rt-thread-official/bsp/stm32/libraries/HAL_Drivers/drivers/drv_adc.c

394 lines
11 KiB
C

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-05 zylx first version
* 2018-12-12 greedyhao Porting for stm32f7xx
* 2019-02-01 yuneizhilin fix the stm32_adc_init function initialization issue
* 2020-06-17 thread-liu Porting for stm32mp1xx
* 2020-10-14 Dozingfiretruck Porting for stm32wbxx
* 2022-05-22 Stanley Lwin Add stm32_adc_get_vref
* 2022-12-26 wdfk-prog Change the order of configuration channels and calibration functions
*/
#include <board.h>
#include <rtthread.h>
#if defined(BSP_USING_ADC1) || defined(BSP_USING_ADC2) || defined(BSP_USING_ADC3)
#include "drv_config.h"
//#define DRV_DEBUG
#define LOG_TAG "drv.adc"
#include <drv_log.h>
static ADC_HandleTypeDef adc_config[] =
{
#ifdef BSP_USING_ADC1
ADC1_CONFIG,
#endif
#ifdef BSP_USING_ADC2
ADC2_CONFIG,
#endif
#ifdef BSP_USING_ADC3
ADC3_CONFIG,
#endif
};
struct stm32_adc
{
ADC_HandleTypeDef ADC_Handler;
struct rt_adc_device stm32_adc_device;
};
static struct stm32_adc stm32_adc_obj[sizeof(adc_config) / sizeof(adc_config[0])];
static rt_err_t stm32_adc_get_channel(rt_int8_t rt_channel, uint32_t *stm32_channel)
{
switch (rt_channel)
{
case 0:
*stm32_channel = ADC_CHANNEL_0;
break;
case 1:
*stm32_channel = ADC_CHANNEL_1;
break;
case 2:
*stm32_channel = ADC_CHANNEL_2;
break;
case 3:
*stm32_channel = ADC_CHANNEL_3;
break;
case 4:
*stm32_channel = ADC_CHANNEL_4;
break;
case 5:
*stm32_channel = ADC_CHANNEL_5;
break;
case 6:
*stm32_channel = ADC_CHANNEL_6;
break;
case 7:
*stm32_channel = ADC_CHANNEL_7;
break;
case 8:
*stm32_channel = ADC_CHANNEL_8;
break;
case 9:
*stm32_channel = ADC_CHANNEL_9;
break;
case 10:
*stm32_channel = ADC_CHANNEL_10;
break;
case 11:
*stm32_channel = ADC_CHANNEL_11;
break;
case 12:
*stm32_channel = ADC_CHANNEL_12;
break;
case 13:
*stm32_channel = ADC_CHANNEL_13;
break;
case 14:
*stm32_channel = ADC_CHANNEL_14;
break;
case 15:
*stm32_channel = ADC_CHANNEL_15;
break;
#ifdef ADC_CHANNEL_16
case 16:
*stm32_channel = ADC_CHANNEL_16;
break;
#endif /* ADC_CHANNEL_16 */
case 17:
*stm32_channel = ADC_CHANNEL_17;
break;
#ifdef ADC_CHANNEL_18
case 18:
*stm32_channel = ADC_CHANNEL_18;
break;
#endif /* ADC_CHANNEL_18 */
#ifdef ADC_CHANNEL_19
case 19:
*stm32_channel = ADC_CHANNEL_19;
break;
#endif /* ADC_CHANNEL_19 */
#ifdef ADC_CHANNEL_VREFINT
case RT_ADC_INTERN_CH_VREF:
*stm32_channel = ADC_CHANNEL_VREFINT;
break;
#endif /* ADC_CHANNEL_VREFINT */
#ifdef ADC_CHANNEL_VBAT
case RT_ADC_INTERN_CH_VBAT:
*stm32_channel = ADC_CHANNEL_VBAT;
break;
#endif /* ADC_CHANNEL_VBAT */
#ifdef ADC_CHANNEL_TEMPSENSOR
case RT_ADC_INTERN_CH_TEMPER:
*stm32_channel = ADC_CHANNEL_TEMPSENSOR;
break;
#endif /* ADC_CHANNEL_TEMPSENSOR */
default:
return -RT_EINVAL;
}
return RT_EOK;
}
static rt_err_t stm32_adc_enabled(struct rt_adc_device *device, rt_int8_t channel, rt_bool_t enabled)
{
ADC_HandleTypeDef *stm32_adc_handler;
RT_ASSERT(device != RT_NULL);
stm32_adc_handler = device->parent.user_data;
if (enabled)
{
ADC_ChannelConfTypeDef ADC_ChanConf;
rt_memset(&ADC_ChanConf, 0, sizeof(ADC_ChanConf));
if(stm32_adc_get_channel(channel, &ADC_ChanConf.Channel) != RT_EOK)
{
LOG_E("ADC channel illegal: %d", channel);
