4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-24 08:57:20 +08:00
Fan YANG e19b63e5fb [bsp][hpmicro] upgrade hpm_sdk to v1.6.0
- upgraded hpm_sdk to v1.6.0

Signed-off-by: Fan YANG <fan.yang@hpmicro.com>
2024-08-26 10:41:15 +08:00

1255 lines
50 KiB
C

/*
* Copyright (c) 2021 HPMicro
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#include "hpm_spi.h"
#include "hpm_clock_drv.h"
#include <stdlib.h>
#if USE_DMA_MGR
#include "hpm_dma_mgr.h"
#endif
typedef struct {
SPI_Type *spi_ptr;
clock_name_t spi_clock_name;
#if USE_DMA_MGR
uint8_t tx_dmamux_src;
uint8_t rx_dmamux_src;
dma_resource_t txdma_resource;
dma_resource_t rxdma_resource;
spi_dma_complete_cb tx_dma_complete;
spi_dma_complete_cb rx_dma_complete;
#endif
} hpm_spi_cfg_t;
static hpm_spi_cfg_t spi_dma_cfg_table[] = {
#if defined(HPM_SPI0)
{
.spi_ptr = HPM_SPI0,
.spi_clock_name = clock_spi0,
#if USE_DMA_MGR
.tx_dmamux_src = HPM_DMA_SRC_SPI0_TX,
.rx_dmamux_src = HPM_DMA_SRC_SPI0_RX,
.rx_dma_complete = NULL,
.tx_dma_complete = NULL
#endif
},
#endif
#if defined(HPM_SPI1)
{
.spi_ptr = HPM_SPI1,
.spi_clock_name = clock_spi1,
#if USE_DMA_MGR
.tx_dmamux_src = HPM_DMA_SRC_SPI1_TX,
.rx_dmamux_src = HPM_DMA_SRC_SPI1_RX,
.rx_dma_complete = NULL,
.tx_dma_complete = NULL,
#endif
},
#endif
#if defined(HPM_SPI2)
{
.spi_ptr = HPM_SPI2,
.spi_clock_name = clock_spi2,
#if USE_DMA_MGR
.tx_dmamux_src = HPM_DMA_SRC_SPI2_TX,
.rx_dmamux_src = HPM_DMA_SRC_SPI2_RX,
.rx_dma_complete = NULL,
.tx_dma_complete = NULL,
#endif
},
#endif
#if defined(HPM_SPI3)
{
.spi_ptr = HPM_SPI3,
.spi_clock_name = clock_spi3,
#if USE_DMA_MGR
.tx_dmamux_src = HPM_DMA_SRC_SPI3_TX,
.rx_dmamux_src = HPM_DMA_SRC_SPI3_RX,
.rx_dma_complete = NULL,
.tx_dma_complete = NULL,
#endif
},
#endif
#if defined(HPM_SPI4)
{
.spi_ptr = HPM_SPI4,
.spi_clock_name = clock_spi4,
#if USE_DMA_MGR
.tx_dmamux_src = HPM_DMA_SRC_SPI4_TX,
.rx_dmamux_src = HPM_DMA_SRC_SPI4_RX,
.rx_dma_complete = NULL,
.tx_dma_complete = NULL,
#endif
},
#endif
#if defined(HPM_SPI5)
{
.spi_ptr = HPM_SPI5,
.spi_clock_name = clock_spi5,
#if USE_DMA_MGR
.tx_dmamux_src = HPM_DMA_SRC_SPI5_TX,
.rx_dmamux_src = HPM_DMA_SRC_SPI5_RX,
.rx_dma_complete = NULL,
.tx_dma_complete = NULL,
#endif
},
#endif
#if defined(HPM_SPI6)
{
.spi_ptr = HPM_SPI6,
.spi_clock_name = clock_spi6,
#if USE_DMA_MGR
.tx_dmamux_src = HPM_DMA_SRC_SPI6_TX,
.rx_dmamux_src = HPM_DMA_SRC_SPI6_RX,
.rx_dma_complete = NULL,
.tx_dma_complete = NULL,
#endif
},
#endif
#if defined(HPM_SPI7)
{
.spi_ptr = HPM_SPI7,
.spi_clock_name = clock_spi7,
#if USE_DMA_MGR
.tx_dmamux_src = HPM_DMA_SRC_SPI7_TX,
.rx_dmamux_src = HPM_DMA_SRC_SPI7_RX,
.rx_dma_complete = NULL,
.tx_dma_complete = NULL,
#endif
},
#endif
#if defined(HPM_SPI8)
{
.spi_ptr = HPM_SPI8,
.spi_clock_name = clock_spi8,
#if USE_DMA_MGR
.tx_dmamux_src = HPM_DMA_SRC_SPI8_TX,
.rx_dmamux_src = HPM_DMA_SRC_SPI8_RX,
.rx_dma_complete = NULL,
.tx_dma_complete = NULL,
#endif
},
#endif
#if defined(HPM_SPI9)
{
.spi_ptr = HPM_SPI9,
.spi_clock_name = clock_spi9,
#if USE_DMA_MGR
.tx_dmamux_src = HPM_DMA_SRC_SPI9_TX,
.rx_dmamux_src = HPM_DMA_SRC_SPI9_RX,
.rx_dma_complete = NULL,
.tx_dma_complete = NULL,
#endif
},
#endif
#if defined(HPM_SPI10)
{
.spi_ptr = HPM_SPI10,
.spi_clock_name = clock_spi10,
#if USE_DMA_MGR
.tx_dmamux_src = HPM_DMA_SRC_SPI10_TX,
.rx_dmamux_src = HPM_DMA_SRC_SPI10_RX,
.rx_dma_complete = NULL,
.tx_dma_complete = NULL,
#endif
},
#endif
};
static hpm_stat_t hpm_spi_tx_trigger_dma(DMA_Type *dma_ptr, uint8_t ch_num, SPI_Type *spi_ptr, uint32_t src, uint8_t data_width, uint32_t size)
{
dma_handshake_config_t config;
dma_default_handshake_config(dma_ptr, &config);
config.ch_index = ch_num;
config.dst = (uint32_t)&spi_ptr->DATA;
config.dst_fixed = true;
config.src = src;
config.src_fixed = false;
config.data_width = data_width;
config.size_in_byte = size;
return dma_setup_handshake(dma_ptr, &config, true);
}
static hpm_stat_t hpm_spi_rx_trigger_dma(DMA_Type *dma_ptr, uint8_t ch_num, SPI_Type *spi_ptr, uint32_t dst, uint8_t data_width, uint32_t size)
{
dma_handshake_config_t config;
dma_default_handshake_config(dma_ptr, &config);
config.ch_index = ch_num;
config.dst = dst;
config.dst_fixed = false;
config.src = (uint32_t)&spi_ptr->DATA;
config.src_fixed = true;
config.data_width = data_width;
config.size_in_byte = size;
return dma_setup_handshake(dma_ptr, &config, true);
}
void hpm_spi_prepare_dma_tx_descriptors(spi_context_t *context, spi_control_config_t *config, uint32_t trans_count,
uint32_t *spi_transctrl, dma_linked_descriptor_t *tx_dma_descriptors)
{
SPI_Type *ptr = context->ptr;
uint32_t dma_transfer_size[trans_count];
uint32_t tx_count = context->tx_count;
uint32_t per_trans_size = context->per_trans_max;
uint32_t dma_ch = context->dma_context.tx_dma_ch;
uint8_t *tx_buff = context->tx_buff;
dma_channel_config_t dma_ch_config;
static uint8_t dummy_cmd = 0xff;
uint32_t temp32;
uint32_t tx_buff_index = 0;
dma_default_channel_config(context->dma_context.dma_ptr, &dma_ch_config);
for (uint32_t i = 0; i < trans_count; i++) {
if (tx_count > per_trans_size) {
temp32 = per_trans_size;
tx_count -= per_trans_size;
} else {
temp32 = tx_count;
}
*(spi_transctrl + i) = SPI_TRANSCTRL_TRANSMODE_SET(config->common_config.trans_mode == spi_trans_write_read_together ?
