rt-thread-official/bsp/acm32/acm32f0x0-nucleo/libraries/HAL_Driver/Src/HAL_TIMER.c

1521 lines
44 KiB
C

/***********************************************************************
* Filename : hal_lpuart.c
* Description : lpuart driver source file
* Author(s) : xwl
* version : V1.0
* Modify date : 2019-11-19
***********************************************************************/
#include "ACM32Fxx_HAL.h"
static void TIMER_ETR_SetConfig(TIM_TypeDef* TIMx, uint32_t TIM_ExtTRGPrescaler,
uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter);
static void TIMER_TI1FP1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
static void TIMER_TI2FP2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
static void TIMER_IC1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t filter);
static void TIMER_IC2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t filter);
static void TIMER_IC3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t filter);
static void TIMER_IC4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t filter);
/*********************************************************************************
* Function : HAL_TIMER_MSP_Init
* Description : MSP init, mainly about clock, nvic
* Input : timer handler
* Output : 0: success; else:error
* Author : xwl
**********************************************************************************/
__weak uint32_t HAL_TIMER_MSP_Init(TIM_HandleTypeDef * htim)
{
uint32_t Timer_Instance;
if (0 == IS_TIMER_INSTANCE(htim->Instance))
{
return HAL_ERROR; //instance error
}
Timer_Instance = (uint32_t)(htim->Instance);
switch(Timer_Instance)
{
case TIM1_BASE:
System_Module_Reset(RST_TIM1);
System_Module_Enable(EN_TIM1);
NVIC_ClearPendingIRQ(TIM1_BRK_UP_TRG_COM_IRQn);
NVIC_EnableIRQ(TIM1_BRK_UP_TRG_COM_IRQn);
break;
case TIM3_BASE:
System_Module_Reset(RST_TIM3);
System_Module_Enable(EN_TIM3);
NVIC_ClearPendingIRQ(TIM3_IRQn);
NVIC_EnableIRQ(TIM3_IRQn);
break;
case TIM6_BASE:
System_Module_Reset(RST_TIM6);
System_Module_Enable(EN_TIM6);
NVIC_ClearPendingIRQ(TIM6_IRQn);
NVIC_EnableIRQ(TIM6_IRQn);
break;
case TIM14_BASE:
System_Module_Reset(RST_TIM14);
System_Module_Enable(EN_TIM14);
NVIC_ClearPendingIRQ(TIM14_IRQn);
NVIC_EnableIRQ(TIM14_IRQn);
break;
case TIM15_BASE:
System_Module_Reset(RST_TIM15);
System_Module_Enable(EN_TIM15);
NVIC_ClearPendingIRQ(TIM15_IRQn);
NVIC_EnableIRQ(TIM15_IRQn);
break;
case TIM16_BASE:
System_Module_Reset(RST_TIM16);
System_Module_Enable(EN_TIM16);
NVIC_ClearPendingIRQ(TIM16_IRQn);
NVIC_EnableIRQ(TIM16_IRQn);
break;
case TIM17_BASE:
System_Module_Reset(RST_TIM17);
System_Module_Enable(EN_TIM17);
NVIC_ClearPendingIRQ(TIM17_IRQn);
NVIC_EnableIRQ(TIM17_IRQn);
break;
default:
return HAL_ERROR;
}
return HAL_OK;
}
__weak uint32_t HAL_TIMER_Base_MspDeInit(TIM_HandleTypeDef * htim)
{
uint32_t Timer_Instance;
if (0 == IS_TIMER_INSTANCE(htim->Instance))
{
return HAL_ERROR; //instance error
}
Timer_Instance = (uint32_t)(htim->Instance);
switch(Timer_Instance)
{
case TIM1_BASE:
System_Module_Disable(EN_TIM1);
NVIC_ClearPendingIRQ(TIM1_BRK_UP_TRG_COM_IRQn);
NVIC_DisableIRQ(TIM1_BRK_UP_TRG_COM_IRQn);
break;
case TIM3_BASE:
System_Module_Disable(EN_TIM3);
NVIC_ClearPendingIRQ(TIM3_IRQn);
NVIC_DisableIRQ(TIM3_IRQn);
break;
case TIM6_BASE:
System_Module_Disable(EN_TIM6);
NVIC_ClearPendingIRQ(TIM6_IRQn);
NVIC_DisableIRQ(TIM6_IRQn);
break;
case TIM14_BASE:
System_Module_Disable(EN_TIM14);
NVIC_ClearPendingIRQ(TIM14_IRQn);
NVIC_DisableIRQ(TIM14_IRQn);
break;
case TIM15_BASE:
System_Module_Disable(EN_TIM15);
NVIC_ClearPendingIRQ(TIM15_IRQn);
NVIC_DisableIRQ(TIM15_IRQn);
break;
case TIM16_BASE:
System_Module_Disable(EN_TIM16);
NVIC_ClearPendingIRQ(TIM16_IRQn);
NVIC_DisableIRQ(TIM16_IRQn);
break;
case TIM17_BASE:
System_Module_Disable(EN_TIM17);
NVIC_ClearPendingIRQ(TIM17_IRQn);
NVIC_DisableIRQ(TIM17_IRQn);
break;
default:
return HAL_ERROR;
}
return HAL_OK;
}
/*********************************************************************************
* Function : HAL_TIMER_Slave_Mode_Config
* Description : configure timer in slave mode
* Input :
htim: timer handler
sSlaveConfig: slave mode parameter strcture
SlaveMode: TIM_SLAVE_MODE_DIS, TIM_SLAVE_MODE_ENC1...
InputTrigger: TIM_TRIGGER_SOURCE_ITR0, TIM_TRIGGER_SOURCE_ITR1...
TriggerPolarity: TIM_SLAVE_CAPTURE_ACTIVE_RISING, TIM_SLAVE_CAPTURE_ACTIVE_FALLING...
TriggerPrescaler: TIM_ETR_PRESCALER_1, TIM_ETR_PRESCALER_2...
