4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-22 09:39:20 +08:00
2018-12-05 11:44:53 +08:00

582 lines
19 KiB
C

/*
* The Clear BSD License
* Copyright (c) 2016, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided
* that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_i2c_dma.h"
#include "fsl_flexcomm.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.flexcomm_i2c_dma"
#endif
/*<! @brief Structure definition for i2c_master_dma_handle_t. The structure is private. */
typedef struct _i2c_master_dma_private_handle
{
I2C_Type *base;
i2c_master_dma_handle_t *handle;
} i2c_master_dma_private_handle_t;
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief DMA callback for I2C master DMA driver.
*
* @param handle DMA handler for I2C master DMA driver
* @param userData user param passed to the callback function
*/
static void I2C_MasterTransferCallbackDMA(dma_handle_t *handle, void *userData);
/*!
* @brief Set up master transfer, send slave address and sub address(if any), wait until the
* wait until address sent status return.
*
* @param base I2C peripheral base address.
* @param handle pointer to i2c_master_dma_handle_t structure which stores the transfer state.
* @param xfer pointer to i2c_master_transfer_t structure.
*/
static status_t I2C_InitTransferStateMachineDMA(I2C_Type *base,
i2c_master_dma_handle_t *handle,
i2c_master_transfer_t *xfer);
/*******************************************************************************
* Variables
******************************************************************************/
/*<! Private handle only used for internally. */
static i2c_master_dma_private_handle_t s_dmaPrivateHandle[FSL_FEATURE_SOC_I2C_COUNT];
/*! @brief IRQ name array */
static const IRQn_Type s_i2cIRQ[] = I2C_IRQS;
/*******************************************************************************
* Codes
******************************************************************************/
/*!
* @brief Prepares the transfer state machine and fills in the command buffer.
* @param handle Master nonblocking driver handle.
*/
static status_t I2C_InitTransferStateMachineDMA(I2C_Type *base,
i2c_master_dma_handle_t *handle,
i2c_master_transfer_t *xfer)
{
struct _i2c_master_transfer *transfer;
handle->transfer = *xfer;
transfer = &(handle->transfer);
handle->transferCount = 0;
handle->remainingBytesDMA = 0;
handle->buf = (uint8_t *)transfer->data;
handle->remainingSubaddr = 0;
if (transfer->flags & kI2C_TransferNoStartFlag)
{
/* Start condition shall be ommited, switch directly to next phase */
if (transfer->dataSize == 0)
{
handle->state = kStopState;
}
else if (handle->transfer.direction == kI2C_Write)
{
handle->state = xfer->dataSize = kTransmitDataState;
}
else if (handle->transfer.direction == kI2C_Read)
{
handle->state = (xfer->dataSize == 1) ? kReceiveLastDataState : kReceiveDataState;
}
else
{
return kStatus_I2C_InvalidParameter;
}
}
else
{
if (transfer->subaddressSize != 0)
{
int i;
uint32_t subaddress;
if (transfer->subaddressSize > sizeof(handle->subaddrBuf))
{
return kStatus_I2C_InvalidParameter;
}
/* Prepare subaddress transmit buffer, most significant byte is stored at the lowest address */
subaddress = xfer->subaddress;
for (i = xfer->subaddressSize - 1; i >= 0; i--)
{
handle->subaddrBuf[i] = subaddress & 0xff;
subaddress >>= 8;
}
handle->remainingSubaddr = transfer->subaddressSize;
}
handle->state = kStartState;
}
return kStatus_Success;
}
static void I2C_RunDMATransfer(I2C_Type *base, i2c_master_dma_handle_t *handle)
{
int transfer_size;
dma_transfer_config_t xferConfig;
/* Update transfer count */
handle->transferCount = handle->buf - (uint8_t *)handle->transfer.data;
/* Check if there is anything to be transferred at all */
if (handle->remainingBytesDMA == 0)
{
/* No data to be transferrred, disable DMA */
base->MSTCTL = 0;
return;
}
/* Calculate transfer size */
transfer_size = handle->remainingBytesDMA;
if (transfer_size > I2C_MAX_DMA_TRANSFER_COUNT)
{
transfer_size = I2C_MAX_DMA_TRANSFER_COUNT;
}
switch (handle->transfer.direction)
{
case kI2C_Write:
DMA_PrepareTransfer(&xferConfig, handle->buf, (void *)&base->MSTDAT, sizeof(uint8_t), transfer_size,
kDMA_MemoryToPeripheral, NULL);
break;
case kI2C_Read:
DMA_PrepareTransfer(&xferConfig, (void *)&base->MSTDAT, handle->buf, sizeof(uint8_t), transfer_size,
kDMA_PeripheralToMemory, NULL);
break;
default:
/* This should never happen */
assert(0);
break;
}
DMA_SubmitTransfer(handle->dmaHandle, &xferConfig);
DMA_StartTransfer(handle->dmaHandle);
handle->remainingBytesDMA -= transfer_size;
handle->buf += transfer_size;
}
/*!
