4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-25 15:47:25 +08:00
guo ecf2d82159
sync branch rt-smart. (#6641)
* Synchronize the code of the rt mart branch to the master branch.
  * TTY device
  * Add lwP code from rt-smart
  * Add vnode in DFS, but DFS will be re-write for rt-smart
  * There are three libcpu for rt-smart:
    * arm/cortex-a, arm/aarch64
    * riscv64

Co-authored-by: Rbb666 <zhangbingru@rt-thread.com>
Co-authored-by: zhkag <zhkag@foxmail.com>
2022-12-03 12:07:44 +08:00

841 lines
23 KiB
C
Raw Blame History

/*
* Copyright (c) 2019-2025 Allwinner Technology Co., Ltd. ALL rights reserved.
*
* Allwinner is a trademark of Allwinner Technology Co.,Ltd., registered in
* the the people's Republic of China and other countries.
* All Allwinner Technology Co.,Ltd. trademarks are used with permission.
*
* DISCLAIMER
* THIRD PARTY LICENCES MAY BE REQUIRED TO IMPLEMENT THE SOLUTION/PRODUCT.
* IF YOU NEED TO INTEGRATE THIRD PARTY<54><59>S TECHNOLOGY (SONY, DTS, DOLBY, AVS OR MPEGLA, ETC.)
* IN ALLWINNERS<52><53>SDK OR PRODUCTS, YOU SHALL BE SOLELY RESPONSIBLE TO OBTAIN
* ALL APPROPRIATELY REQUIRED THIRD PARTY LICENCES.
* ALLWINNER SHALL HAVE NO WARRANTY, INDEMNITY OR OTHER OBLIGATIONS WITH RESPECT TO MATTERS
* COVERED UNDER ANY REQUIRED THIRD PARTY LICENSE.
* YOU ARE SOLELY RESPONSIBLE FOR YOUR USAGE OF THIRD PARTY<54><59>S TECHNOLOGY.
*
*
* THIS SOFTWARE IS PROVIDED BY ALLWINNER"AS IS" AND TO THE MAXIMUM EXTENT
* PERMITTED BY LAW, ALLWINNER EXPRESSLY DISCLAIMS ALL WARRANTIES OF ANY KIND,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION REGARDING
* THE TITLE, NON-INFRINGEMENT, ACCURACY, CONDITION, COMPLETENESS, PERFORMANCE
* OR MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
* IN NO EVENT SHALL ALLWINNER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS, OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <hal_reset.h>
#include <hal_cache.h>
#include <hal_mem.h>
#include <hal_atomic.h>
#include <hal_clk.h>
#include <hal_interrupt.h>
#include <interrupt.h>
#include <sunxi_hal_common.h>
#include <hal_dma.h>
#define DMA_ERR(fmt, arg...) printf("%s()%d " fmt, __func__, __LINE__, ##arg)
static struct sunxi_dma_chan dma_chan_source[NR_MAX_CHAN];
static hal_spinlock_t dma_lock;
/*
* Fix sconfig's bus width according to at_dmac.