* Output : 0: success; else:error
* Author : xwl
**********************************************************************************/
uint32_t HAL_TIMER_Slave_Mode_Config(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig)
{
if (0 == IS_TIM_SLAVE_INSTANCE(htim->Instance) )
{
return 1; // not supported
}
/*reset SMS and TS bits*/
htim->Instance->SMCR &= (~(BIT0|BIT1|BIT2|BIT4|BIT5|BIT6));
/*SET SMS bits*/
htim->Instance->SMCR |= (sSlaveConfig->SlaveMode & (BIT0|BIT1|BIT2) );
/*SET TS bits*/
htim->Instance->SMCR |= (sSlaveConfig->InputTrigger & (BIT4|BIT5|BIT6) );
switch (sSlaveConfig->InputTrigger)
{
case TIM_TRIGGER_SOURCE_TI1FP1:
TIMER_TI1FP1_ConfigInputStage(htim->Instance, sSlaveConfig->TriggerPolarity, sSlaveConfig->TriggerFilter);
break;
case TIM_TRIGGER_SOURCE_TI2FP2:
TIMER_TI2FP2_ConfigInputStage(htim->Instance, sSlaveConfig->TriggerPolarity, sSlaveConfig->TriggerFilter);
break;
case TIM_TRIGGER_SOURCE_ETRF:
TIMER_ETR_SetConfig(htim->Instance, sSlaveConfig->TriggerPrescaler, sSlaveConfig->TriggerPolarity, sSlaveConfig->TriggerFilter);
break;
case TIM_TRIGGER_SOURCE_ITR0:
case TIM_TRIGGER_SOURCE_ITR1:
case TIM_TRIGGER_SOURCE_ITR2:
case TIM_TRIGGER_SOURCE_ITR3:
// don't need do anything here
break;
default:
return 1;
}
return 0;
}
/*********************************************************************************
* Function : HAL_TIMER_Master_Mode_Config
* Description : configure timer in master mode
* Input :
TIMx: timer instance
sMasterConfig: master mode parameter structure
MasterSlaveMode: TIM_TRGO_RESET, TIM_TRGO_ENABLE...
MasterOutputTrigger: TIM_MASTERSLAVEMODE_DISABLE, TIM_MASTERSLAVEMODE_ENABLE
* Output : 0: success; else:error
* Author : xwl
**********************************************************************************/
uint32_t HAL_TIMER_Master_Mode_Config(TIM_TypeDef *TIMx, TIM_MasterConfigTypeDef * sMasterConfig)
{
/*reset bits*/
TIMx->SMCR &= (~BIT7);
TIMx->CR2 &= (~(BIT4|BIT5|BIT6));
TIMx->SMCR |= sMasterConfig->MasterSlaveMode;
TIMx->CR2 |= sMasterConfig->MasterOutputTrigger;
return 0;
}
/*********************************************************************************
* Function : HAL_TIMER_Output_Config
* Description : configure output parameter
* Input :
TIMx: timer instance
Output_Config: output configration parameter structure
OCMode: OUTPUT_MODE_FROZEN, OUTPUT_MODE_MATCH_HIGH...
Pulse: write to ccrx register
OCPolarity: OC channel output polarity: OUTPUT_POL_ACTIVE_HIGH, OUTPUT_POL_ACTIVE_LOW
OCNPolarity: OCN channel output polarity: OUTPUT_POL_ACTIVE_HIGH, OUTPUT_POL_ACTIVE_LOW
OCFastMode: OUTPUT_FAST_MODE_DISABLE, OUTPUT_FAST_MODE_ENABLE
OCIdleState: OC channel idle state, OUTPUT_IDLE_STATE_0, OUTPUT_IDLE_STATE_1
OCNIdleState: OCN channel idle state, OUTPUT_IDLE_STATE_0, OUTPUT_IDLE_STATE_1
Channel: TIM_CHANNEL_1, TIM_CHANNEL_2...
* Output : 0: success; else:error
* Author : xwl
**********************************************************************************/
uint32_t HAL_TIMER_Output_Config(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef * Output_Config, uint32_t Channel)
{
if (0 == IS_TIM_CCX_INSTANCE(TIMx, Channel) )
{
return 1; // error parameter
}
switch(Channel)
{
case TIM_CHANNEL_1:
TIMx->CCER &= (~BIT0); //disable OC1
if (OUTPUT_POL_ACTIVE_HIGH == Output_Config->OCPolarity)
{
TIMx->CCER &= (~BIT1);
}
else
{
TIMx->CCER |= (BIT1);
}
if (IS_TIM_CCXN_INSTANCE(TIMx, Channel) )
{
TIMx->CCER &= (~BIT2); //disable OC1N
if (OUTPUT_POL_ACTIVE_HIGH == Output_Config->OCNPolarity)
{
TIMx->CCER &= (~BIT3);
}
else
{
TIMx->CCER |= (BIT3);
}
}
TIMx->CCMR1 &= (~0x00FFU); // reset low 8 bits
TIMx->CCR1 = Output_Config->Pulse;
if (OUTPUT_FAST_MODE_ENABLE == Output_Config->OCFastMode)
{
TIMx->CCMR1 |= (BIT2);
}
TIMx->CCMR1 |= (BIT3); // preload enable
if (IS_TIM_BREAK_INSTANCE(TIMx))
{
if (OUTPUT_IDLE_STATE_0 == Output_Config->OCIdleState)
{
TIMx->CR2 &= (~BIT8);
}
else
{
TIMx->CR2 |= BIT8;
}
if (OUTPUT_IDLE_STATE_0 == Output_Config->OCNIdleState)
{
TIMx->CR2 &= (~BIT9);
}
else
{
TIMx->CR2 |= BIT9;
}
}
TIMx->CCMR1 = (TIMx->CCMR1 & (~(BIT4|BIT5|BIT6))) | (Output_Config->OCMode << 4);
break;
case TIM_CHANNEL_2:
TIMx->CCER &= (~BIT4); //disable OC2
if (OUTPUT_POL_ACTIVE_HIGH == Output_Config->OCPolarity)
{
TIMx->CCER &= (~BIT5);
}
else
{
TIMx->CCER |= (BIT5);
}
if (IS_TIM_CCXN_INSTANCE(TIMx, Channel) )
{
TIMx->CCER &= (~BIT6); //disable OC2N
if (OUTPUT_POL_ACTIVE_HIGH == Output_Config->OCNPolarity)
{
TIMx->CCER &= (~BIT7);
}
else
{
TIMx->CCER |= (BIT7);
}
}