* @brief Execute states until the transfer is done.
* @param handle Master nonblocking driver handle.
* @param[out] isDone Set to true if the transfer has completed.
* @retval #kStatus_Success
* @retval #kStatus_I2C_ArbitrationLost
* @retval #kStatus_I2C_Nak
*/
static status_t I2C_RunTransferStateMachineDMA(I2C_Type *base, i2c_master_dma_handle_t *handle, bool *isDone)
{
uint32_t status;
uint32_t master_state;
struct _i2c_master_transfer *transfer;
dma_transfer_config_t xferConfig;
status_t err;
uint32_t start_flag = 0;
transfer = &(handle->transfer);
*isDone = false;
status = I2C_GetStatusFlags(base);
if (status & I2C_STAT_MSTARBLOSS_MASK)
{
I2C_MasterClearStatusFlags(base, I2C_STAT_MSTARBLOSS_MASK);
DMA_AbortTransfer(handle->dmaHandle);
base->MSTCTL = 0;
return kStatus_I2C_ArbitrationLost;
}
if (status & I2C_STAT_MSTSTSTPERR_MASK)
{
I2C_MasterClearStatusFlags(base, I2C_STAT_MSTSTSTPERR_MASK);
DMA_AbortTransfer(handle->dmaHandle);
base->MSTCTL = 0;
return kStatus_I2C_StartStopError;
}
if ((status & I2C_STAT_MSTPENDING_MASK) == 0)
{
return kStatus_I2C_Busy;
}
/* Get the state of the I2C module */
master_state = (status & I2C_STAT_MSTSTATE_MASK) >> I2C_STAT_MSTSTATE_SHIFT;
if ((master_state == I2C_STAT_MSTCODE_NACKADR) || (master_state == I2C_STAT_MSTCODE_NACKDAT))
{
/* Slave NACKed last byte, issue stop and return error */
DMA_AbortTransfer(handle->dmaHandle);
base->MSTCTL = I2C_MSTCTL_MSTSTOP_MASK;
handle->state = kWaitForCompletionState;
return kStatus_I2C_Nak;
}
err = kStatus_Success;
if (handle->state == kStartState)
{
/* set start flag for later use */
start_flag = I2C_MSTCTL_MSTSTART_MASK;
if (handle->remainingSubaddr)
{
base->MSTDAT = (uint32_t)transfer->slaveAddress << 1;
handle->state = kTransmitSubaddrState;
}
else if (transfer->direction == kI2C_Write)
{
base->MSTDAT = (uint32_t)transfer->slaveAddress << 1;
if (transfer->dataSize == 0)
{
/* No data to be transferred, initiate start and schedule stop */
base->MSTCTL = I2C_MSTCTL_MSTSTART_MASK;
handle->state = kStopState;
return err;
}
handle->state = kTransmitDataState;
}
else if ((transfer->direction == kI2C_Read) && (transfer->dataSize > 0))
{
base->MSTDAT = ((uint32_t)transfer->slaveAddress << 1) | 1u;
if (transfer->dataSize == 1)
{
/* The very last byte is always received by means of SW */
base->MSTCTL = I2C_MSTCTL_MSTSTART_MASK;
handle->state = kReceiveLastDataState;
return err;
}
handle->state = kReceiveDataState;
}
else
{
handle->state = kIdleState;
err = kStatus_I2C_UnexpectedState;
return err;
}
}
switch (handle->state)
{
case kTransmitSubaddrState:
if ((master_state != I2C_STAT_MSTCODE_TXREADY) && (!start_flag))
{
return kStatus_I2C_UnexpectedState;
}
base->MSTCTL = start_flag | I2C_MSTCTL_MSTDMA_MASK;
/* Prepare and submit DMA transfer. */
DMA_PrepareTransfer(&xferConfig, handle->subaddrBuf, (void *)&base->MSTDAT, sizeof(uint8_t),
handle->remainingSubaddr, kDMA_MemoryToPeripheral, NULL);
DMA_SubmitTransfer(handle->dmaHandle, &xferConfig);
DMA_StartTransfer(handle->dmaHandle);
handle->remainingSubaddr = 0;
if (transfer->dataSize)
{