spi_trans_write_read_together : spi_trans_write_only)
| SPI_TRANSCTRL_DUALQUAD_SET(config->common_config.data_phase_fmt)
| SPI_TRANSCTRL_WRTRANCNT_SET(temp32 - 1)
| SPI_TRANSCTRL_RDTRANCNT_SET(temp32 - 1);
if (i == 0) {
/* Set the count of data transferred by dma to be one more than that of spi */
/* when dma transfer finished, there are data in SPI fifo, dma should not execute the dma descriptor which changes SPI CTRL register */
temp32 = temp32 + 1;
}
if (i == trans_count - 1) {
temp32 = temp32 - 1;
}
dma_transfer_size[i] = temp32;
/* SPI CTRL */
dma_ch_config.size_in_byte = 4;
dma_ch_config.src_addr = core_local_mem_to_sys_address(context->running_core, (uint32_t)(spi_transctrl + i));
dma_ch_config.dst_addr = core_local_mem_to_sys_address(context->running_core, (uint32_t)&ptr->TRANSCTRL);
dma_ch_config.src_width = DMA_TRANSFER_WIDTH_WORD;
dma_ch_config.dst_width = DMA_TRANSFER_WIDTH_WORD;
dma_ch_config.src_burst_size = DMA_NUM_TRANSFER_PER_BURST_1T;
dma_ch_config.src_mode = DMA_HANDSHAKE_MODE_NORMAL;
dma_ch_config.dst_mode = DMA_HANDSHAKE_MODE_NORMAL;
dma_ch_config.src_addr_ctrl = DMA_ADDRESS_CONTROL_FIXED;
dma_ch_config.dst_addr_ctrl = DMA_ADDRESS_CONTROL_FIXED;
dma_ch_config.linked_ptr = core_local_mem_to_sys_address(context->running_core, (uint32_t)(tx_dma_descriptors + i * SPI_DMA_DESC_COUNT_PER_TRANS + 1));
dma_config_linked_descriptor(context->dma_context.dma_ptr, tx_dma_descriptors + i * SPI_DMA_DESC_COUNT_PER_TRANS, dma_ch, &dma_ch_config);
/* SPI CMD */
dma_ch_config.size_in_byte = 1;
dma_ch_config.src_addr = core_local_mem_to_sys_address(context->running_core, (uint32_t)&dummy_cmd);
dma_ch_config.dst_addr = core_local_mem_to_sys_address(context->running_core, (uint32_t)&ptr->CMD);
dma_ch_config.src_width = DMA_TRANSFER_WIDTH_BYTE;
dma_ch_config.dst_width = DMA_TRANSFER_WIDTH_BYTE;
dma_ch_config.src_burst_size = DMA_NUM_TRANSFER_PER_BURST_1T;
dma_ch_config.src_mode = DMA_HANDSHAKE_MODE_NORMAL;
dma_ch_config.dst_mode = DMA_HANDSHAKE_MODE_NORMAL;
dma_ch_config.src_addr_ctrl = DMA_ADDRESS_CONTROL_FIXED;
dma_ch_config.dst_addr_ctrl = DMA_ADDRESS_CONTROL_FIXED;
dma_ch_config.linked_ptr = core_local_mem_to_sys_address(context->running_core, (uint32_t)(tx_dma_descriptors + i * SPI_DMA_DESC_COUNT_PER_TRANS + 2));
dma_config_linked_descriptor(context->dma_context.dma_ptr, tx_dma_descriptors + i * SPI_DMA_DESC_COUNT_PER_TRANS + 1, dma_ch, &dma_ch_config);
/* SPI DATA */
dma_ch_config.size_in_byte = dma_transfer_size[i] << context->dma_context.data_width;
dma_ch_config.src_addr = core_local_mem_to_sys_address(context->running_core, (uint32_t)(tx_buff + tx_buff_index));
dma_ch_config.dst_addr = core_local_mem_to_sys_address(context->running_core, (uint32_t)&ptr->DATA);
dma_ch_config.src_width = context->dma_context.data_width;
dma_ch_config.dst_width = context->dma_context.data_width;
dma_ch_config.src_burst_size = DMA_NUM_TRANSFER_PER_BURST_1T;
dma_ch_config.src_mode = DMA_HANDSHAKE_MODE_NORMAL;
dma_ch_config.dst_mode = DMA_HANDSHAKE_MODE_HANDSHAKE;
dma_ch_config.src_addr_ctrl = DMA_ADDRESS_CONTROL_INCREMENT;
dma_ch_config.dst_addr_ctrl = DMA_ADDRESS_CONTROL_FIXED;
if (i == trans_count - 1) {
dma_ch_config.linked_ptr = 0;
} else {
dma_ch_config.linked_ptr = core_local_mem_to_sys_address(context->running_core, (uint32_t)(tx_dma_descriptors + (i + 1) * SPI_DMA_DESC_COUNT_PER_TRANS));
}
dma_config_linked_descriptor(context->dma_context.dma_ptr, tx_dma_descriptors + i * SPI_DMA_DESC_COUNT_PER_TRANS + 2, dma_ch, &dma_ch_config);
tx_buff_index += temp32 * context->data_len_in_byte;
}
}
void hpm_prepare_dma_rx_descriptors(spi_context_t *context, spi_control_config_t *config, uint32_t trans_count,
uint32_t *spi_transctrl, dma_linked_descriptor_t *rx_dma_descriptors)
{
SPI_Type *ptr = context->ptr;
uint32_t dma_transfer_size[trans_count];
uint32_t rx_count = context->rx_count;
uint32_t per_trans_size = context->per_trans_max;
uint32_t dma_ch = context->dma_context.rx_dma_ch;
uint8_t *rx_buff = context->rx_buff;
dma_channel_config_t dma_ch_config;
static uint8_t dummy_cmd = 0xff;
uint32_t temp32;
uint32_t rx_buff_index = 0;
dma_default_channel_config(context->dma_context.dma_ptr, &dma_ch_config);
for (uint32_t i = 0; i < trans_count; i++) {
if (rx_count > per_trans_size) {
temp32 = per_trans_size;
rx_count -= per_trans_size;
} else {
temp32 = rx_count;
}
*(spi_transctrl + i) = SPI_TRANSCTRL_TRANSMODE_SET(spi_trans_read_only) |
SPI_TRANSCTRL_DUALQUAD_SET(config->common_config.data_phase_fmt) |
SPI_TRANSCTRL_WRTRANCNT_SET(temp32 - 1) |
SPI_TRANSCTRL_RDTRANCNT_SET(temp32 - 1);
dma_transfer_size[i] = temp32;
/* SPI CTRL */
dma_ch_config.size_in_byte = 4;
dma_ch_config.src_addr = core_local_mem_to_sys_address(context->running_core, (uint32_t)(spi_transctrl + i));
dma_ch_config.dst_addr = core_local_mem_to_sys_address(context->running_core, (uint32_t)&ptr->TRANSCTRL);
dma_ch_config.src_width = DMA_TRANSFER_WIDTH_WORD;
dma_ch_config.dst_width = DMA_TRANSFER_WIDTH_WORD;
dma_ch_config.src_burst_size = DMA_NUM_TRANSFER_PER_BURST_1T;
dma_ch_config.src_mode = DMA_HANDSHAKE_MODE_NORMAL;
dma_ch_config.dst_mode = DMA_HANDSHAKE_MODE_NORMAL;
dma_ch_config.src_addr_ctrl = DMA_ADDRESS_CONTROL_FIXED;
dma_ch_config.dst_addr_ctrl = DMA_ADDRESS_CONTROL_FIXED;
dma_ch_config.linked_ptr = core_local_mem_to_sys_address(context->running_core, (uint32_t)(rx_dma_descriptors + i * SPI_DMA_DESC_COUNT_PER_TRANS + 1));