TIMx->CCMR1 &= (~0xFF00U); // reset high 8 bits
TIMx->CCR2 = Output_Config->Pulse; // write value to ccr before preload enable
if (OUTPUT_FAST_MODE_ENABLE == Output_Config->OCFastMode)
{
TIMx->CCMR1 |= (BIT10);
}
TIMx->CCMR1 |= (BIT11); // preload enable
if (IS_TIM_BREAK_INSTANCE(TIMx))
{
if (OUTPUT_IDLE_STATE_0 == Output_Config->OCIdleState)
{
TIMx->CR2 &= (~BIT10);
}
else
{
TIMx->CR2 |= BIT10;
}
if (OUTPUT_IDLE_STATE_0 == Output_Config->OCNIdleState)
{
TIMx->CR2 &= (~BIT11);
}
else
{
TIMx->CR2 |= BIT11;
}
}
TIMx->CCMR1 = (TIMx->CCMR1 & (~(BIT12|BIT13|BIT14))) | (Output_Config->OCMode << 12);
break;
case TIM_CHANNEL_3:
TIMx->CCER &= (~BIT8); //disable OC3
if (OUTPUT_POL_ACTIVE_HIGH == Output_Config->OCPolarity)
{
TIMx->CCER &= (~BIT9);
}
else
{
TIMx->CCER |= (BIT9);
}
if (IS_TIM_CCXN_INSTANCE(TIMx, Channel) )
{
TIMx->CCER &= (~BIT10); //disable OC3N
if (OUTPUT_POL_ACTIVE_HIGH == Output_Config->OCNPolarity)
{
TIMx->CCER &= (~BIT11);
}
else
{
TIMx->CCER |= (BIT11);
}
}
TIMx->CCMR2 &= (~0x00FF); // reset low 8 bits
TIMx->CCMR2 |= (BIT3); // preload enable
if (OUTPUT_FAST_MODE_ENABLE == Output_Config->OCFastMode)
{
TIMx->CCMR2 |= (BIT2);
}
TIMx->CCR3 = Output_Config->Pulse;
if (IS_TIM_BREAK_INSTANCE(TIMx))
{
if (OUTPUT_IDLE_STATE_0 == Output_Config->OCIdleState)
{
TIMx->CR2 &= (~BIT12);
}
else
{
TIMx->CR2 |= BIT12;
}
if (OUTPUT_IDLE_STATE_0 == Output_Config->OCNIdleState)
{
TIMx->CR2 &= (~BIT13);
}
else
{
TIMx->CR2 |= BIT13;
}
}
TIMx->CCMR2 = (TIMx->CCMR2 & (~(BIT4|BIT5|BIT6))) | (Output_Config->OCMode << 4);
break;
case TIM_CHANNEL_4:
TIMx->CCER &= (~BIT12); //disable OC4
if (OUTPUT_POL_ACTIVE_HIGH == Output_Config->OCPolarity)
{
TIMx->CCER &= (~BIT13);
}
else
{
TIMx->CCER |= (BIT13);
}
TIMx->CCMR2 &= (~0xFF00); // reset high 8 bits
TIMx->CCR4 = Output_Config->Pulse;
if (OUTPUT_FAST_MODE_ENABLE == Output_Config->OCFastMode)
{
TIMx->CCMR2 |= (BIT10); // fast mode
}
TIMx->CCMR2 |= (BIT11); // preload enable
if (IS_TIM_BREAK_INSTANCE(TIMx))
{
if (OUTPUT_IDLE_STATE_0 == Output_Config->OCIdleState)
{
TIMx->CR2 &= (~BIT14);
}
else
{
TIMx->CR2 |= BIT14;
}
}
TIMx->CCMR2 = (TIMx->CCMR2 & (~(BIT12|BIT13|BIT14))) | (Output_Config->OCMode << 12);
break;
default:
return 1; // error parameter
}
return 0;
}
/*********************************************************************************
* Function : HAL_TIMER_Capture_Config
* Description : configure capture parameters
* Input :
TIMx: timer instance
Capture_Config: capture configuration parameter strcture
ICPolarity: TIM_SLAVE_CAPTURE_ACTIVE_RISING, TIM_SLAVE_CAPTURE_ACTIVE_FALLING...
ICSelection: TIM_ICSELECTION_DIRECTTI, TIM_ICSELECTION_INDIRECTTI
ICFilter: TIM_IC1_FILTER_LVL(x), TIM_IC2_FILTER_LVL(x), x:0-15
ICPrescaler: TIM_IC1_PRESCALER_1, TIM_IC2_PRESCALER_1...
Channel: channel id, TIM_CHANNEL_1, TIM_CHANNEL_2...
* Output : 0: success; else:error
* Author : xwl
**********************************************************************************/
uint32_t HAL_TIMER_Capture_Config(TIM_TypeDef *TIMx, TIM_IC_InitTypeDef * Capture_Config, uint32_t Channel)
{
switch(Channel)
{
case TIM_CHANNEL_1:
TIMER_IC1_SetConfig(TIMx, Capture_Config->ICPolarity, Capture_Config->ICSelection, Capture_Config->TIFilter);
/* Reset the IC1PSC Bits */
TIMx->CCMR1 &= (~BIT2|BIT3);
/* Set the IC1PSC value */
TIMx->CCMR1 |= Capture_Config->ICPrescaler;
break;
case TIM_CHANNEL_2:
TIMER_IC2_SetConfig(TIMx, Capture_Config->ICPolarity, Capture_Config->ICSelection, Capture_Config->TIFilter);
/* Reset the IC2PSC Bits */
TIMx->CCMR1 &= (~BIT10|BIT11);
/* Set the IC2PSC value */
TIMx->CCMR1 |= Capture_Config->ICPrescaler;
break;
case TIM_CHANNEL_3:
TIMER_IC3_SetConfig(TIMx, Capture_Config->ICPolarity, Capture_Config->ICSelection, Capture_Config->TIFilter);
/* Reset the IC3PSC Bits */
TIMx->CCMR2 &= (~BIT2|BIT3);
/* Set the IC3PSC value */
TIMx->CCMR2 |= Capture_Config->ICPrescaler;
break;
case TIM_CHANNEL_4:
TIMER_IC4_SetConfig(TIMx, Capture_Config->ICPolarity, Capture_Config->ICSelection, Capture_Config->TIFilter);
/* Reset the IC4PSC Bits */
TIMx->CCMR2 &= (~BIT10|BIT11);
/* Set the IC4PSC value */
TIMx->CCMR2 |= Capture_Config->ICPrescaler;
break;
default:
return 1;
}
return 0;
}
/*********************************************************************************
* Function : HAL_TIMER_SelectClockSource
* Description : select timer counter source, internal or external
* Input:
htim : timer handler
sClockSourceConfig: configuration parameters, includes following members:
ClockSource: TIM_CLOCKSOURCE_INT, TIM_CLOCKSOURCE_ETR...