* 1 byte -> 0, 2 bytes -> 1, 4 bytes -> 2, 8bytes -> 3
*/
static inline uint32_t convert_buswidth(enum dma_slave_buswidth addr_width)
{
if (addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES)
{
return 0;
}
switch (addr_width)
{
case DMA_SLAVE_BUSWIDTH_2_BYTES:
return 1;
case DMA_SLAVE_BUSWIDTH_4_BYTES:
return 2;
case DMA_SLAVE_BUSWIDTH_8_BYTES:
return 3;
default:
/* For 1 byte width or fallback */
return 0;
}
}
static inline void convert_burst(uint32_t *maxburst)
{
switch (*maxburst)
{
case 1:
*maxburst = 0;
break;
case 4:
*maxburst = 1;
break;
case 8:
*maxburst = 2;
break;
case 16:
*maxburst = 3;
break;
default:
printf("unknown maxburst\n");
*maxburst = 0;
break;
}
}
static inline void sunxi_cfg_lli(struct sunxi_dma_lli *lli, uint32_t src_addr,
uint32_t dst_addr, uint32_t len,
struct dma_slave_config *config)
{
uint32_t src_width = 0, dst_width = 0;
if (NULL == lli && NULL == config)
{
return;
}
src_width = convert_buswidth(config->src_addr_width);
dst_width = convert_buswidth(config->dst_addr_width);
lli->cfg = SRC_BURST(config->src_maxburst) | \
SRC_WIDTH(src_width) | \
DST_BURST(config->dst_maxburst) | \
DST_WIDTH(dst_width);
lli->src = src_addr;
lli->dst = dst_addr;
lli->len = len;
lli->para = NORMAL_WAIT;
}
static void sunxi_dump_lli(struct sunxi_dma_chan *chan, struct sunxi_dma_lli *lli)
{
#ifdef DMA_DEBUG
printf("channum:%x\n"
"\t\tdesc:desc - 0x%08x desc p - 0x%08x desc v - 0x%08x\n"
"\t\tlli: v- 0x%08x v_lln - 0x%08x s - 0x%08x d - 0x%08x\n"
"\t\tlen - 0x%08x para - 0x%08x p_lln - 0x%08x\n",
chan->chan_count,
(uint32_t)chan->desc, (uint32_t)chan->desc->p_lln, (uint32_t)chan->desc->vlln,
(uint32_t)lli, (uint32_t)lli->vlln, (uint32_t)lli->src,
(uint32_t)lli->dst, (uint32_t)lli->len, (uint32_t)lli->para, (uint32_t)lli->p_lln);
#endif
}
static void sunxi_dump_com_regs(void)
{
#ifdef DMA_DEBUG
printf("Common register:\n"
"\tmask0: 0x%08x\n"
"\tmask1: 0x%08x\n"
"\tpend0: 0x%08x\n"
"\tpend1: 0x%08x\n"
#ifdef DMA_SECURE
"\tsecur: 0x%08x\n"
#endif
#ifdef DMA_GATE
"\t_gate: 0x%08x\n"
#endif
"\tstats: 0x%08x\n",
(uint32_t)hal_readl(DMA_IRQ_EN(0)),
(uint32_t)hal_readl(DMA_IRQ_EN(1)),
(uint32_t)hal_readl(DMA_IRQ_STAT(0)),
(uint32_t)hal_readl(DMA_IRQ_STAT(1)),
#ifdef DMA_SECURE
(uint32_t)hal_readl(DMA_SECURE),
#endif
#ifdef DMA_GATE
(uint32_t)hal_readl(DMA_GATE),
#endif
(uint32_t)hal_readl(DMA_STAT));
#endif
}
static inline void sunxi_dump_chan_regs(struct sunxi_dma_chan *ch)
{
#ifdef DMA_DEBUG
u32 chan_num = ch->chan_count;
printf("Chan %d reg:\n"
"\t___en: \t0x%08x\n"
"\tpause: \t0x%08x\n"
"\tstart: \t0x%08x\n"
"\t__cfg: \t0x%08x\n"
"\t__src: \t0x%08x\n"
"\t__dst: \t0x%08x\n"
"\tcount: \t0x%08x\n"
"\t_para: \t0x%08x\n\n",
chan_num,
(uint32_t)hal_readl(DMA_ENABLE(chan_num)),
(uint32_t)hal_readl(DMA_PAUSE(chan_num)),
(uint32_t)hal_readl(DMA_LLI_ADDR(chan_num)),
(uint32_t)hal_readl(DMA_CFG(chan_num)),