return -RT_EINVAL;
}
#if defined(SOC_SERIES_STM32MP1) || defined (SOC_SERIES_STM32H7) || defined (SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32U5)
ADC_ChanConf.Rank = ADC_REGULAR_RANK_1;
#else
ADC_ChanConf.Rank = 1;
#endif
#if defined(SOC_SERIES_STM32F0)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_71CYCLES_5;
#elif defined(SOC_SERIES_STM32F1)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_55CYCLES_5;
#elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_112CYCLES;
#elif defined(SOC_SERIES_STM32L4)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_247CYCLES_5;
#elif defined(SOC_SERIES_STM32MP1)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_810CYCLES_5;
#elif defined(SOC_SERIES_STM32H7)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_810CYCLES_5;
#elif defined(SOC_SERIES_STM32U5)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_814CYCLES;
#elif defined (SOC_SERIES_STM32WB)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;
#endif
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined (SOC_SERIES_STM32WB)
ADC_ChanConf.Offset = 0;
#endif
#if defined(SOC_SERIES_STM32L4)
ADC_ChanConf.OffsetNumber = ADC_OFFSET_NONE;
ADC_ChanConf.SingleDiff = LL_ADC_SINGLE_ENDED;
#elif defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32H7) || defined (SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32U5)
ADC_ChanConf.OffsetNumber = ADC_OFFSET_NONE; /* ADC channel affected to offset number */
ADC_ChanConf.Offset = 0;
ADC_ChanConf.SingleDiff = ADC_SINGLE_ENDED; /* ADC channel differential mode */
#endif
/* enable the analog power domain before configuring channel */
#if defined(SOC_SERIES_STM32U5)
__HAL_RCC_PWR_CLK_ENABLE();
HAL_PWREx_EnableVddA();
#endif /* defined(SOC_SERIES_STM32U5) */
if(HAL_ADC_ConfigChannel(stm32_adc_handler, &ADC_ChanConf) != HAL_OK)
{
LOG_E("Failed to configure ADC channel %d", channel);
return -RT_ERROR;
}
/* perform an automatic ADC calibration to improve the conversion accuracy */
#if defined(SOC_SERIES_STM32L4) || defined (SOC_SERIES_STM32WB)
if (HAL_ADCEx_Calibration_Start(stm32_adc_handler, ADC_ChanConf.SingleDiff) != HAL_OK)
{
LOG_E("ADC calibration error!\n");
return -RT_ERROR;
}
#elif defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32U5)
/* Run the ADC linear calibration in single-ended mode */
if (HAL_ADCEx_Calibration_Start(stm32_adc_handler, ADC_CALIB_OFFSET_LINEARITY, ADC_ChanConf.SingleDiff) != HAL_OK)
{
LOG_E("ADC open linear calibration error!\n");
/* Calibration Error */
return -RT_ERROR;
}
#endif
}
else
{
if (HAL_ADC_Stop(stm32_adc_handler) != HAL_OK)
{
LOG_E("Stop ADC conversion failed!\n");
return -RT_ERROR;
}
}
return RT_EOK;
}
static rt_uint8_t stm32_adc_get_resolution(struct rt_adc_device *device)
{
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F3)
return 12;
#else
ADC_HandleTypeDef *stm32_adc_handler = device->parent.user_data;
RT_ASSERT(device != RT_NULL);
switch(stm32_adc_handler->Init.Resolution)
{
#ifdef SOC_SERIES_STM32H7
case ADC_RESOLUTION_16B:
return 16;
#endif /* SOC_SERIES_STM32H7 */
#if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32U5)
case ADC_RESOLUTION_14B:
return 14;