ClockPolarity: TIM_SLAVE_CAPTURE_ACTIVE_RISING, TIM_SLAVE_CAPTURE_ACTIVE_FALLING...
ClockPrescaler: TIM_ETR_PRESCALER_1, TIM_ETR_PRESCALER_2...
ClockFilter: TIM_ETR_FILTER_LVL(x), TIM_IC1_FILTER_LVL(x), TIM_IC2_FILTER_LVL(x)
* Output : HAL_ERROR:error, HAL_OK:OK
* Author : xwl
**********************************************************************************/
HAL_StatusTypeDef HAL_TIMER_SelectClockSource(TIM_HandleTypeDef *htim, TIM_ClockConfigTypeDef * sClockSourceConfig)
{
htim->Instance->SMCR &= (~(BIT0|BIT1|BIT2));
switch (sClockSourceConfig->ClockSource)
{
case TIM_CLOCKSOURCE_INT:
{
// do nothing here
break;
}
case TIM_CLOCKSOURCE_ETR:
{
/* Configure the ETR Clock source */
TIMER_ETR_SetConfig(htim->Instance,
sClockSourceConfig->ClockPrescaler,
sClockSourceConfig->ClockPolarity,
sClockSourceConfig->ClockFilter);
/* Enable the External clock mode2 */
htim->Instance->SMCR |= BIT14; // ECE=1,external clock mode 2
break;
}
case TIM_CLOCKSOURCE_TI1FP1:
{
TIMER_TI1FP1_ConfigInputStage(htim->Instance,
sClockSourceConfig->ClockPolarity,
sClockSourceConfig->ClockFilter);
htim->Instance->SMCR &= (~(BIT4|BIT5|BIT6)); // trigger selection
htim->Instance->SMCR |= (5 << 4); // Trigger select TI1FP1
htim->Instance->SMCR |= (BIT0|BIT1|BIT2); // select external clock mode 1
break;
}
case TIM_CLOCKSOURCE_TI2FP2:
{
TIMER_TI2FP2_ConfigInputStage(htim->Instance,
sClockSourceConfig->ClockPolarity,
sClockSourceConfig->ClockFilter);
htim->Instance->SMCR &= (~(BIT4|BIT5|BIT6)); // trigger selection
htim->Instance->SMCR |= (6 << 4); // Trigger select TI2FP2
htim->Instance->SMCR |= (BIT0|BIT1|BIT2); // select external clock mode 1
break;
}
case TIM_CLOCKSOURCE_ITR0:
case TIM_CLOCKSOURCE_ITR1:
case TIM_CLOCKSOURCE_ITR2:
case TIM_CLOCKSOURCE_ITR3:
{
htim->Instance->SMCR &= (~(BIT4|BIT5|BIT6));
htim->Instance->SMCR |= ( (sClockSourceConfig->ClockSource - TIM_CLOCKSOURCE_ITR0) << 4);
htim->Instance->SMCR |= (BIT0|BIT1|BIT2); // select external clock mode 1
break;
}
default:
return HAL_ERROR;
}
return HAL_OK;
}
/*********************************************************************************
* Function : HAL_TIMER_Base_Init
* Description : timer base initiation
* Input : timer handler
* Output : 0: success; else:error
* Author : xwl
**********************************************************************************/
uint32_t HAL_TIMER_Base_Init(TIM_HandleTypeDef * htim)
{
if (0 == IS_TIMER_INSTANCE(htim->Instance))
{
return 1; //instance error
}
htim->Instance->CR1 = BIT2; // CEN=0, URS=1, OPM = 0
if (htim->Init.ARRPreLoadEn)
{
htim->Instance->CR1 |= (BIT7);
}
else
{
htim->Instance->CR1 &= (~BIT7);
}
htim->Instance->ARR = htim->Init.Period;
htim->Instance->PSC = htim->Init.Prescaler;
if (IS_TIM_REPETITION_COUNTER_INSTANCE(htim->Instance))
{
htim->Instance->RCR = htim->Init.RepetitionCounter;
}
htim->Instance->EGR = BIT0; // no UIF generated because URS=1
if (IS_TIM_CLOCK_DIVISION_INSTANCE(htim->Instance))
{
htim->Instance->CR1 = (htim->Instance->CR1 & (~(BIT8|BIT9))) | ((htim->Init.ClockDivision) & (BIT8|BIT9));
}
//up/down/center mode
htim->Instance->CR1 = (htim->Instance->CR1 & (~(BIT4|BIT5|BIT6))) | ((htim->Init.CounterMode) & (BIT4|BIT5|BIT6));
htim->Instance->CR1 &= (~BIT2); //URS = 0
return 0;
}
/*********************************************************************************
* Function : HAL_TIMER_Base_DeInit
* Description : timer base deinitiation, disable Timer, turn off module clock and nvic
* Input : timer handler
* Output : HAL_OK: success; HAL_ERROR:error
* Author : xwl
**********************************************************************************/
HAL_StatusTypeDef HAL_TIMER_Base_DeInit(TIM_HandleTypeDef *htim)
{
htim->Instance->CR1 &= (~BIT0);
HAL_TIMER_Base_MspDeInit(htim);
return HAL_OK;
}
/*********************************************************************************
* Function : HAL_TIMER_Base_Start
* Description : start timer
* Input : timer instance
* Output : none
* Author : xwl
**********************************************************************************/
void HAL_TIMER_Base_Start(TIM_TypeDef *TIMx)
{
if (0 == IS_TIM_SLAVE_INSTANCE(TIMx) )
{
TIMx->CR1 |= BIT0;
return;
}
if (TIM_SLAVE_MODE_TRIG != (TIMx->SMCR & (BIT0|BIT1|BIT2) ) )
{
TIMx->CR1 |= BIT0;
return;
}
return;
}
/*********************************************************************************
* Function : HAL_TIMER_Base_Stop
* Description : stop timer
* Input : timer handler
* Output : none
* Author : xwl
**********************************************************************************/
HAL_StatusTypeDef HAL_TIMER_Base_Stop(TIM_TypeDef *TIMx)
{
TIMx->CR1 &= (~BIT0);
HAL_TIM_DISABLE_IT_EX(TIMx, TIM_IT_UPDATE);
return HAL_OK;
}
/*********************************************************************************
* Function : HAL_TIMER_OnePulse_Init
* Description : start timer with one pulse mode
* Input :
htim: timer handler
mode: 0 means normal mode, 1 means one pulse mode
* Output : HAL_OK, success; HAL_ERROR, fail
* Author : xwl
**********************************************************************************/
HAL_StatusTypeDef HAL_TIMER_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t mode)
{
/* Check the TIM handle allocation */
if(htim == NULL)
{
return HAL_ERROR;
}
HAL_TIMER_Base_Init(htim);
/*reset the OPM Bit */
htim->Instance->CR1 &= (~BIT3);
if (0 != mode)
{
/*set the OPM Bit */
htim->Instance->CR1 |= BIT3;
}
return HAL_OK;
}
/*********************************************************************************
* Function : HAL_TIM_PWM_Output_Start
* Description : start timer output
* Input :
TIMx: timer instance
Channel: TIM_CHANNEL_1, TIM_CHANNEL_2...