(uint32_t)hal_readl(DMA_CUR_SRC(chan_num)),
(uint32_t)hal_readl(DMA_CUR_DST(chan_num)),
(uint32_t)hal_readl(DMA_CNT(chan_num)),
(uint32_t)hal_readl(DMA_PARA(chan_num)));
#endif
}
static void *sunxi_lli_list(struct sunxi_dma_lli *prev, struct sunxi_dma_lli *next,
struct sunxi_dma_chan *chan)
{
if ((!prev && !chan) || !next)
{
return NULL;
}
if (!prev)
{
chan->desc = next;
chan->desc->p_lln = __va_to_pa((unsigned long)next);
chan->desc->vlln = next;
}
else
{
prev->p_lln = __va_to_pa((unsigned long)next);
prev->vlln = next;
}
next->p_lln = LINK_END;
next->vlln = NULL;
return next;
}
static irqreturn_t sunxi_dma_irq_handle(int irq, void *ptr)
{
uint32_t status_l = 0, status_h = 0;
int i = 0;
status_l = hal_readl(DMA_IRQ_STAT(0));
#if NR_MAX_CHAN + START_CHAN_OFFSET > HIGH_CHAN
status_h = hal_readl(DMA_IRQ_STAT(1));
#endif
hal_writel(status_l, DMA_IRQ_STAT(0));
#if NR_MAX_CHAN + START_CHAN_OFFSET > HIGH_CHAN
hal_writel(status_h, DMA_IRQ_STAT(1));
#endif
for (i = 0; i < NR_MAX_CHAN; i++)
{
uint32_t __cpsr;
struct sunxi_dma_chan *chan = &dma_chan_source[i];
__cpsr = hal_spin_lock_irqsave(&dma_lock);
uint32_t chan_num = chan->chan_count;
uint32_t status = 0;
if (chan->used == 0)
{
hal_spin_unlock_irqrestore(&dma_lock, __cpsr);
continue;
}
status = (chan_num + START_CHAN_OFFSET >= HIGH_CHAN) \
? (status_h >> ((chan_num + START_CHAN_OFFSET - HIGH_CHAN) << 2)) \
: (status_l >> ((chan_num + START_CHAN_OFFSET) << 2));
if (!(chan->irq_type & status))
{
goto unlock;
}
if (chan->cyclic)
{
dma_callback cb = NULL;
void *cb_data = NULL;
chan->periods_pos ++;
if (chan->periods_pos * chan->desc->len >= chan->buf_len)
{
chan->periods_pos = 0;
}
cb = chan->callback;
cb_data = chan->callback_param;
hal_spin_unlock_irqrestore(&dma_lock, __cpsr);
if (cb)
{
cb(cb_data);
}
__cpsr = hal_spin_lock_irqsave(&dma_lock);
}
else
{
dma_callback cb = NULL;
void *cb_data = NULL;
cb = chan->callback;
cb_data = chan->callback_param;
hal_spin_unlock_irqrestore(&dma_lock, __cpsr);
if (cb)
{
cb(cb_data);
}
__cpsr = hal_spin_lock_irqsave(&dma_lock);
}
unlock:
hal_spin_unlock_irqrestore(&dma_lock, __cpsr);
}
return 0;
}
static int sunxi_dma_clk_init(bool enable)
{
hal_clk_status_t ret;
hal_reset_type_t reset_type = HAL_SUNXI_RESET;
u32 reset_id;
hal_clk_type_t clk_type = HAL_SUNXI_CCU;
hal_clk_id_t clk_id;
hal_clk_t clk;
struct reset_control *reset;
clk_id = SUNXI_CLK_DMA;
reset_id = SUNXI_RST_DMA;
if (enable)
{
reset = hal_reset_control_get(reset_type, reset_id);
hal_reset_control_deassert(reset);
hal_reset_control_put(reset);
hal_clock_enable(hal_clock_get(clk_type, SUNXI_CLK_MBUS_DMA));
clk = hal_clock_get(clk_type, clk_id);
ret = hal_clock_enable(clk);
if (ret != HAL_CLK_STATUS_OK)
DMA_ERR("DMA clock enable failed.\n");
}
else
{
clk = hal_clock_get(clk_type, clk_id);
ret = hal_clock_disable(clk);
if (ret != HAL_CLK_STATUS_OK)
DMA_ERR("DMA clock disable failed.\n");