#endif /* defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32U5) */
case ADC_RESOLUTION_12B:
return 12;
case ADC_RESOLUTION_10B:
return 10;
case ADC_RESOLUTION_8B:
return 8;
#if defined(SOC_SERIES_STM32H7) && (ADC_VER_V5_V90) || defined(SOC_SERIES_STM32U5)
case ADC_RESOLUTION_6B:
return 6;
#endif /* defined(SOC_SERIES_STM32H7) && (ADC_VER_V5_V90) || defined(SOC_SERIES_STM32U5) */
default:
return 0;
}
#endif /* defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F3) */
}
static rt_err_t stm32_adc_get_value(struct rt_adc_device *device, rt_int8_t channel, rt_uint32_t *value)
{
ADC_HandleTypeDef *stm32_adc_handler;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(value != RT_NULL);
stm32_adc_handler = device->parent.user_data;
if (HAL_ADC_Start(stm32_adc_handler) != HAL_OK)
{
LOG_E("Start ADC conversion error!\n");
return -RT_ERROR;
}
/* Wait for the ADC to convert */
if (HAL_ADC_PollForConversion(stm32_adc_handler, 100) != RT_EOK)
{
LOG_E("ADC conversion error!\n");
return -RT_ERROR;
}
/* get ADC value */
*value = (rt_uint32_t)HAL_ADC_GetValue(stm32_adc_handler);
return RT_EOK;
}
static rt_int16_t stm32_adc_get_vref (struct rt_adc_device *device)
{
rt_uint16_t vref_mv;
#ifdef __LL_ADC_CALC_VREFANALOG_VOLTAGE
rt_err_t ret;
rt_uint32_t vref_value;
ADC_HandleTypeDef *stm32_adc_handler = device->parent.user_data;
ret = stm32_adc_enabled(device, RT_ADC_INTERN_CH_VREF, RT_TRUE);
if (ret != RT_EOK)
return 0;
ret = stm32_adc_get_value(device, RT_ADC_INTERN_CH_VREF, &vref_value);
if (ret != RT_EOK)
return 0;
ret = stm32_adc_enabled(device, RT_ADC_INTERN_CH_VREF, RT_FALSE);
if (ret != RT_EOK)
return 0;
#ifdef SOC_SERIES_STM32U5
vref_mv = __LL_ADC_CALC_VREFANALOG_VOLTAGE(stm32_adc_handler->Instance, vref_value, stm32_adc_handler->Init.Resolution);
#else
vref_mv = __LL_ADC_CALC_VREFANALOG_VOLTAGE(vref_value, stm32_adc_handler->Init.Resolution);
#endif
#else
vref_mv = 3300;
#endif /* __LL_ADC_CALC_VREFANALOG_VOLTAGE */
return vref_mv;
}
static const struct rt_adc_ops stm_adc_ops =
{
.enabled = stm32_adc_enabled,
.convert = stm32_adc_get_value,
.get_resolution = stm32_adc_get_resolution,
.get_vref = stm32_adc_get_vref,
};
static int stm32_adc_init(void)
{
int result = RT_EOK;
/* save adc name */
char name_buf[5] = {'a', 'd', 'c', '0', 0};
int i = 0;
for (i = 0; i < sizeof(adc_config) / sizeof(adc_config[0]); i++)
{
/* ADC init */
name_buf[3] = '0';
stm32_adc_obj[i].ADC_Handler = adc_config[i];
#if defined(ADC1)
if (stm32_adc_obj[i].ADC_Handler.Instance == ADC1)
{
name_buf[3] = '1';
}
#endif
#if defined(ADC2)
if (stm32_adc_obj[i].ADC_Handler.Instance == ADC2)
{
name_buf[3] = '2';
}
#endif
#if defined(ADC3)
if (stm32_adc_obj[i].ADC_Handler.Instance == ADC3)
{
name_buf[3] = '3';
}
#endif
if (HAL_ADC_Init(&stm32_adc_obj[i].ADC_Handler) != HAL_OK)
{
LOG_E("%s init failed", name_buf);
result = -RT_ERROR;
}
else
{
/* register ADC device */
if (rt_hw_adc_register(&stm32_adc_obj[i].stm32_adc_device, name_buf, &stm_adc_ops, &stm32_adc_obj[i].ADC_Handler) == RT_EOK)
{
LOG_D("%s init success", name_buf);
}
else
{
LOG_E("%s register failed", name_buf);
result = -RT_ERROR;
}
}
}
return result;
}
INIT_BOARD_EXPORT(stm32_adc_init);
#endif /* BSP_USING_ADC */