* Output : : 0: success; else:error
* Author : xwl
**********************************************************************************/
uint32_t HAL_TIM_PWM_Output_Start(TIM_TypeDef *TIMx, uint32_t Channel)
{
if (0 == IS_TIM_CCX_INSTANCE(TIMx, Channel) )
{
return 1; // error parameter
}
switch(Channel)
{
case TIM_CHANNEL_1:
TIMx->CCER |= BIT0;
if (IS_TIM_CCXN_INSTANCE(TIMx, Channel) )
{
TIMx->CCER |= BIT2;
}
break;
case TIM_CHANNEL_2:
TIMx->CCER |= BIT4;
if (IS_TIM_CCXN_INSTANCE(TIMx, Channel) )
{
TIMx->CCER |= BIT6;
}
break;
case TIM_CHANNEL_3:
TIMx->CCER |= BIT8;
if (IS_TIM_CCXN_INSTANCE(TIMx, Channel) )
{
TIMx->CCER |= BIT10;
}
break;
case TIM_CHANNEL_4:
TIMx->CCER |= BIT12;
break;
default:
return 1;
}
if(IS_TIM_BREAK_INSTANCE(TIMx) != 0)
{
/* Enable the main output */
TIMx->BDTR |= BIT15;
}
if (TIM_SLAVE_MODE_TRIG != (TIMx->SMCR & (BIT0|BIT1|BIT2) ) )
{
TIMx->CR1 |= BIT0;
}
return 0;
}
/*********************************************************************************
* Function : HAL_TIM_PWM_Output_Stop
* Description : stop timer pwm output
* Input :
TIMx: timer instance
Channel: TIM_CHANNEL_1, TIM_CHANNEL_2...
* Output : : 0: success; else:error
* Author : xwl
**********************************************************************************/
HAL_StatusTypeDef HAL_TIM_PWM_Output_Stop(TIM_TypeDef *TIMx, uint32_t Channel)
{
if (0 == IS_TIM_CCX_INSTANCE(TIMx, Channel) )
{
return HAL_ERROR; // error parameter
}
switch(Channel)
{
case TIM_CHANNEL_1:
TIMx->CCER &= (~(BIT0 | BIT2));
break;
case TIM_CHANNEL_2:
TIMx->CCER &= (~(BIT4 | BIT6));
break;
case TIM_CHANNEL_3:
TIMx->CCER &= (~(BIT8 | BIT10));
break;
case TIM_CHANNEL_4:
TIMx->CCER &= (~(BIT12));
break;
default:
return HAL_ERROR;
}
if(IS_TIM_BREAK_INSTANCE(TIMx) != 0)
{
/* Enable the main output */
TIMx->BDTR &= (~BIT15);
}
if (TIM_SLAVE_MODE_TRIG != (TIMx->SMCR & (BIT0|BIT1|BIT2) ) )
{
TIMx->CR1 &= (~BIT0);
}
/* Return function status */
return HAL_OK;
}
/*********************************************************************************
* Function : HAL_TIMER_OC_Start
* Description : start timer output
* Input :
TIMx: timer instance
Channel: TIM_CHANNEL_1, TIM_CHANNEL_2...
* Output : : 0: success; else:error
* Author : xwl
**********************************************************************************/
uint32_t HAL_TIMER_OC_Start(TIM_TypeDef *TIMx, uint32_t Channel)
{
if (0 == IS_TIM_CCX_INSTANCE(TIMx, Channel) )
{
return 1; // error parameter
}
switch(Channel)
{
case TIM_CHANNEL_1:
TIMx->CCER |= BIT0;
if (IS_TIM_CCXN_INSTANCE(TIMx, Channel) )
{
TIMx->CCER |= BIT2;
}
break;
case TIM_CHANNEL_2:
TIMx->CCER |= BIT4;
if (IS_TIM_CCXN_INSTANCE(TIMx, Channel) )
{
TIMx->CCER |= BIT6;
}
break;
case TIM_CHANNEL_3:
TIMx->CCER |= BIT8;
if (IS_TIM_CCXN_INSTANCE(TIMx, Channel) )
{
TIMx->CCER |= BIT10;
}
break;
case TIM_CHANNEL_4:
TIMx->CCER |= BIT12;
break;
default:
return 1;
}
if(IS_TIM_BREAK_INSTANCE(TIMx) != 0)
{
/* Enable the main output */
TIMx->BDTR |= BIT15;
}
if (TIM_SLAVE_MODE_TRIG != (TIMx->SMCR & (BIT0|BIT1|BIT2) ) )
{
TIMx->CR1 |= BIT0;
}
return 0;
}
/*********************************************************************************
* Function : HAL_TIMER_OCxN_Start
* Description : start timer OCxN output
* Input :
TIMx: timer instance
Channel: TIM_CHANNEL_1, TIM_CHANNEL_2...