dma_config_linked_descriptor(context->dma_context.dma_ptr, rx_dma_descriptors + i * SPI_DMA_DESC_COUNT_PER_TRANS, dma_ch, &dma_ch_config);
/* SPI CMD */
dma_ch_config.size_in_byte = 1;
dma_ch_config.src_addr = core_local_mem_to_sys_address(context->running_core, (uint32_t)&dummy_cmd);
dma_ch_config.dst_addr = core_local_mem_to_sys_address(context->running_core, (uint32_t)&ptr->CMD);
dma_ch_config.src_width = DMA_TRANSFER_WIDTH_BYTE;
dma_ch_config.dst_width = DMA_TRANSFER_WIDTH_BYTE;
dma_ch_config.src_burst_size = DMA_NUM_TRANSFER_PER_BURST_1T;
dma_ch_config.src_mode = DMA_HANDSHAKE_MODE_NORMAL;
dma_ch_config.dst_mode = DMA_HANDSHAKE_MODE_NORMAL;
dma_ch_config.src_addr_ctrl = DMA_ADDRESS_CONTROL_FIXED;
dma_ch_config.dst_addr_ctrl = DMA_ADDRESS_CONTROL_FIXED;
dma_ch_config.linked_ptr = core_local_mem_to_sys_address(context->running_core, (uint32_t)(rx_dma_descriptors + i * SPI_DMA_DESC_COUNT_PER_TRANS + 2));
dma_config_linked_descriptor(context->dma_context.dma_ptr, rx_dma_descriptors + i * SPI_DMA_DESC_COUNT_PER_TRANS + 1, dma_ch, &dma_ch_config);
/* SPI DATA */
dma_ch_config.size_in_byte = dma_transfer_size[i] << context->dma_context.data_width;
dma_ch_config.src_addr = core_local_mem_to_sys_address(context->running_core, (uint32_t)&ptr->DATA);
dma_ch_config.dst_addr = core_local_mem_to_sys_address(context->running_core, (uint32_t)(rx_buff + rx_buff_index));
dma_ch_config.src_width = context->dma_context.data_width;
dma_ch_config.dst_width = context->dma_context.data_width;
dma_ch_config.src_burst_size = DMA_NUM_TRANSFER_PER_BURST_1T;
dma_ch_config.src_mode = DMA_HANDSHAKE_MODE_HANDSHAKE;
dma_ch_config.dst_mode = DMA_HANDSHAKE_MODE_NORMAL;
dma_ch_config.src_addr_ctrl = DMA_ADDRESS_CONTROL_FIXED;
dma_ch_config.dst_addr_ctrl = DMA_ADDRESS_CONTROL_INCREMENT;
if (i == trans_count - 1) {
dma_ch_config.linked_ptr = 0;
} else {
dma_ch_config.linked_ptr = core_local_mem_to_sys_address(context->running_core, (uint32_t)(rx_dma_descriptors + (i + 1) * SPI_DMA_DESC_COUNT_PER_TRANS));
}
dma_config_linked_descriptor(context->dma_context.dma_ptr, rx_dma_descriptors + i * SPI_DMA_DESC_COUNT_PER_TRANS + 2, dma_ch, &dma_ch_config);
rx_buff_index += temp32 * context->data_len_in_byte;
}
}
static uint32_t hpm_spi_get_trans_count(spi_context_t *context, spi_control_config_t *config)
{
uint32_t total_trans_count, per_trans_count, trans_count;
per_trans_count = context->per_trans_max;
if (config->common_config.trans_mode == spi_trans_write_only || config->common_config.trans_mode == spi_trans_dummy_write) {
total_trans_count = context->tx_count;
} else if (config->common_config.trans_mode == spi_trans_read_only || config->common_config.trans_mode == spi_trans_dummy_read) {
total_trans_count = context->rx_count;
} else {
/* write read together */
assert(context->tx_count == context->rx_count);
total_trans_count = context->tx_count;
}
trans_count = (total_trans_count + per_trans_count - 1) / per_trans_count;
return trans_count;
}
/**
* spi with dma chain workflow
*
* 1. call spi_setup_dma_transfer to config SPI for first transmission
* 2. execute data transmission phase in dma chain descriptor
* 3. execute setting SPI CTRL register phase in dma chain descriptor
* 4. execute writing SPI CMD register phase in dma chain descriptor
* 5. Repeat steps 2-4 until finish the transmission
*/
static hpm_stat_t spi_setup_trans_with_dma_chain(spi_context_t *context, spi_control_config_t *config)
{
hpm_stat_t stat = status_success;
SPI_Type *spi_ptr = context->ptr;
DMA_Type *dma_ptr = context->dma_context.dma_ptr;
DMAMUX_Type *dmamux_ptr = context->dma_context.dmamux_ptr;
dma_linked_descriptor_t *dma_linked_descriptor = context->dma_linked_descriptor;
uint32_t *spi_transctrl = context->spi_transctrl;
uint32_t dma_channel = 0;
uint32_t trans_count;
dma_channel_config_t dma_ch_config = {0};
/* use a dummy dma transfer to start SPI trans dma chain */
static uint32_t dummy_data1 = 0xff, dummy_data2 = 0xff;
trans_count = hpm_spi_get_trans_count(context, config);
/* active spi cs pin */
context->write_cs(context->cs_pin, SPI_CS_ACTIVE);
/* config SPI for first dma transmission */
stat = spi_setup_dma_transfer(spi_ptr,
config,
&context->cmd,
&context->addr,
MIN(context->tx_count, context->per_trans_max),
MIN(context->rx_count, context->per_trans_max));
if (stat != status_success) {
return stat;
}
if (config->common_config.trans_mode == spi_trans_write_only || config->common_config.trans_mode == spi_trans_dummy_write) {
/* write only */
hpm_spi_prepare_dma_tx_descriptors(context, config, trans_count, spi_transctrl, dma_linked_descriptor);
dma_channel = context->dma_context.tx_dma_ch;
dmamux_config(dmamux_ptr, context->dma_context.tx_dmamux_ch, context->dma_context.tx_req, true);
} else if (config->common_config.trans_mode == spi_trans_read_only || config->common_config.trans_mode == spi_trans_dummy_read) {
/* read only */
hpm_prepare_dma_rx_descriptors(context, config, trans_count, spi_transctrl, dma_linked_descriptor);
dma_channel = context->dma_context.rx_dma_ch;
dmamux_config(dmamux_ptr, context->dma_context.rx_dmamux_ch, context->dma_context.rx_req, true);
} else if (config->common_config.trans_mode == spi_trans_write_read_together) {
/* write and read together */
hpm_spi_prepare_dma_tx_descriptors(context, config, trans_count, spi_transctrl, dma_linked_descriptor);
dma_channel = context->dma_context.tx_dma_ch;
