */
|
|
modulo = pulseCnt >> 1;
|
|
/* Indicates the start of the PWM period */
|
|
base->SM[subModule].INIT = (-modulo);
|
|
/* Indicates the center value */
|
|
base->SM[subModule].VAL0 = 0;
|
|
/* Indicates the end of the PWM period */
|
|
base->SM[subModule].VAL1 = modulo;
|
|
|
|
/* Setup the PWM dutycycle */
|
|
if (chnlParams->pwmChannel == kPWM_PwmA)
|
|
{
|
|
base->SM[subModule].VAL2 = (-(pwmHighPulse / 2));
|
|
base->SM[subModule].VAL3 = (pwmHighPulse / 2);
|
|
}
|
|
else
|
|
{
|
|
base->SM[subModule].VAL4 = (-(pwmHighPulse / 2));
|
|
base->SM[subModule].VAL5 = (pwmHighPulse / 2);
|
|
}
|
|
break;
|
|
case kPWM_CenterAligned:
|
|
/* Setup the PWM period for an unsigned center aligned signal */
|
|
/* Indicates the start of the PWM period */
|
|
base->SM[subModule].INIT = 0;
|
|
/* Indicates the center value */
|
|
base->SM[subModule].VAL0 = (pulseCnt / 2);
|
|
/* Indicates the end of the PWM period */
|
|
base->SM[subModule].VAL1 = pulseCnt;
|
|
|
|
/* Setup the PWM dutycycle */
|
|
if (chnlParams->pwmChannel == kPWM_PwmA)
|
|
{
|
|
base->SM[subModule].VAL2 = ((pulseCnt - pwmHighPulse) / 2);
|
|
base->SM[subModule].VAL3 = ((pulseCnt + pwmHighPulse) / 2);
|
|
}
|
|
else
|
|
{
|
|
base->SM[subModule].VAL4 = ((pulseCnt - pwmHighPulse) / 2);
|
|
base->SM[subModule].VAL5 = ((pulseCnt + pwmHighPulse) / 2);
|
|
}
|
|
break;
|
|
case kPWM_SignedEdgeAligned:
|
|
/* Setup the PWM period for a signed edge aligned signal */
|
|
modulo = pulseCnt >> 1;
|
|
/* Indicates the start of the PWM period */
|
|
base->SM[subModule].INIT = (-modulo);
|
|
/* Indicates the center value */
|
|
base->SM[subModule].VAL0 = 0;
|
|
/* Indicates the end of the PWM period */
|
|
base->SM[subModule].VAL1 = modulo;
|
|
|
|
/* Setup the PWM dutycycle */
|
|
if (chnlParams->pwmChannel == kPWM_PwmA)
|
|
{
|
|
base->SM[subModule].VAL2 = (-modulo);
|
|
base->SM[subModule].VAL3 = (-modulo + pwmHighPulse);
|
|
}
|
|
else
|
|
{
|
|
base->SM[subModule].VAL4 = (-modulo);
|
|
base->SM[subModule].VAL5 = (-modulo + pwmHighPulse);
|
|
}
|
|
break;
|
|
case kPWM_EdgeAligned:
|
|
/* Setup the PWM period for a unsigned edge aligned signal */
|
|
/* Indicates the start of the PWM period */
|
|
base->SM[subModule].INIT = 0;
|
|
/* Indicates the center value */
|
|
base->SM[subModule].VAL0 = (pulseCnt / 2);
|
|
/* Indicates the end of the PWM period */
|
|
base->SM[subModule].VAL1 = pulseCnt;
|
|
|
|
/* Setup the PWM dutycycle */
|
|
if (chnlParams->pwmChannel == kPWM_PwmA)
|
|
{
|
|
base->SM[subModule].VAL2 = 0;
|
|
base->SM[subModule].VAL3 = pwmHighPulse;
|
|
}
|
|
else
|
|
{
|
|
base->SM[subModule].VAL4 = 0;
|
|
base->SM[subModule].VAL5 = pwmHighPulse;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
/* Setup register shift values based on the channel being configured.