* Output : : 0: success; else:error
* Author : xwl
**********************************************************************************/
uint32_t HAL_TIMER_OCxN_Start(TIM_TypeDef *TIMx, uint32_t Channel)
{
if (0 == IS_TIM_CCX_INSTANCE(TIMx, Channel) )
{
return 1; // error parameter
}
switch(Channel)
{
case TIM_CHANNEL_1:
if (IS_TIM_CCXN_INSTANCE(TIMx, Channel) )
{
TIMx->CCER |= BIT2;
}
break;
case TIM_CHANNEL_2:
if (IS_TIM_CCXN_INSTANCE(TIMx, Channel) )
{
TIMx->CCER |= BIT6;
}
break;
case TIM_CHANNEL_3:
if (IS_TIM_CCXN_INSTANCE(TIMx, Channel) )
{
TIMx->CCER |= BIT10;
}
break;
case TIM_CHANNEL_4:
TIMx->CCER |= BIT12;
break;
default:
return 1;
}
if(IS_TIM_BREAK_INSTANCE(TIMx) != 0)
{
/* Enable the main output */
TIMx->BDTR |= BIT15;
}
if (TIM_SLAVE_MODE_TRIG != (TIMx->SMCR & (BIT0|BIT1|BIT2) ) )
{
TIMx->CR1 |= BIT0;
}
return 0;
}
/*********************************************************************************
* Function : HAL_TIMER_OC_Stop
* Description : stop timer output
* Input :
TIMx: timer instance
Channel: TIM_CHANNEL_1, TIM_CHANNEL_2...
* Output : : 0: success; else:error
* Author : xwl
**********************************************************************************/
HAL_StatusTypeDef HAL_TIMER_OC_Stop(TIM_TypeDef *TIMx, uint32_t Channel)
{
if (0 == IS_TIM_CCX_INSTANCE(TIMx, Channel) )
{
return HAL_ERROR; // error parameter
}
switch(Channel)
{
case TIM_CHANNEL_1:
TIMx->CCER &= (~(BIT0 | BIT2));
break;
case TIM_CHANNEL_2:
TIMx->CCER &= (~(BIT4 | BIT6));
break;
case TIM_CHANNEL_3:
TIMx->CCER &= (~(BIT8 | BIT10));
break;
case TIM_CHANNEL_4:
TIMx->CCER &= (~(BIT12));
break;
default:
return HAL_ERROR;
}
if(IS_TIM_BREAK_INSTANCE(TIMx) != 0)
{
/* Enable the main output */
TIMx->BDTR &= (~BIT15);
}
if (TIM_SLAVE_MODE_TRIG != (TIMx->SMCR & (BIT0|BIT1|BIT2) ) )
{
TIMx->CR1 &= (~BIT0);
}
/* Return function status */
return HAL_OK;
}
/*********************************************************************************
* Function : HAL_TIM_Capture_Start
* Description : start timer capture
* Input :
TIMx: timer instance
Channel: TIM_CHANNEL_1, TIM_CHANNEL_2...
* Output : : 0: success; else:error
* Author : xwl
**********************************************************************************/
uint32_t HAL_TIM_Capture_Start(TIM_TypeDef *TIMx, uint32_t Channel)
{
if (0 == IS_TIM_CCX_INSTANCE(TIMx, Channel) )
{
return 1; // error parameter
}
switch(Channel)
{
case TIM_CHANNEL_1:
TIMx->CCER |= BIT0;
break;
case TIM_CHANNEL_2:
TIMx->CCER |= BIT4;
break;
case TIM_CHANNEL_3:
TIMx->CCER |= BIT8;
break;
case TIM_CHANNEL_4:
TIMx->CCER |= BIT12;
break;
default:
return 1;
}
if (TIM_SLAVE_MODE_TRIG != (TIMx->SMCR & (BIT0|BIT1|BIT2) ) )
{
TIMx->CR1 |= BIT0;
}
return 0;
}
/*********************************************************************************
* Function : HAL_TIM_Capture_Stop
* Description : stop timer capture
* Input :
TIMx: timer instance
Channel: TIM_CHANNEL_1, TIM_CHANNEL_2...
* Output : : 0: success; else:error
* Author : xwl
**********************************************************************************/
uint32_t HAL_TIM_Capture_Stop(TIM_TypeDef *TIMx, uint32_t Channel)
{
if (0 == IS_TIM_CCX_INSTANCE(TIMx, Channel) )
{
return 1; // error parameter
}
switch(Channel)
{
case TIM_CHANNEL_1:
TIMx->CCER &= (~BIT0);
break;
case TIM_CHANNEL_2:
TIMx->CCER &= (~BIT4);
break;
case TIM_CHANNEL_3:
TIMx->CCER &= (~BIT8);
break;
case TIM_CHANNEL_4:
TIMx->CCER &= (~BIT12);
break;
default:
return 1;
}
if (TIM_SLAVE_MODE_TRIG != (TIMx->SMCR & (BIT0|BIT1|BIT2) ) )
{
TIMx->CR1 &= (~BIT0);
}
return 0;
}
/*********************************************************************************
* Function : HAL_TIMEx_ETRSelection
* Description : select ETR signal, it can ben GPIO, COMP1_OUT, COMP2_OUT, ADC analog watchdog output
* Input :
htim: timer handler
ETRSelection: ETR_SELECT_GPIO, ETR_SELECT_COMP1_OUT...
* Output : HAL_OK, Success; HAL_ERROR:Fail
* Author : xwl
**********************************************************************************/
HAL_StatusTypeDef HAL_TIMEx_ETRSelection(TIM_HandleTypeDef *htim, uint32_t ETRSelection)
{
HAL_StatusTypeDef status = HAL_OK;
htim->Instance->AF1 &= (~ETR_SELECT_MASK);
htim->Instance->AF1 |= ETRSelection;
return status;
}
/*********************************************************************************
* Function : HAL_TIMER_ReadCapturedValue
* Description : read capture value as channel
* Input :
htim: timer handler
Channel: TIM_CHANNEL_1, TIM_CHANNEL_2...
* Output : capture value
* Author : xwl
**********************************************************************************/
uint32_t HAL_TIMER_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel)
{
uint32_t capture_data = 0U;
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Return the capture 1 value */
capture_data = htim->Instance->CCR1;
break;
}
case TIM_CHANNEL_2:
{
/* Return the capture 2 value */
capture_data = htim->Instance->CCR2;
break;
}
case TIM_CHANNEL_3:
{
/* Return the capture 3 value */
capture_data = htim->Instance->CCR3;
break;
}
case TIM_CHANNEL_4:
{
/* Return the capture 4 value */
capture_data = htim->Instance->CCR4;
break;
}
default:
break;
}
return capture_data;
}
/*********************************************************************************
* Function : HAL_TIMER_GenerateEvent
* Description : Generate event by software
* Input:
htim : timer handler
EventSource: TIM_EVENTSOURCE_UPDATE, TIM_EVENTSOURCE_CC1...