dmamux_config(dmamux_ptr, context->dma_context.tx_dmamux_ch, context->dma_context.tx_req, true);
dmamux_config(dmamux_ptr, context->dma_context.rx_dmamux_ch, context->dma_context.rx_req, true);
/* spi tx use chained dma descriptor, spi rx use unchained dma */
stat = hpm_spi_rx_trigger_dma(dma_ptr,
context->dma_context.rx_dma_ch,
spi_ptr,
core_local_mem_to_sys_address(context->running_core, (uint32_t)context->rx_buff),
context->dma_context.data_width,
context->rx_size);
if (stat != status_success) {
return stat;
}
} else {
return status_invalid_argument;
}
dma_default_channel_config(context->dma_context.dma_ptr, &dma_ch_config);
dma_ch_config.src_addr = core_local_mem_to_sys_address(context->running_core, (uint32_t)&dummy_data1);
dma_ch_config.dst_addr = core_local_mem_to_sys_address(context->running_core, (uint32_t)&dummy_data2);
dma_ch_config.src_burst_size = DMA_NUM_TRANSFER_PER_BURST_1T;
dma_ch_config.src_width = DMA_TRANSFER_WIDTH_WORD;
dma_ch_config.dst_width = DMA_TRANSFER_WIDTH_WORD;
dma_ch_config.size_in_byte = 4;
/* start data transmission phase in dma chain */
dma_ch_config.linked_ptr = core_local_mem_to_sys_address(context->running_core, (uint32_t)(dma_linked_descriptor + SPI_DMA_DESC_COUNT_PER_TRANS - 1));
stat = dma_setup_channel(dma_ptr, dma_channel, &dma_ch_config, true);
if (stat != status_success) {
return stat;
}
return stat;
}
static hpm_stat_t spi_setup_trans_with_dma(spi_context_t *context, spi_control_config_t *config)
{
hpm_stat_t stat = status_success;
SPI_Type *spi_ptr = context->ptr;
DMA_Type *dma_ptr = context->dma_context.dma_ptr;
DMAMUX_Type *dmamux_ptr = context->dma_context.dmamux_ptr;
uint32_t trans_mode = config->common_config.trans_mode;
if (context->write_cs != NULL) {
context->write_cs(context->cs_pin, SPI_CS_ACTIVE);
}
stat = spi_setup_dma_transfer(spi_ptr, config,
&context->cmd, &context->addr,
context->tx_count, context->rx_count);
if (stat != status_success) {
return stat;
}
if (trans_mode != spi_trans_write_only && trans_mode != spi_trans_dummy_write && trans_mode != spi_trans_no_data) {
dmamux_config(dmamux_ptr, context->dma_context.rx_dmamux_ch, context->dma_context.rx_req, true);
stat = hpm_spi_rx_trigger_dma(dma_ptr,
context->dma_context.rx_dma_ch,
spi_ptr,
core_local_mem_to_sys_address(context->running_core, (uint32_t)context->rx_buff),
context->dma_context.data_width,
context->rx_size);
if (stat != status_success) {
return stat;
}
}
if (trans_mode != spi_trans_read_only && trans_mode != spi_trans_dummy_read && trans_mode != spi_trans_no_data) {
dmamux_config(dmamux_ptr, context->dma_context.tx_dmamux_ch, context->dma_context.tx_req, true);
stat = hpm_spi_tx_trigger_dma(dma_ptr,
context->dma_context.tx_dma_ch,
spi_ptr,
core_local_mem_to_sys_address(context->running_core, (uint32_t)context->tx_buff),
context->dma_context.data_width,
context->tx_size);
if (stat != status_success) {
return stat;
}
}
return stat;
}
hpm_stat_t hpm_spi_setup_dma_transfer(spi_context_t *context, spi_control_config_t *config)
{
assert(context != NULL || config != NULL);
/* use dma */
assert(&context->dma_context != NULL);
/* spi per trans data size not zero */
assert(context->per_trans_max);
hpm_stat_t stat = status_success;
if (l1c_dc_is_enabled()) {
/* cache writeback for tx buff */
if (context->tx_buff != NULL && context->tx_size != 0) {
uint32_t aligned_start = HPM_L1C_CACHELINE_ALIGN_DOWN((uint32_t)context->tx_buff);
uint32_t aligned_end = HPM_L1C_CACHELINE_ALIGN_UP((uint32_t)context->tx_buff + context->tx_size);
uint32_t aligned_size = aligned_end - aligned_start;
l1c_dc_writeback(aligned_start, aligned_size);
}
/* cache invalidate for receive buff */
if (context->rx_buff != NULL && context->rx_size != 0) {
uint32_t aligned_start = HPM_L1C_CACHELINE_ALIGN_DOWN((uint32_t)context->rx_buff);
uint32_t aligned_end = HPM_L1C_CACHELINE_ALIGN_UP((uint32_t)context->rx_buff + context->rx_size);
uint32_t aligned_size = aligned_end - aligned_start;
l1c_dc_invalidate(aligned_start, aligned_size);
}
}
if ((context->rx_count > context->per_trans_max) || (context->tx_count > context->per_trans_max)) {
/* multiple SPI transmissions with chained DMA */
assert(config->common_config.trans_mode == spi_trans_read_only || config->common_config.trans_mode == spi_trans_dummy_read
|| config->common_config.trans_mode == spi_trans_write_only || config->common_config.trans_mode == spi_trans_dummy_write
|| config->common_config.trans_mode == spi_trans_write_read_together);
/* master mode */
assert((context->ptr->TRANSFMT & SPI_TRANSFMT_SLVMODE_MASK) != SPI_TRANSFMT_SLVMODE_MASK);
/* GPIO should be used to replace SPI CS pin for SPI chained DMA transmissions */
assert(context->write_cs != NULL);
stat = spi_setup_trans_with_dma_chain(context, config);
} else {
/* one SPI transmissions with chained DMA */
stat = spi_setup_trans_with_dma(context, config);
}
return stat;
}
/* Using GPIO as SPI CS pin */
/* When SPI trans completed, GPIO cs pin should be released manually */
hpm_stat_t hpm_spi_release_gpio_cs(spi_context_t *context)
{
hpm_stat_t stat;
SPI_Type *ptr = context->ptr;
assert(context->write_cs != NULL);
stat = spi_wait_for_idle_status(ptr);
if (stat != status_success) {
return stat;
}
context->write_cs(context->cs_pin, !SPI_CS_ACTIVE);
return status_success;
}
static hpm_stat_t wait_spi_slave_active(SPI_Type *ptr, bool active_status, uint32_t timeout)
{
uint32_t ticks_per_us = (hpm_core_clock + 1000000 - 1U) / 1000000;