/* There is data to be transferred, if there is write to read turnaround it is necessary to perform
* repeated start */
handle->state = (transfer->direction == kI2C_Read) ? kStartState : kTransmitDataState;
}
else
{
/* No more data, schedule stop condition */
handle->state = kStopState;
}
break;
case kTransmitDataState:
if ((master_state != I2C_STAT_MSTCODE_TXREADY) && (!start_flag))
{
return kStatus_I2C_UnexpectedState;
}
base->MSTCTL = start_flag | I2C_MSTCTL_MSTDMA_MASK;
handle->remainingBytesDMA = handle->transfer.dataSize;
I2C_RunDMATransfer(base, handle);
/* Schedule stop condition */
handle->state = kStopState;
break;
case kReceiveDataState:
if ((master_state != I2C_STAT_MSTCODE_RXREADY) && (!start_flag))
{
return kStatus_I2C_UnexpectedState;
}
base->MSTCTL = start_flag | I2C_MSTCTL_MSTDMA_MASK;
handle->remainingBytesDMA = handle->transfer.dataSize - 1;
I2C_RunDMATransfer(base, handle);
/* Schedule reception of last data byte */
handle->state = kReceiveLastDataState;
break;
case kReceiveLastDataState:
if (master_state != I2C_STAT_MSTCODE_RXREADY)
{
return kStatus_I2C_UnexpectedState;
}
((uint8_t *)transfer->data)[transfer->dataSize - 1] = base->MSTDAT;
handle->transferCount++;
/* No more data expected, issue NACK and STOP right away */
base->MSTCTL = I2C_MSTCTL_MSTSTOP_MASK;
handle->state = kWaitForCompletionState;
break;
case kStopState:
if (transfer->flags & kI2C_TransferNoStopFlag)
{
/* Stop condition is omitted, we are done */
*isDone = true;
handle->state = kIdleState;
break;
}
/* Send stop condition */
base->MSTCTL = I2C_MSTCTL_MSTSTOP_MASK;
handle->state = kWaitForCompletionState;
break;
case kWaitForCompletionState:
*isDone = true;
handle->state = kIdleState;
break;
case kStartState:
case kIdleState:
default:
/* State machine shall not be invoked again once it enters the idle state */
err = kStatus_I2C_UnexpectedState;
break;
}
return err;
}
void I2C_MasterTransferDMAHandleIRQ(I2C_Type *base, i2c_master_dma_handle_t *handle)
{
bool isDone;
status_t result;
/* Don't do anything if we don't have a valid handle. */
if (!handle)
{
return;
}
result = I2C_RunTransferStateMachineDMA(base, handle, &isDone);
if (isDone || (result != kStatus_Success))
{
/* Disable internal IRQ enables. */
I2C_DisableInterrupts(base,
I2C_INTSTAT_MSTPENDING_MASK | I2C_INTSTAT_MSTARBLOSS_MASK | I2C_INTSTAT_MSTSTSTPERR_MASK);
/* Invoke callback. */
if (handle->completionCallback)
{
handle->completionCallback(base, handle, result, handle->userData);
}
}
}
static void I2C_MasterTransferCallbackDMA(dma_handle_t *handle, void *userData)
{
i2c_master_dma_private_handle_t *dmaPrivateHandle;
/* Don't do anything if we don't have a valid handle. */
if (!handle)
{
return;
}
dmaPrivateHandle = (i2c_master_dma_private_handle_t *)userData;
I2C_RunDMATransfer(dmaPrivateHandle->base, dmaPrivateHandle->handle);
}
void I2C_MasterTransferCreateHandleDMA(I2C_Type *base,
i2c_master_dma_handle_t *handle,
i2c_master_dma_transfer_callback_t callback,
void *userData,
dma_handle_t *dmaHandle)
{
uint32_t instance;
assert(handle);
assert(dmaHandle);
/* Zero handle. */
memset(handle, 0, sizeof(*handle));