|
|
* Also setup the deadtime value
|
|
*/
|
|
if (chnlParams->pwmChannel == kPWM_PwmA)
|
|
{
|
|
polarityShift = PWM_OCTRL_POLA_SHIFT;
|
|
outputEnableShift = PWM_OUTEN_PWMA_EN_SHIFT;
|
|
base->SM[subModule].DTCNT0 = PWM_DTCNT0_DTCNT0(chnlParams->deadtimeValue);
|
|
}
|
|
else
|
|
{
|
|
polarityShift = PWM_OCTRL_POLB_SHIFT;
|
|
outputEnableShift = PWM_OUTEN_PWMB_EN_SHIFT;
|
|
base->SM[subModule].DTCNT1 = PWM_DTCNT1_DTCNT1(chnlParams->deadtimeValue);
|
|
}
|
|
|
|
/* Setup signal active level */
|
|
if (chnlParams->level == kPWM_HighTrue)
|
|
{
|
|
base->SM[subModule].OCTRL &= ~(1U << polarityShift);
|
|
}
|
|
else
|
|
{
|
|
base->SM[subModule].OCTRL |= (1U << polarityShift);
|
|
}
|
|
/* Enable PWM output */
|
|
base->OUTEN |= (1U << (outputEnableShift + subModule));
|
|
|
|
/* Get the next channel parameters */
|
|
chnlParams++;
|
|
}
|
|
|
|
return kStatus_Success;
|
|
}
|
|
|
|
void PWM_UpdatePwmDutycycle(PWM_Type *base,
|
|
pwm_submodule_t subModule,
|
|
pwm_channels_t pwmSignal,
|
|
pwm_mode_t currPwmMode,
|
|
uint8_t dutyCyclePercent)
|
|
{
|
|
assert(dutyCyclePercent <= 100);
|
|
assert(pwmSignal < 2);
|
|
uint16_t pulseCnt = 0, pwmHighPulse = 0;
|
|
int16_t modulo = 0;
|
|
|
|
switch (currPwmMode)
|
|
{
|
|
case kPWM_SignedCenterAligned:
|
|
modulo = base->SM[subModule].VAL1;
|
|
pulseCnt = modulo * 2;
|
|
/* Calculate pulse width */
|
|
pwmHighPulse = (pulseCnt * dutyCyclePercent) / 100;
|
|
|
|
/* Setup the PWM dutycycle */
|
|
if (pwmSignal == kPWM_PwmA)
|
|
{
|
|
base->SM[subModule].VAL2 = (-(pwmHighPulse / 2));
|
|
base->SM[subModule].VAL3 = (pwmHighPulse / 2);
|
|
}
|
|
else
|
|
{
|
|
base->SM[subModule].VAL4 = (-(pwmHighPulse / 2));
|
|
base->SM[subModule].VAL5 = (pwmHighPulse / 2);
|
|
}
|
|
break;
|
|
case kPWM_CenterAligned:
|
|
pulseCnt = base->SM[subModule].VAL1;
|
|
/* Calculate pulse width */
|
|
pwmHighPulse = (pulseCnt * dutyCyclePercent) / 100;
|
|
|
|
/* Setup the PWM dutycycle */
|
|
if (pwmSignal == kPWM_PwmA)
|
|
{
|
|
base->SM[subModule].VAL2 = ((pulseCnt - pwmHighPulse) / 2);
|
|
base->SM[subModule].VAL3 = ((pulseCnt + pwmHighPulse) / 2);
|
|
}
|
|
else
|
|
{
|
|
base->SM[subModule].VAL4 = ((pulseCnt - pwmHighPulse) / 2);
|
|
base->SM[subModule].VAL5 = ((pulseCnt + pwmHighPulse) / 2);
|
|
}
|
|
break;
|
|
case kPWM_SignedEdgeAligned:
|
|
modulo = base->SM[subModule].VAL1;
|
|
pulseCnt = modulo * 2;
|
|
/* Calculate pulse width */
|
|
pwmHighPulse = (pulseCnt * dutyCyclePercent) / 100;
|
|
|
|
/* Setup the PWM dutycycle */
|
|
if (pwmSignal == kPWM_PwmA)
|
|
{
|
|
base->SM[subModule].VAL2 = (-modulo);
|
|
base->SM[subModule].VAL3 = (-modulo + pwmHighPulse);