uint64_t expected_ticks = hpm_csr_get_core_cycle() + (uint64_t)ticks_per_us * 1000UL * timeout;
do {
if (hpm_csr_get_core_cycle() > expected_ticks) {
return status_timeout;
}
} while (spi_is_active(ptr) == !active_status);
return status_success;
}
static hpm_spi_cfg_t *hpm_spi_get_cfg_obj(SPI_Type *ptr)
{
hpm_spi_cfg_t *obj;
uint8_t i = 0;
for (i = 0; i < (sizeof(spi_dma_cfg_table) / sizeof(hpm_spi_cfg_t)); i++) {
obj = &spi_dma_cfg_table[i];
if (obj->spi_ptr == ptr) {
return obj;
}
}
return NULL;
}
static void hpm_spi_transfer_init(SPI_Type *ptr, spi_trans_mode_t mode, uint32_t size)
{
uint32_t slv_mode = SPI_TRANSFMT_SLVMODE_GET(ptr->TRANSFMT);
uint8_t data_len_in_bytes = spi_get_data_length_in_bytes(ptr);
if (data_len_in_bytes > 2) {
data_len_in_bytes = 4;
}
if (slv_mode == spi_master_mode) {
spi_set_transfer_mode(ptr, mode);
} else {
/* for slave mode, only support trans_write_read_together mode in only_data_mode */
spi_set_transfer_mode(ptr, spi_trans_write_read_together);
}
if ((mode == spi_trans_write_read_together) || (slv_mode == spi_slave_mode)) {
spi_set_write_data_count(ptr, size / data_len_in_bytes);
spi_set_read_data_count(ptr, size / data_len_in_bytes);
} else if (mode == spi_trans_write_only) {
spi_set_write_data_count(ptr, size / data_len_in_bytes);
} else {
spi_set_read_data_count(ptr, size / data_len_in_bytes);
}
/* start new transmission, reset spi for slave*/
if (slv_mode == spi_slave_mode) {
spi_reset(ptr);
}
spi_transmit_fifo_reset(ptr);
spi_receive_fifo_reset(ptr);
while (ptr->CTRL & (SPI_CTRL_TXFIFORST_MASK | SPI_CTRL_RXFIFORST_MASK)) {
}
}
static hpm_stat_t write_read_data_together(SPI_Type *ptr, uint8_t data_len_in_bytes, uint8_t *wbuff, uint32_t wsize,
uint8_t *rbuff, uint32_t rsize, uint32_t timeout)
{
uint8_t txfifo_size = spi_get_tx_fifo_size(ptr);
uint32_t rx_index = 0, tx_index = 0;
uint8_t rxfifo_valid_size, txfifo_valid_size, j;
uint32_t ticks_per_us = (hpm_core_clock + 1000000 - 1U) / 1000000;
uint64_t expected_ticks = hpm_csr_get_core_cycle() + (uint64_t)ticks_per_us * 1000UL * timeout;
while ((rx_index < rsize) || (tx_index < wsize)) {
if (tx_index < wsize) {
txfifo_valid_size = spi_get_tx_fifo_valid_data_size(ptr);
if ((txfifo_size - txfifo_valid_size) > 0) {
for (j = 0; j < (txfifo_size - txfifo_valid_size); j++) {
if (tx_index >= wsize) {
break;
}
switch (data_len_in_bytes) {
case 1:
ptr->DATA = *(uint8_t *)wbuff;
break;
case 2:
ptr->DATA = *(uint16_t *)wbuff;
break;
default:
ptr->DATA = *(uint32_t *)wbuff;
break;
}
wbuff += data_len_in_bytes;
tx_index++;
}
}
}
if (rx_index < rsize) {
rxfifo_valid_size = spi_get_rx_fifo_valid_data_size(ptr);
if (rxfifo_valid_size > 0) {
for (j = 0; j < rxfifo_valid_size; j++) {
if (rx_index >= rsize) {
break;
}
switch (data_len_in_bytes) {
case 1:
*(uint8_t *)rbuff = (uint8_t)ptr->DATA;
break;
case 2:
*(uint16_t *)rbuff = (uint16_t)ptr->DATA;
break;
default:
*(uint32_t *)rbuff = ptr->DATA;
break;
}
rbuff += data_len_in_bytes;
rx_index++;
}
}
}
if (hpm_csr_get_core_cycle() > expected_ticks) {
return status_timeout;
}
}
return status_success;
}
static hpm_stat_t read_data_single(SPI_Type *ptr, uint8_t data_len_in_bytes, uint8_t *rbuff, uint32_t rsize, uint32_t timeout)
{
uint32_t rx_index = 0;
uint8_t rxfifo_valid_size, j;
uint32_t ticks_per_us = (hpm_core_clock + 1000000 - 1U) / 1000000;
uint64_t expected_ticks = hpm_csr_get_core_cycle() + (uint64_t)ticks_per_us * 1000UL * timeout;
while (rx_index < rsize) {
rxfifo_valid_size = spi_get_rx_fifo_valid_data_size(ptr);
if (rxfifo_valid_size > 0) {
for (j = 0; j < rxfifo_valid_size; j++) {
if (rx_index >= rsize) {
break;
}
switch (data_len_in_bytes) {
case 1:
*(uint8_t *)rbuff = (uint8_t)ptr->DATA;
break;
case 2:
*(uint16_t *)rbuff = (uint16_t)ptr->DATA;
break;
default:
*(uint32_t *)rbuff = ptr->DATA;
break;
}
rbuff += data_len_in_bytes;
rx_index++;
}
}
if (hpm_csr_get_core_cycle() > expected_ticks) {
return status_timeout;
}
}
return status_success;
}
static hpm_stat_t write_data_single(SPI_Type *ptr, uint8_t data_len_in_bytes, uint8_t *wbuff, uint32_t wsize, uint32_t timeout)
{
uint8_t txfifo_size = spi_get_tx_fifo_size(ptr);
uint32_t tx_index = 0;
uint8_t txfifo_valid_size, j;
uint32_t ticks_per_us = (hpm_core_clock + 1000000 - 1U) / 1000000;
uint64_t expected_ticks = hpm_csr_get_core_cycle() + (uint64_t)ticks_per_us * 1000UL * timeout;
while (tx_index < wsize) {
txfifo_valid_size = spi_get_tx_fifo_valid_data_size(ptr);
if ((txfifo_size - txfifo_valid_size) > 0) {
for (j = 0; j < (txfifo_size - txfifo_valid_size); j++) {
if (tx_index >= wsize) {
break;
}
switch (data_len_in_bytes) {
case 1:
ptr->DATA = *(uint8_t *)wbuff;
break;
case 2:
ptr->DATA = *(uint16_t *)wbuff;
break;
default:
ptr->DATA = *(uint32_t *)wbuff;
break;
}
wbuff += data_len_in_bytes;
tx_index++;
}
}
if (hpm_csr_get_core_cycle() > expected_ticks) {
return status_timeout;
}
}
return status_success;
}
void hpm_spi_get_default_init_config(spi_initialize_config_t *config)
{
config->mode = spi_master_mode;
config->io_mode = spi_single_io_mode;
config->clk_polarity = spi_sclk_low_idle;
config->clk_phase = spi_sclk_sampling_odd_clk_edges;
config->data_len = 8;
config->data_merge = false;
config->direction = msb_first;
}
hpm_stat_t hpm_spi_initialize(SPI_Type *ptr, spi_initialize_config_t *config)
{
if (config->data_len == 0) {
return status_invalid_argument;
}
/* frist init TRANSFMT reg*/
ptr->TRANSFMT = SPI_TRANSFMT_DATALEN_SET(config->data_len - 1) |