* Output : HAL_ERROR:error, HAL_OK:OK
* Author : xwl
**********************************************************************************/
HAL_StatusTypeDef HAL_TIMER_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource)
{
htim->Instance->EGR = EventSource;
return HAL_OK;
}
/*********************************************************************************
* Function : HAL_TIMER_Clear_Capture_Flag
* Description : clear capture flag as channel id
* Input :
htim: timer handler
Channel: TIM_CHANNEL_1, TIM_CHANNEL_2...
* Output : capture value
* Author : xwl
**********************************************************************************/
void HAL_TIMER_Clear_Capture_Flag(TIM_HandleTypeDef *htim, uint32_t Channel)
{
switch (Channel)
{
case TIM_CHANNEL_1:
{
htim->Instance->SR &= (~(BIT1|BIT9));
break;
}
case TIM_CHANNEL_2:
{
htim->Instance->SR &= (~(BIT2|BIT10));
break;
}
case TIM_CHANNEL_3:
{
htim->Instance->SR &= (~(BIT3|BIT11));
break;
}
case TIM_CHANNEL_4:
{
htim->Instance->SR &= (~(BIT4|BIT12));
break;
}
default:
break;
}
}
/*********************************************************************************
* Function : TIMER_ETR_SetConfig
* Description : configure ETR channel polarity, prescaler and filter
* Input:
TIMx : timer instance
TIM_ExtTRGPrescaler: TIM_ETR_PRESCALER_1, TIM_ETR_PRESCALER_2...
TIM_ExtTRGPolarity: TIM_ETR_POLAIRTY_HIGH, TIM_ETR_POLAIRTY_LOW
ExtTRGFilter: TIM_ETR_FILTER_LVL(x), x=0-15
* Output : none
* Author : xwl
**********************************************************************************/
static void TIMER_ETR_SetConfig(TIM_TypeDef* TIMx, uint32_t TIM_ExtTRGPrescaler, uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter)
{
/* Reset the ETR Bits */
TIMx->SMCR &= (~0xFF00U);
/* Set the Prescaler, the Filter value and the Polarity */
TIMx->SMCR |= (TIM_ExtTRGPrescaler | TIM_ExtTRGPolarity | ExtTRGFilter);
}
/*********************************************************************************
* Function : TIMER_TI1FP1_ConfigInputStage
* Description : configure TI1FP1 channel polarity and filter
* Input:
TIMx : timer instance
TIM_ICPolarity: TIM_SLAVE_CAPTURE_ACTIVE_RISING, TIM_SLAVE_CAPTURE_ACTIVE_FALLING...
Filter: TIM_TI1_FILTER_LVL(x), x=0-15
* Output : none
* Author : xwl
**********************************************************************************/
static void TIMER_TI1FP1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t Filter)
{
TIMx->CCER &= (~BIT0); //Disable the Channel 1: Reset the CC1E Bit
TIMx->CCMR1 = ((TIMx->CCMR1 & (~(BIT0|BIT1))) | BIT0); // CH1 as input
TIMx->CCMR1 &= (~0xF0U); // reset TI1 filter
TIMx->CCMR1 |= Filter;
if(TIM_SLAVE_CAPTURE_ACTIVE_RISING == TIM_ICPolarity)
{
TIMx->CCER |= TIM_CC1_SLAVE_CAPTURE_POL_RISING;
}
else if (TIM_SLAVE_CAPTURE_ACTIVE_FALLING == TIM_ICPolarity)
{
TIMx->CCER |= TIM_CC1_SLAVE_CAPTURE_POL_FALLING;
}
else
{
TIMx->CCER |= TIM_CC1_SLAVE_CAPTURE_POL_BOTH;
}
}
/*********************************************************************************
* Function : TIMER_TI2FP2_ConfigInputStage
* Description : configure TI2FP2 channel polarity and filter
* Input:
TIMx : timer instance
TIM_ICPolarity: TIM_SLAVE_CAPTURE_ACTIVE_RISING, TIM_SLAVE_CAPTURE_ACTIVE_FALLING...
Filter: TIM_TI2_FILTER_LVL(x), x=0-15
* Output : none
* Author : xwl
**********************************************************************************/
static void TIMER_TI2FP2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t Filter)
{
TIMx->CCER &= (~BIT4); //Disable the Channel 2: Reset the CC2E Bit
TIMx->CCMR1 = ((TIMx->CCMR1 & (~(BIT8|BIT9))) | BIT8); // CH2 as input
TIMx->CCMR1 &= (~0xF000U); // reset TI2 filter
TIMx->CCMR1 |= Filter;
if(TIM_SLAVE_CAPTURE_ACTIVE_RISING == TIM_ICPolarity)
{
TIMx->CCER |= TIM_CC2_SLAVE_CAPTURE_POL_RISING;
}
else if (TIM_SLAVE_CAPTURE_ACTIVE_FALLING == TIM_ICPolarity)
{
TIMx->CCER |= TIM_CC2_SLAVE_CAPTURE_POL_FALLING;
}
else
{
TIMx->CCER |= TIM_CC2_SLAVE_CAPTURE_POL_BOTH;
}
}
/*********************************************************************************
* Function : TIMER_IC1_SetConfig
* Description : configure TI1FP1 or TI2FP1 channel polarity and filter
* Input:
TIMx : timer instance
TIM_ICPolarity: TIM_SLAVE_CAPTURE_ACTIVE_RISING, TIM_SLAVE_CAPTURE_ACTIVE_FALLING...