hal_clock_disable(hal_clock_get(clk_type, SUNXI_CLK_MBUS_DMA));
hal_clock_put(clk);
}
return ret;
}
void sunxi_dma_free_ill(struct sunxi_dma_chan *chan)
{
struct sunxi_dma_lli *li_adr = NULL, *next = NULL;
if (NULL == chan)
{
DMA_ERR("[dma] chan is NULL\n");
return ;
}
li_adr = chan->desc;
chan->desc = NULL;
while (li_adr)
{
next = li_adr->vlln;
dma_free_coherent(li_adr);
li_adr = next;
}
chan->callback = NULL;
chan->callback_param = NULL;
}
hal_dma_chan_status_t hal_dma_chan_request(struct sunxi_dma_chan **dma_chan)
{
int i = 0;
struct sunxi_dma_chan *chan;
uint32_t __cpsr;
for (i = 0; i < NR_MAX_CHAN; i++)
{
__cpsr = hal_spin_lock_irqsave(&dma_lock);
chan = &dma_chan_source[i];
if (chan->used == 0)
{
chan->used = 1;
chan->chan_count = i;
hal_spin_unlock_irqrestore(&dma_lock, __cpsr);
*dma_chan = &dma_chan_source[i];
return HAL_DMA_CHAN_STATUS_FREE;
}
hal_spin_unlock_irqrestore(&dma_lock, __cpsr);
}
return HAL_DMA_CHAN_STATUS_BUSY;
}
hal_dma_status_t hal_dma_prep_memcpy(struct sunxi_dma_chan *chan,
uint32_t dest, uint32_t src, uint32_t len)
{
struct sunxi_dma_lli *l_item = NULL;
struct dma_slave_config *config = NULL;
uint32_t __cpsr;
if ((NULL == chan) || (dest == 0 || src == 0))
{
DMA_ERR("[dma] chan is NULL\n");
return HAL_DMA_STATUS_INVALID_PARAMETER;
}
__cpsr = hal_spin_lock_irqsave(&dma_lock);
l_item = (struct sunxi_dma_lli *)dma_alloc_coherent(sizeof(struct sunxi_dma_lli));
if (!l_item)
{
hal_spin_unlock_irqrestore(&dma_lock, __cpsr);
return HAL_DMA_STATUS_NO_MEM;
}
memset(l_item, 0, sizeof(struct sunxi_dma_lli));
config = &chan->cfg;
dest = __va_to_pa(dest);
src = __va_to_pa(src);
sunxi_cfg_lli(l_item, src, dest, len, config);
l_item->cfg |= SRC_DRQ(DRQSRC_SDRAM) \
| DST_DRQ(DRQDST_SDRAM) \
| DST_LINEAR_MODE \
| SRC_LINEAR_MODE;
sunxi_lli_list(NULL, l_item, chan);
sunxi_dump_lli(chan, l_item);
hal_spin_unlock_irqrestore(&dma_lock, __cpsr);
return HAL_DMA_STATUS_OK;
}
hal_dma_status_t hal_dma_prep_device(struct sunxi_dma_chan *chan,
uint32_t dest, uint32_t src,
uint32_t len, enum dma_transfer_direction dir)
{
struct sunxi_dma_lli *l_item = NULL;
struct dma_slave_config *config = NULL;
uint32_t __cpsr;
if ((NULL == chan) || (dest == 0 || src == 0))
{
DMA_ERR("[dma] chan is NULL\n");
return HAL_DMA_STATUS_INVALID_PARAMETER;
}
l_item = (struct sunxi_dma_lli *)dma_alloc_coherent(sizeof(struct sunxi_dma_lli));
if (!l_item)
{
return HAL_DMA_STATUS_NO_MEM;
}
memset(l_item, 0, sizeof(struct sunxi_dma_lli));
__cpsr = hal_spin_lock_irqsave(&dma_lock);
config = &chan->cfg;
if (dir == DMA_MEM_TO_DEV)
{
src = __va_to_pa(src);
sunxi_cfg_lli(l_item, src, dest, len, config);
l_item->cfg |= GET_DST_DRQ(config->slave_id) \
| SRC_LINEAR_MODE \
| DST_IO_MODE \
| SRC_DRQ(DRQSRC_SDRAM);
}
else if (dir == DMA_DEV_TO_MEM)
{
dest = __va_to_pa(dest);
sunxi_cfg_lli(l_item, src, dest, len, config);