SPI_TRANSFMT_DATAMERGE_SET(config->data_merge) |
SPI_TRANSFMT_LSB_SET(config->direction) |
SPI_TRANSFMT_SLVMODE_SET(config->mode) |
SPI_TRANSFMT_CPOL_SET(config->clk_polarity) |
SPI_TRANSFMT_CPHA_SET(config->clk_phase);
/* second init TRANSCTRL reg
* default phase: disable command/address/token phase,
* default Transfer mode: write and read at the same time
*/
ptr->TRANSCTRL = SPI_TRANSCTRL_SLVDATAONLY_SET(1) | /* it's only data anyway for slave*/
SPI_TRANSCTRL_DUALQUAD_SET(config->io_mode);
/* third: init TIMING reg */
ptr->TIMING = SPI_TIMING_CS2SCLK_SET(spi_cs2sclk_half_sclk_1) |
SPI_TIMING_CSHT_SET(spi_csht_half_sclk_1) |
SPI_TIMING_SCLK_DIV_SET(0x10);
return status_success;
}
hpm_stat_t hpm_spi_set_sclk_frequency(SPI_Type *ptr, uint32_t freq)
{
int freq_list[clock_source_general_source_end] = {0};
int _freq = freq;
uint8_t i = 0;
int min_diff_freq;
int current_diff_freq;
int best_freq;
hpm_stat_t stat;
uint32_t div;
clock_source_t clock_source;
clk_src_t clk_src;
static spi_timing_config_t timing_config = {0};
uint32_t pll_clk = 0;
hpm_spi_cfg_t *obj = hpm_spi_get_cfg_obj(ptr);
if (obj == NULL) {
return status_invalid_argument;
}
spi_master_get_default_timing_config(&timing_config);
timing_config.master_config.clk_src_freq_in_hz = clock_get_frequency(obj->spi_clock_name);
timing_config.master_config.sclk_freq_in_hz = freq;
timing_config.master_config.cs2sclk = spi_cs2sclk_half_sclk_1;
timing_config.master_config.csht = spi_csht_half_sclk_1;
stat = spi_master_timing_init(ptr, &timing_config);
if (stat != status_success) {
spi_master_set_sclk_div(ptr, 0xFF);
for (clock_source = (clock_source_t)0; clock_source < clock_source_general_source_end; clock_source++) {
pll_clk = get_frequency_for_source(clock_source);
div = pll_clk / freq;
/* The division factor ranges from 1 to 256 as any integer */
if ((div > 0) && (div <= 0x100)) {
freq_list[clock_source] = pll_clk / div;
}
}
/* Find the best sclk frequency */
min_diff_freq = abs(freq_list[0] - _freq);
best_freq = freq_list[0];
for (i = 1; i < clock_source_general_source_end; i++) {
current_diff_freq = abs(freq_list[i] - _freq);
if (current_diff_freq < min_diff_freq) {
min_diff_freq = current_diff_freq;
best_freq = freq_list[i];
}
}
/* Find the best spi clock frequency */
for (i = 0; i < clock_source_general_source_end; i++) {
if (best_freq == freq_list[i]) {
pll_clk = get_frequency_for_source((clock_source_t)i);
clk_src = MAKE_CLK_SRC(CLK_SRC_GROUP_COMMON, i);
div = pll_clk / best_freq;
clock_set_source_divider(obj->spi_clock_name, clk_src, div);
break;
}
}
stat = status_success;
}
return stat;
}
hpm_stat_t hpm_spi_transmit_receive_blocking(SPI_Type *ptr, uint8_t *wbuff, uint8_t *rbuff, uint32_t size, uint32_t timeout)
{
hpm_stat_t stat = status_success;
uint8_t data_len_in_bytes = spi_get_data_length_in_bytes(ptr);
uint8_t txfifo_size = spi_get_tx_fifo_size(ptr);
uint8_t remain_size = 0, j = 0;
uint32_t temp, count;
if (data_len_in_bytes > 2) {
data_len_in_bytes = 4; /* must be 4 aglin */
}
if ((wbuff == NULL) || (rbuff == NULL) || (size == 0) ||
((SPI_SOC_TRANSFER_COUNT_MAX == 512) && (size > (SPI_SOC_TRANSFER_COUNT_MAX * data_len_in_bytes))) ||
(spi_master_get_data_phase_format(ptr) != spi_single_io_mode)) {
return status_invalid_argument;
}
count = (size / data_len_in_bytes);
hpm_spi_transfer_init(ptr, spi_trans_write_read_together, size);
/* for master mode, This CMD register must be written with a dummy value
* to start a SPI transfer even when the command phase is not enabled
*/
if (SPI_TRANSFMT_SLVMODE_GET(ptr->TRANSFMT) == spi_master_mode) {
ptr->CMD = 0xFF;
stat = write_read_data_together(ptr, data_len_in_bytes, wbuff, count, rbuff, count, timeout);
if (stat == status_success) {
/* waiting....in master mode, becomes 0 after the transfer is finished */
stat = wait_spi_slave_active(ptr, false, timeout);
}
} else {
/* Before receiving the host to start transmission, fill the TX FIFO */
remain_size = txfifo_size - spi_get_tx_fifo_valid_data_size(ptr);
for (j = 0; j < remain_size; j++) {
temp = 0;
for (uint8_t i = 0; i < data_len_in_bytes; i++) {
temp += *(wbuff++) << i * 8;
}
ptr->DATA = temp;
}
count -= remain_size;
/* waiting....in slave mode, becomes 1 after the SPI CS signal is asserted */
stat = wait_spi_slave_active(ptr, true, timeout);
/* no need to read RXFIFO because no effect SPI bus for slave mode */
if (((size - remain_size) > 0) && (stat == status_success)) {
stat = write_read_data_together(ptr, data_len_in_bytes, wbuff, count, rbuff, count + remain_size, timeout);
}
}
return stat;
}
hpm_stat_t hpm_spi_receive_blocking(SPI_Type *ptr, uint8_t *buff, uint32_t size, uint32_t timeout)
{
hpm_stat_t stat = status_success;
uint32_t count;
uint8_t data_len_in_bytes = spi_get_data_length_in_bytes(ptr);
if (data_len_in_bytes > 2) {
data_len_in_bytes = 4; /* must be 4 aglin */
}
if ((buff == NULL) || (size == 0) ||
((SPI_SOC_TRANSFER_COUNT_MAX == 512) && (size > (SPI_SOC_TRANSFER_COUNT_MAX * data_len_in_bytes)))) {
return status_invalid_argument;
}
count = (size / data_len_in_bytes);
hpm_spi_transfer_init(ptr, spi_trans_read_only, size);
/* for master mode, This CMD register must be written with a dummy value
* to start a SPI transfer even when the command phase is not enabled
*/
if (SPI_TRANSFMT_SLVMODE_GET(ptr->TRANSFMT) == spi_master_mode) {
ptr->CMD = 0xFF;
} else {