|
|
}
|
|
else
|
|
{
|
|
base->SM[subModule].VAL4 = (-modulo);
|
|
base->SM[subModule].VAL5 = (-modulo + pwmHighPulse);
|
|
}
|
|
break;
|
|
case kPWM_EdgeAligned:
|
|
pulseCnt = base->SM[subModule].VAL1;
|
|
/* Calculate pulse width */
|
|
pwmHighPulse = (pulseCnt * dutyCyclePercent) / 100;
|
|
|
|
/* Setup the PWM dutycycle */
|
|
if (pwmSignal == kPWM_PwmA)
|
|
{
|
|
base->SM[subModule].VAL2 = 0;
|
|
base->SM[subModule].VAL3 = pwmHighPulse;
|
|
}
|
|
else
|
|
{
|
|
base->SM[subModule].VAL4 = 0;
|
|
base->SM[subModule].VAL5 = pwmHighPulse;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void PWM_SetupInputCapture(PWM_Type *base,
|
|
pwm_submodule_t subModule,
|
|
pwm_channels_t pwmChannel,
|
|
const pwm_input_capture_param_t *inputCaptureParams)
|
|
{
|
|
uint32_t reg = 0;
|
|
switch (pwmChannel)
|
|
{
|
|
case kPWM_PwmA:
|
|
/* Setup the capture paramters for PWM A pin */
|
|
reg = (PWM_CAPTCTRLA_INP_SELA(inputCaptureParams->captureInputSel) |
|
|
PWM_CAPTCTRLA_EDGA0(inputCaptureParams->edge0) | PWM_CAPTCTRLA_EDGA1(inputCaptureParams->edge1) |
|
|
PWM_CAPTCTRLA_ONESHOTA(inputCaptureParams->enableOneShotCapture) |
|
|
PWM_CAPTCTRLA_CFAWM(inputCaptureParams->fifoWatermark));
|
|
/* Enable the edge counter if using the output edge counter */
|
|
if (inputCaptureParams->captureInputSel)
|
|
{
|
|
reg |= PWM_CAPTCTRLA_EDGCNTA_EN_MASK;
|
|
}
|
|
/* Enable input capture operation */
|
|
reg |= PWM_CAPTCTRLA_ARMA_MASK;
|
|
|
|
base->SM[subModule].CAPTCTRLA = reg;
|
|
|
|
/* Setup the compare value when using the edge counter as source */
|
|
base->SM[subModule].CAPTCOMPA = PWM_CAPTCOMPA_EDGCMPA(inputCaptureParams->edgeCompareValue);
|
|
/* Setup PWM A pin for input capture */
|
|
base->OUTEN &= ~(1U << (PWM_OUTEN_PWMA_EN_SHIFT + subModule));
|
|
|
|
break;
|
|
case kPWM_PwmB:
|
|
/* Setup the capture paramters for PWM B pin */
|
|
reg = (PWM_CAPTCTRLB_INP_SELB(inputCaptureParams->captureInputSel) |
|
|
PWM_CAPTCTRLB_EDGB0(inputCaptureParams->edge0) | PWM_CAPTCTRLB_EDGB1(inputCaptureParams->edge1) |
|
|
PWM_CAPTCTRLB_ONESHOTB(inputCaptureParams->enableOneShotCapture) |
|
|
PWM_CAPTCTRLB_CFBWM(inputCaptureParams->fifoWatermark));
|
|
/* Enable the edge counter if using the output edge counter */
|
|
if (inputCaptureParams->captureInputSel)
|
|
{
|
|
reg |= PWM_CAPTCTRLB_EDGCNTB_EN_MASK;
|
|
}
|
|
/* Enable input capture operation */
|
|
reg |= PWM_CAPTCTRLB_ARMB_MASK;
|
|
|
|
base->SM[subModule].CAPTCTRLB = reg;
|
|
|
|
/* Setup the compare value when using the edge counter as source */
|
|
base->SM[subModule].CAPTCOMPB = PWM_CAPTCOMPB_EDGCMPB(inputCaptureParams->edgeCompareValue);
|