/* Look up instance number */
instance = I2C_GetInstance(base);
/* Set the user callback and userData. */
handle->completionCallback = callback;
handle->userData = userData;
FLEXCOMM_SetIRQHandler(base, (flexcomm_irq_handler_t)I2C_MasterTransferDMAHandleIRQ, handle);
/* Clear internal IRQ enables and enable NVIC IRQ. */
I2C_DisableInterrupts(base,
I2C_INTSTAT_MSTPENDING_MASK | I2C_INTSTAT_MSTARBLOSS_MASK | I2C_INTSTAT_MSTSTSTPERR_MASK);
EnableIRQ(s_i2cIRQ[instance]);
/* Set the handle for DMA. */
handle->dmaHandle = dmaHandle;
s_dmaPrivateHandle[instance].base = base;
s_dmaPrivateHandle[instance].handle = handle;
DMA_SetCallback(dmaHandle, (dma_callback)I2C_MasterTransferCallbackDMA, &s_dmaPrivateHandle[instance]);
}
status_t I2C_MasterTransferDMA(I2C_Type *base, i2c_master_dma_handle_t *handle, i2c_master_transfer_t *xfer)
{
status_t result;
assert(handle);
assert(xfer);
assert(xfer->subaddressSize <= sizeof(xfer->subaddress));
/* Return busy if another transaction is in progress. */
if (handle->state != kIdleState)
{
return kStatus_I2C_Busy;
}
/* Prepare transfer state machine. */
result = I2C_InitTransferStateMachineDMA(base, handle, xfer);
/* Clear error flags. */
I2C_MasterClearStatusFlags(base, I2C_STAT_MSTARBLOSS_MASK | I2C_STAT_MSTSTSTPERR_MASK);
/* Enable I2C internal IRQ sources */
I2C_EnableInterrupts(base,
I2C_INTSTAT_MSTARBLOSS_MASK | I2C_INTSTAT_MSTSTSTPERR_MASK | I2C_INTSTAT_MSTPENDING_MASK);
return result;
}
status_t I2C_MasterTransferGetCountDMA(I2C_Type *base, i2c_master_dma_handle_t *handle, size_t *count)
{
assert(handle);
if (!count)
{
return kStatus_InvalidArgument;
}
/* Catch when there is not an active transfer. */
if (handle->state == kIdleState)
{
*count = 0;
return kStatus_NoTransferInProgress;
}
/* There is no necessity to disable interrupts as we read a single integer value */
*count = handle->transferCount;
return kStatus_Success;
}
void I2C_MasterTransferAbortDMA(I2C_Type *base, i2c_master_dma_handle_t *handle)
{
uint32_t status;
uint32_t master_state;
if (handle->state != kIdleState)
{
DMA_AbortTransfer(handle->dmaHandle);
/* Disable DMA */
base->MSTCTL = 0;
/* Disable internal IRQ enables. */
I2C_DisableInterrupts(base,
I2C_INTSTAT_MSTPENDING_MASK | I2C_INTSTAT_MSTARBLOSS_MASK | I2C_INTSTAT_MSTSTSTPERR_MASK);
/* Wait until module is ready */
do
{
status = I2C_GetStatusFlags(base);
} while ((status & I2C_STAT_MSTPENDING_MASK) == 0);
/* Clear controller state. */
I2C_MasterClearStatusFlags(base, I2C_STAT_MSTARBLOSS_MASK | I2C_STAT_MSTSTSTPERR_MASK);
/* Get the state of the I2C module */
master_state = (status & I2C_STAT_MSTSTATE_MASK) >> I2C_STAT_MSTSTATE_SHIFT;
if (master_state != I2C_STAT_MSTCODE_IDLE)
{
/* Send a stop command to finalize the transfer. */
base->MSTCTL = I2C_MSTCTL_MSTSTOP_MASK;
/* Wait until module is ready */
do
{
status = I2C_GetStatusFlags(base);
} while ((status & I2C_STAT_MSTPENDING_MASK) == 0);
/* Clear controller state. */
I2C_MasterClearStatusFlags(base, I2C_STAT_MSTARBLOSS_MASK | I2C_STAT_MSTSTSTPERR_MASK);
}
/* Reset the state to idle. */
handle->state = kIdleState;
}
}