/* waiting....in slave mode, becomes 1 after the SPI CS signal is asserted */
stat = wait_spi_slave_active(ptr, true, timeout);
}
/* no need to write TXFIFO because no effect SPI bus for slave mode */
if (stat == status_success) {
stat = read_data_single(ptr, data_len_in_bytes, buff, count, timeout);
}
if (SPI_TRANSFMT_SLVMODE_GET(ptr->TRANSFMT) == spi_master_mode) {
/* waiting....in master mode, becomes 0 after the transfer is finished */
if (stat == status_success) {
stat = wait_spi_slave_active(ptr, false, timeout);
}
}
return stat;
}
hpm_stat_t hpm_spi_transmit_blocking(SPI_Type *ptr, uint8_t *buff, uint32_t size, uint32_t timeout)
{
hpm_stat_t stat = status_success;
uint8_t txfifo_size = spi_get_tx_fifo_size(ptr);
uint8_t remain_size = 0, j = 0;
uint32_t temp, count;
uint8_t data_len_in_bytes = spi_get_data_length_in_bytes(ptr);
if (data_len_in_bytes > 2) {
data_len_in_bytes = 4; /* must be 4 aglin */
}
if ((buff == NULL) || (size == 0) ||
((SPI_SOC_TRANSFER_COUNT_MAX == 512) && (size > (SPI_SOC_TRANSFER_COUNT_MAX * data_len_in_bytes)))) {
return status_invalid_argument;
}
count = (size / data_len_in_bytes);
hpm_spi_transfer_init(ptr, spi_trans_write_only, size);
/* for master mode, This CMD register must be written with a dummy value
* to start a SPI transfer even when the command phase is not enabled
*/
if (SPI_TRANSFMT_SLVMODE_GET(ptr->TRANSFMT) == spi_master_mode) {
ptr->CMD = 0xFF;
stat = write_data_single(ptr, data_len_in_bytes, buff, count, timeout);
if (stat == status_success) {
/* waiting....in master mode, becomes 0 after the transfer is finished */
stat = wait_spi_slave_active(ptr, false, timeout);
}
} else {
/* Before receiving the host to start transmission, fill the TX FIFO */
remain_size = txfifo_size - spi_get_tx_fifo_valid_data_size(ptr);
for (j = 0; j < remain_size; j++) {
temp = 0;
for (uint8_t i = 0; i < data_len_in_bytes; i++) {
temp += *(buff++) << i * 8;
}
ptr->DATA = temp;
}
count -= remain_size;
/* waiting....in slave mode, becomes 1 after the SPI CS signal is asserted */
stat = wait_spi_slave_active(ptr, true, timeout);
/* no need to read RXFIFO because no effect SPI bus for slave mode */
if ((count > 0) && (stat == status_success)) {
stat = write_data_single(ptr, data_len_in_bytes, buff, count, timeout);
}
}
return stat;
}
hpm_stat_t hpm_spi_transmit_receive_setup_dma(SPI_Type *ptr, uint32_t size)
{
hpm_stat_t stat = status_success;
uint8_t data_len_in_bytes = spi_get_data_length_in_bytes(ptr);
if (data_len_in_bytes > 2) {
data_len_in_bytes = 4; /* must be 4 aglin */
}
if ((size == 0) ||
((SPI_SOC_TRANSFER_COUNT_MAX == 512) && (size > (SPI_SOC_TRANSFER_COUNT_MAX * data_len_in_bytes)))) {
return status_invalid_argument;
}
hpm_spi_transfer_init(ptr, spi_trans_write_read_together, size);
spi_enable_tx_dma(ptr);
spi_enable_rx_dma(ptr);
/* for master mode, This CMD register must be written with a dummy value
* to start a SPI transfer even when the command phase is not enabled
*/
if (SPI_TRANSFMT_SLVMODE_GET(ptr->TRANSFMT) == spi_master_mode) {
ptr->CMD = 0xFF;
}
return stat;
}
hpm_stat_t hpm_spi_receive_setup_dma(SPI_Type *ptr, uint32_t size)
{
hpm_stat_t stat = status_success;
uint8_t data_len_in_bytes = spi_get_data_length_in_bytes(ptr);
if (data_len_in_bytes > 2) {
data_len_in_bytes = 4; /* must be 4 aglin */
}
if ((size == 0) ||
((SPI_SOC_TRANSFER_COUNT_MAX == 512) && (size > (SPI_SOC_TRANSFER_COUNT_MAX * data_len_in_bytes)))) {
return status_invalid_argument;
}
hpm_spi_transfer_init(ptr, spi_trans_read_only, size);
spi_disable_tx_dma(ptr);
spi_enable_rx_dma(ptr);
/* for master mode, This CMD register must be written with a dummy value
to start a SPI transfer even when the command phase is not enabled
*/
if (SPI_TRANSFMT_SLVMODE_GET(ptr->TRANSFMT) == spi_master_mode) {
ptr->CMD = 0xFF;
}
return stat;
}
hpm_stat_t hpm_spi_transmit_setup_dma(SPI_Type *ptr, uint32_t size)
{
hpm_stat_t stat = status_success;
uint8_t data_len_in_bytes = spi_get_data_length_in_bytes(ptr);
if (data_len_in_bytes > 2) {
data_len_in_bytes = 4; /* must be 4 aglin */
}
if ((size == 0) ||
((SPI_SOC_TRANSFER_COUNT_MAX == 512) && (size > (SPI_SOC_TRANSFER_COUNT_MAX * data_len_in_bytes)))) {
return status_invalid_argument;
}
hpm_spi_transfer_init(ptr, spi_trans_write_only, size);
spi_enable_tx_dma(ptr);
spi_disable_rx_dma(ptr);
/* for master mode, This CMD register must be written with a dummy value
* to start a SPI transfer even when the command phase is not enabled
*/
if (SPI_TRANSFMT_SLVMODE_GET(ptr->TRANSFMT) == spi_master_mode) {
ptr->CMD = 0xFF;
}
return stat;
}
#if USE_DMA_MGR
void dma_channel_tc_callback(DMA_Type *ptr, uint32_t channel, void *user_data)
{
hpm_spi_cfg_t *obj = (hpm_spi_cfg_t *)user_data;
if ((obj->rxdma_resource.channel == channel) &&
(obj->rxdma_resource.base == ptr) &&
(obj->rx_dma_complete != NULL)) {
obj->rx_dma_complete(channel);
}
if ((obj->txdma_resource.channel == channel) &&
(obj->txdma_resource.base == ptr) &&
(obj->tx_dma_complete != NULL)) {
obj->tx_dma_complete(channel);
}
}
hpm_stat_t hpm_spi_dma_install_callback(SPI_Type *ptr, spi_dma_complete_cb tx_complete, spi_dma_complete_cb rx_complete)
{
dma_mgr_chn_conf_t chg_config;
dma_resource_t *resource = NULL;
hpm_spi_cfg_t *obj = hpm_spi_get_cfg_obj(ptr);
if (obj == NULL) {
return status_invalid_argument;
}
dma_mgr_get_default_chn_config(&chg_config);
chg_config.src_width = DMA_MGR_TRANSFER_WIDTH_BYTE;
chg_config.dst_width = DMA_MGR_TRANSFER_WIDTH_BYTE;