Filter: TIM_TI1_FILTER_LVL(x), x=0-15
* Output : none
* Author : xwl
**********************************************************************************/
void TIMER_IC1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t Filter)
{
/* Disable the Channel 1: Reset the CC1E Bit */
TIMx->CCER &= (~BIT0);
if(TIM_SLAVE_CAPTURE_ACTIVE_RISING == TIM_ICPolarity)
{
TIMx->CCER |= TIM_CC1_SLAVE_CAPTURE_POL_RISING;
}
else if (TIM_SLAVE_CAPTURE_ACTIVE_FALLING == TIM_ICPolarity)
{
TIMx->CCER |= TIM_CC1_SLAVE_CAPTURE_POL_FALLING;
}
else if (TIM_SLAVE_CAPTURE_ACTIVE_RISING_FALLING == TIM_ICPolarity)
{
TIMx->CCER |= TIM_CC1_SLAVE_CAPTURE_POL_BOTH;
}
if(TIM_ICSELECTION_DIRECTTI == TIM_ICSelection)
{
TIMx->CCMR1 = (TIMx->CCMR1 & (~(BIT0|BIT1))) | BIT0;
TIMx->CCMR1 &= (~0xF0U);
}
else
{
TIMx->CCMR1 = (TIMx->CCMR1 & (~(BIT0|BIT1))) | BIT1;
TIMx->CCMR1 &= (~0xF000U);
}
TIMx->CCMR1 |= Filter;
}
/*********************************************************************************
* Function : TIMER_IC2_SetConfig
* Description : configure TI1FP2 or TI2FP2 channel polarity and filter
* Input:
TIMx : timer instance
TIM_ICPolarity: TIM_SLAVE_CAPTURE_ACTIVE_RISING, TIM_SLAVE_CAPTURE_ACTIVE_FALLING...
Filter: TIM_TI2_FILTER_LVL(x), x=0-15
* Output : none
* Author : xwl
**********************************************************************************/
static void TIMER_IC2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t Filter)
{
/* Disable the Channel 2, Reset the CC2E Bit */
TIMx->CCER &= (~BIT4);
if(TIM_SLAVE_CAPTURE_ACTIVE_RISING == TIM_ICPolarity)
{
TIMx->CCER |= TIM_CC2_SLAVE_CAPTURE_POL_RISING;
}
else if (TIM_SLAVE_CAPTURE_ACTIVE_FALLING == TIM_ICPolarity)
{
TIMx->CCER |= TIM_CC2_SLAVE_CAPTURE_POL_FALLING;
}
else if (TIM_SLAVE_CAPTURE_ACTIVE_RISING_FALLING == TIM_ICPolarity)
{
TIMx->CCER |= TIM_CC2_SLAVE_CAPTURE_POL_BOTH;
}
if(TIM_ICSELECTION_DIRECTTI == TIM_ICSelection)
{
TIMx->CCMR1 = (TIMx->CCMR1 & (~(BIT8|BIT9))) | BIT8;
TIMx->CCMR1 &= (~0xF000U);
}
else
{
TIMx->CCMR1 = (TIMx->CCMR1 & (~(BIT8|BIT9))) | BIT9;
TIMx->CCMR1 &= (~0xF0U);
}
TIMx->CCMR1 |= Filter;
}
/*********************************************************************************
* Function : TIMER_IC3_SetConfig
* Description : configure TI3FP3 or TI4FP3 channel polarity and filter
* Input:
TIMx : timer instance
TIM_ICPolarity: TIM_SLAVE_CAPTURE_ACTIVE_RISING, TIM_SLAVE_CAPTURE_ACTIVE_FALLING...
Filter: TIM_TI3_FILTER_LVL(x), x=0-15
* Output : none
* Author : xwl
**********************************************************************************/
static void TIMER_IC3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t Filter)
{
/* Disable the Channel 3, Reset the CC3E Bit */
TIMx->CCER &= (~BIT8);
if(TIM_SLAVE_CAPTURE_ACTIVE_RISING == TIM_ICPolarity)
{
TIMx->CCER |= TIM_CC3_SLAVE_CAPTURE_POL_RISING;
}
else if (TIM_SLAVE_CAPTURE_ACTIVE_FALLING == TIM_ICPolarity)
{
TIMx->CCER |= TIM_CC3_SLAVE_CAPTURE_POL_FALLING;
}
else if (TIM_SLAVE_CAPTURE_ACTIVE_RISING_FALLING == TIM_ICPolarity)
{
TIMx->CCER |= TIM_CC3_SLAVE_CAPTURE_POL_BOTH;
}
if(TIM_ICSELECTION_DIRECTTI == TIM_ICSelection)
{
TIMx->CCMR2 = (TIMx->CCMR2 & (~(BIT0|BIT1))) | BIT0;
TIMx->CCMR2 &= (~0xF0U);
}
else
{
TIMx->CCMR2 = (TIMx->CCMR2 & (~(BIT0|BIT1))) | BIT1;
TIMx->CCMR2 &= (~0xF000U);
}
TIMx->CCMR2 |= Filter;
}
/*********************************************************************************
* Function : TIMER_IC4_SetConfig
* Description : configure TI3FP4 or TI4FP4 channel polarity and filter
* Input:
TIMx : timer instance
TIM_ICPolarity: TIM_SLAVE_CAPTURE_ACTIVE_RISING, TIM_SLAVE_CAPTURE_ACTIVE_FALLING...
Filter: TIM_TI4_FILTER_LVL(x), x=0-15
* Output : none
* Author : xwl
**********************************************************************************/
static void TIMER_IC4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t Filter)
{
/* Disable the Channel 3, Reset the CC3E Bit */
TIMx->CCER &= (~BIT12);
if(TIM_SLAVE_CAPTURE_ACTIVE_RISING == TIM_ICPolarity)
{
TIMx->CCER |= TIM_CC4_SLAVE_CAPTURE_POL_RISING;
}
else if (TIM_SLAVE_CAPTURE_ACTIVE_FALLING == TIM_ICPolarity)
{
TIMx->CCER |= TIM_CC4_SLAVE_CAPTURE_POL_FALLING;
}
else if (TIM_SLAVE_CAPTURE_ACTIVE_RISING_FALLING == TIM_ICPolarity)
{
TIMx->CCER |= TIM_CC4_SLAVE_CAPTURE_POL_BOTH;
}
if(TIM_ICSELECTION_DIRECTTI == TIM_ICSelection)
{
TIMx->CCMR2 = (TIMx->CCMR2 & (~(BIT8|BIT9))) | BIT8;
TIMx->CCMR2 &= (~0xF000U);
}
else
{
TIMx->CCMR2 = (TIMx->CCMR2 & (~(BIT8|BIT9))) | BIT9;
TIMx->CCMR2 &= (~0xF0U);
}
TIMx->CCMR2 |= Filter;
}