|
/* Setup PWM B pin for input capture */
|
|
base->OUTEN &= ~(1U << (PWM_OUTEN_PWMB_EN_SHIFT + subModule));
|
|
break;
|
|
case kPWM_PwmX:
|
|
reg = (PWM_CAPTCTRLX_INP_SELX(inputCaptureParams->captureInputSel) |
|
|
PWM_CAPTCTRLX_EDGX0(inputCaptureParams->edge0) | PWM_CAPTCTRLX_EDGX1(inputCaptureParams->edge1) |
|
|
PWM_CAPTCTRLX_ONESHOTX(inputCaptureParams->enableOneShotCapture) |
|
|
PWM_CAPTCTRLX_CFXWM(inputCaptureParams->fifoWatermark));
|
|
/* Enable the edge counter if using the output edge counter */
|
|
if (inputCaptureParams->captureInputSel)
|
|
{
|
|
reg |= PWM_CAPTCTRLX_EDGCNTX_EN_MASK;
|
|
}
|
|
/* Enable input capture operation */
|
|
reg |= PWM_CAPTCTRLX_ARMX_MASK;
|
|
|
|
base->SM[subModule].CAPTCTRLX = reg;
|
|
|
|
/* Setup the compare value when using the edge counter as source */
|
|
base->SM[subModule].CAPTCOMPX = PWM_CAPTCOMPX_EDGCMPX(inputCaptureParams->edgeCompareValue);
|
|
/* Setup PWM X pin for input capture */
|
|
base->OUTEN &= ~(1U << (PWM_OUTEN_PWMX_EN_SHIFT + subModule));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void PWM_SetupFaults(PWM_Type *base, pwm_fault_input_t faultNum, const pwm_fault_param_t *faultParams)
|
|
{
|
|
assert(faultParams);
|
|
uint16_t reg;
|
|
|
|
reg = base->FCTRL;
|
|
/* Set the faults level-settting */
|
|
if (faultParams->faultLevel)
|
|
{
|
|
reg |= (1U << (PWM_FCTRL_FLVL_SHIFT + faultNum));
|
|
}
|
|
else
|
|
{
|
|
reg &= ~(1U << (PWM_FCTRL_FLVL_SHIFT + faultNum));
|
|
}
|
|
/* Set the fault clearing mode */
|
|
if (faultParams->faultClearingMode)
|
|
{
|
|
/* Use manual fault clearing */
|
|
reg &= ~(1U << (PWM_FCTRL_FAUTO_SHIFT + faultNum));
|
|
if (faultParams->faultClearingMode == kPWM_ManualSafety)
|
|
{
|
|
/* Use manual fault clearing with safety mode enabled */
|
|
reg |= (1U << (PWM_FCTRL_FSAFE_SHIFT + faultNum));
|
|
}
|
|
else
|
|
{
|
|
/* Use manual fault clearing with safety mode disabled */
|
|
reg &= ~(1U << (PWM_FCTRL_FSAFE_SHIFT + faultNum));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Use automatic fault clearing */
|
|
reg |= (1U << (PWM_FCTRL_FAUTO_SHIFT + faultNum));
|
|
}
|
|
base->FCTRL = reg;
|
|
|
|
/* Set the combinational path option */
|
|
if (faultParams->enableCombinationalPath)
|
|
{
|
|
/* Combinational path from the fault input to the PWM output is available */
|
|
base->FCTRL2 &= ~(1U << faultNum);
|
|
}
|
|
else
|
|
{
|
|
/* No combinational path available, only fault filter & latch signal can disable PWM output */
|
|
base->FCTRL2 |= (1U << faultNum);
|
|
}
|
|
|
|
/* Initially clear both recovery modes */
|
|
reg = base->FSTS;
|
|