/* spi rx dma config */
resource = &obj->rxdma_resource;
if (dma_mgr_request_resource(resource) == status_success) {
chg_config.src_mode = DMA_MGR_HANDSHAKE_MODE_HANDSHAKE;
chg_config.src_addr_ctrl = DMA_MGR_ADDRESS_CONTROL_FIXED;
chg_config.src_addr = (uint32_t)&ptr->DATA;
chg_config.dst_mode = DMA_MGR_HANDSHAKE_MODE_NORMAL;
chg_config.dst_addr_ctrl = DMA_MGR_ADDRESS_CONTROL_INCREMENT;
chg_config.en_dmamux = true;
chg_config.dmamux_src = obj->rx_dmamux_src;
dma_mgr_setup_channel(resource, &chg_config);
dma_mgr_install_chn_tc_callback(resource, dma_channel_tc_callback, (void *)obj);
dma_mgr_enable_chn_irq(resource, DMA_MGR_INTERRUPT_MASK_TC);
dma_mgr_enable_dma_irq_with_priority(resource, 1);
obj->rx_dma_complete = rx_complete;
}
/* spi tx dma config */
resource = &obj->txdma_resource;
if (dma_mgr_request_resource(resource) == status_success) {
chg_config.src_mode = DMA_MGR_HANDSHAKE_MODE_NORMAL;
chg_config.src_addr_ctrl = DMA_MGR_ADDRESS_CONTROL_INCREMENT;
chg_config.dst_mode = DMA_MGR_HANDSHAKE_MODE_HANDSHAKE;
chg_config.dst_addr_ctrl = DMA_MGR_ADDRESS_CONTROL_FIXED;
chg_config.dst_addr = (uint32_t)&ptr->DATA;
chg_config.en_dmamux = true;
chg_config.dmamux_src = obj->tx_dmamux_src;
dma_mgr_setup_channel(resource, &chg_config);
dma_mgr_install_chn_tc_callback(resource, dma_channel_tc_callback, (void *)obj);
dma_mgr_enable_chn_irq(resource, DMA_MGR_INTERRUPT_MASK_TC);
dma_mgr_enable_dma_irq_with_priority(resource, 1);
obj->tx_dma_complete = tx_complete;
}
return status_success;
}
hpm_stat_t hpm_spi_transmit_receive_nonblocking(SPI_Type *ptr, uint8_t *wbuff, uint8_t *rbuff, uint32_t size)
{
hpm_stat_t stat = status_success;
uint8_t transfer_width;
dma_resource_t *resource;
uint32_t buf_addr;
hpm_spi_cfg_t *obj = hpm_spi_get_cfg_obj(ptr);
uint8_t data_len_in_bytes = spi_get_data_length_in_bytes(ptr);
if (data_len_in_bytes > 2) {
/* word */
transfer_width = DMA_MGR_TRANSFER_WIDTH_WORD;
data_len_in_bytes = 4; /* must be 4 aglin */
} else {
/* byte or half_word*/
transfer_width = data_len_in_bytes - 1;
}
if ((obj == NULL) ||
(spi_master_get_data_phase_format(ptr) != spi_single_io_mode) ||
(size > (SPI_SOC_TRANSFER_COUNT_MAX * data_len_in_bytes))) {
return status_invalid_argument;
}
spi_disable_rx_dma(ptr);
spi_disable_tx_dma(ptr);
spi_transmit_fifo_reset(ptr);
spi_receive_fifo_reset(ptr);
resource = &obj->rxdma_resource;
buf_addr = core_local_mem_to_sys_address(HPM_CORE0, (uint32_t)rbuff);
dma_mgr_set_chn_dst_width(resource, transfer_width);
dma_mgr_set_chn_src_width(resource, transfer_width);
dma_mgr_set_chn_dst_addr(resource, buf_addr);
dma_mgr_set_chn_transize(resource, size / data_len_in_bytes);
dma_mgr_enable_channel(resource);
resource = &obj->txdma_resource;
buf_addr = core_local_mem_to_sys_address(HPM_CORE0, (uint32_t)wbuff);
dma_mgr_set_chn_dst_width(resource, transfer_width);
dma_mgr_set_chn_src_width(resource, transfer_width);
dma_mgr_set_chn_src_addr(resource, buf_addr);
dma_mgr_set_chn_transize(resource, size / data_len_in_bytes);
dma_mgr_enable_channel(resource);
stat = hpm_spi_transmit_receive_setup_dma(ptr, size);
return stat;
}
hpm_stat_t hpm_spi_receive_nonblocking(SPI_Type *ptr, uint8_t *buff, uint32_t size)
{
hpm_stat_t stat = status_success;
uint8_t transfer_width;
dma_resource_t *resource;
uint32_t buf_addr;
hpm_spi_cfg_t *obj = hpm_spi_get_cfg_obj(ptr);
uint8_t data_len_in_bytes = spi_get_data_length_in_bytes(ptr);
if (data_len_in_bytes > 2) {
data_len_in_bytes = 4; /* must be 4 aglin */
/* word */
transfer_width = DMA_MGR_TRANSFER_WIDTH_WORD;
} else {
/* byte or half_word*/
transfer_width = data_len_in_bytes - 1;
}
if ((obj == NULL) ||
((size > (SPI_SOC_TRANSFER_COUNT_MAX * data_len_in_bytes)))) {
return status_invalid_argument;
}
spi_disable_rx_dma(ptr);
spi_disable_tx_dma(ptr);
spi_transmit_fifo_reset(ptr);
spi_receive_fifo_reset(ptr);
resource = &obj->rxdma_resource;
buf_addr = core_local_mem_to_sys_address(HPM_CORE0, (uint32_t)buff);
dma_mgr_set_chn_dst_width(resource, transfer_width);
dma_mgr_set_chn_src_width(resource, transfer_width);
dma_mgr_set_chn_dst_addr(resource, buf_addr);
dma_mgr_set_chn_transize(resource, size / data_len_in_bytes);
dma_mgr_enable_channel(resource);
stat = hpm_spi_receive_setup_dma(ptr, size);
return stat;
}
hpm_stat_t hpm_spi_transmit_nonblocking(SPI_Type *ptr, uint8_t *buff, uint32_t size)
{
hpm_stat_t stat = status_success;
uint8_t transfer_width;
dma_resource_t *resource;
uint32_t buf_addr;
hpm_spi_cfg_t *obj = hpm_spi_get_cfg_obj(ptr);
uint8_t data_len_in_bytes = spi_get_data_length_in_bytes(ptr);
if (data_len_in_bytes > 2) {
data_len_in_bytes = 4; /* must be 4 aglin */
/* word */
transfer_width = DMA_MGR_TRANSFER_WIDTH_WORD;
} else {
/* byte or half_word*/
transfer_width = data_len_in_bytes - 1;
}
if ((obj == NULL) ||
(size > (SPI_SOC_TRANSFER_COUNT_MAX * data_len_in_bytes))) {
return status_invalid_argument;
}
resource = &obj->txdma_resource;
buf_addr = core_local_mem_to_sys_address(HPM_CORE0, (uint32_t)buff);
spi_disable_rx_dma(ptr);
spi_disable_tx_dma(ptr);
spi_transmit_fifo_reset(ptr);
spi_receive_fifo_reset(ptr);
dma_mgr_set_chn_src_addr(resource, buf_addr);
dma_mgr_set_chn_dst_width(resource, transfer_width);
dma_mgr_set_chn_src_width(resource, transfer_width);
dma_mgr_set_chn_transize(resource, size / data_len_in_bytes);
dma_mgr_enable_channel(resource);
stat = hpm_spi_transmit_setup_dma(ptr, size);
return stat;
}
#endif