reg &= ~((1U << (PWM_FSTS_FFULL_SHIFT + faultNum)) | (1U << (PWM_FSTS_FHALF_SHIFT + faultNum)));
|
|
/* Setup fault recovery */
|
|
switch (faultParams->recoverMode)
|
|
{
|
|
case kPWM_NoRecovery:
|
|
break;
|
|
case kPWM_RecoverHalfCycle:
|
|
reg |= (1U << (PWM_FSTS_FHALF_SHIFT + faultNum));
|
|
break;
|
|
case kPWM_RecoverFullCycle:
|
|
reg |= (1U << (PWM_FSTS_FFULL_SHIFT + faultNum));
|
|
break;
|
|
case kPWM_RecoverHalfAndFullCycle:
|
|
reg |= (1U << (PWM_FSTS_FHALF_SHIFT + faultNum));
|
|
reg |= (1U << (PWM_FSTS_FFULL_SHIFT + faultNum));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
base->FSTS = reg;
|
|
}
|
|
|
|
void PWM_SetupForceSignal(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmChannel, pwm_force_signal_t mode)
|
|
|
|
{
|
|
uint16_t shift;
|
|
uint16_t reg;
|
|
|
|
/* DTSRCSEL register has 4 bits per submodule; 2 bits for PWM A and 2 bits for PWM B */
|
|
shift = subModule * 4 + pwmChannel * 2;
|
|
|
|
/* Setup the signal to be passed upon occurrence of a FORCE_OUT signal */
|
|
reg = base->DTSRCSEL;
|
|
reg &= ~(0x3U << shift);
|
|
reg |= (uint16_t)((uint16_t)mode << shift);
|
|
base->DTSRCSEL = reg;
|
|
}
|
|
|
|
void PWM_EnableInterrupts(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask)
|
|
{
|
|
/* Upper 16 bits are for related to the submodule */
|
|
base->SM[subModule].INTEN |= (mask & 0xFFFFU);
|
|
/* Fault related interrupts */
|
|
base->FCTRL |= ((mask >> 16U) & PWM_FCTRL_FIE_MASK);
|
|
}
|
|
|
|
void PWM_DisableInterrupts(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask)
|
|
{
|
|
base->SM[subModule].INTEN &= ~(mask & 0xFFFF);
|
|
base->FCTRL &= ~((mask >> 16U) & PWM_FCTRL_FIE_MASK);
|
|
}
|
|
|
|
uint32_t PWM_GetEnabledInterrupts(PWM_Type *base, pwm_submodule_t subModule)
|
|
{
|
|
uint32_t enabledInterrupts;
|
|
|
|
enabledInterrupts = base->SM[subModule].INTEN;
|
|
enabledInterrupts |= ((uint32_t)(base->FCTRL & PWM_FCTRL_FIE_MASK) << 16U);
|
|
return enabledInterrupts;
|
|
}
|
|
|
|
uint32_t PWM_GetStatusFlags(PWM_Type *base, pwm_submodule_t subModule)
|
|
{
|
|
uint32_t statusFlags;
|
|
|
|
statusFlags = base->SM[subModule].STS;
|
|
statusFlags |= ((uint32_t)(base->FSTS & PWM_FSTS_FFLAG_MASK) << 16U);
|
|
|
|
return statusFlags;
|
|
}
|
|
|
|
void PWM_ClearStatusFlags(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask)
|
|
{
|
|
uint16_t reg;
|
|
|
|
base->SM[subModule].STS = (mask & 0xFFFFU);
|
|
reg = base->FSTS;
|
|
/* Clear the fault flags and set only the ones we wish to clear as the fault flags are cleared
|
|
* by writing a login one
|
|
*/
|
|
reg &= ~(PWM_FSTS_FFLAG_MASK);
|
|
reg |= ((mask >> 16U) & PWM_FSTS_FFLAG_MASK);
|
|
base->FSTS = reg;
|
|
}
|