l_item ->cfg |= GET_SRC_DRQ(config->slave_id) \
| DST_LINEAR_MODE \
| SRC_IO_MODE \
| DST_DRQ(DRQSRC_SDRAM);
}
else if (dir == DMA_DEV_TO_DEV)
{
sunxi_cfg_lli(l_item, src, dest, len, config);
l_item->cfg |= GET_SRC_DRQ(config->slave_id) \
| DST_IO_MODE \
| SRC_IO_MODE \
| GET_DST_DRQ(config->slave_id);
}
sunxi_lli_list(NULL, l_item, chan);
sunxi_dump_lli(chan, l_item);
hal_spin_unlock_irqrestore(&dma_lock, __cpsr);
return HAL_DMA_STATUS_OK;
}
hal_dma_status_t hal_dma_prep_cyclic(struct sunxi_dma_chan *chan,
uint32_t buf_addr, uint32_t buf_len,
uint32_t period_len, enum dma_transfer_direction dir)
{
struct sunxi_dma_lli *l_item = NULL, *prev = NULL;
uint32_t periods = buf_len / period_len;
struct dma_slave_config *config = NULL;
uint32_t i = 0;
uint32_t __cpsr;
if ((NULL == chan && chan->cyclic) || (0 == buf_addr))
{
DMA_ERR("[dma] chan or buf_addr is NULL\n");
return HAL_DMA_STATUS_INVALID_PARAMETER;
}
__cpsr = hal_spin_lock_irqsave(&dma_lock);
if (chan->desc) {
struct sunxi_dma_lli *li_adr = NULL, *next = NULL;
li_adr = chan->desc;
chan->desc = NULL;
while (li_adr)
{
next = li_adr->vlln;
dma_free_coherent(li_adr);
li_adr = next;
}
}
config = &chan->cfg;
for (i = 0; i < periods; i++)
{
hal_spin_unlock_irqrestore(&dma_lock, __cpsr);
l_item = (struct sunxi_dma_lli *)dma_alloc_coherent(sizeof(struct sunxi_dma_lli));
if (!l_item)
{
return HAL_DMA_STATUS_NO_MEM;
}
__cpsr = hal_spin_lock_irqsave(&dma_lock);
memset(l_item, 0, sizeof(struct sunxi_dma_lli));
if (dir == DMA_MEM_TO_DEV)
{
sunxi_cfg_lli(l_item, __va_to_pa(buf_addr + period_len * i),
config->dst_addr, period_len, config);
l_item->cfg |= GET_DST_DRQ(config->slave_id) \
| SRC_LINEAR_MODE \
| DST_IO_MODE \
| SRC_DRQ(DRQSRC_SDRAM);
}
else if (dir == DMA_DEV_TO_MEM)
{
sunxi_cfg_lli(l_item, config->src_addr, \
__va_to_pa(buf_addr + period_len * i), \
period_len, config);
l_item ->cfg |= GET_SRC_DRQ(config->slave_id) \
| DST_LINEAR_MODE \
| SRC_IO_MODE \
| DST_DRQ(DRQSRC_SDRAM);
}
else if (dir == DMA_DEV_TO_DEV)
{
sunxi_cfg_lli(l_item, config->src_addr, \
config->dst_addr, period_len, config);
l_item->cfg |= GET_SRC_DRQ(config->slave_id) \
| DST_IO_MODE \
| SRC_IO_MODE \
| GET_DST_DRQ(config->slave_id);
}
prev = sunxi_lli_list(prev, l_item, chan);
}
prev->p_lln = __va_to_pa((unsigned long)chan->desc);
chan->cyclic = true;
#ifdef DMA_DEBUG
for (prev = chan->desc; prev != NULL; prev = prev->vlln)
{
sunxi_dump_lli(chan, prev);
}
#endif
hal_spin_unlock_irqrestore(&dma_lock, __cpsr);
return HAL_DMA_STATUS_OK;
}
hal_dma_status_t hal_dma_callback_install(struct sunxi_dma_chan *chan,
dma_callback callback,
void *callback_param)
{
if (NULL == chan)
{
DMA_ERR("[dma] chan is NULL\n");
return HAL_DMA_STATUS_INVALID_PARAMETER;
}
if (NULL == callback)
{
DMA_ERR("[dma] callback is NULL\n");
return HAL_DMA_STATUS_INVALID_PARAMETER;
}
if (NULL == callback_param)
{
DMA_ERR("[dma] callback_param is NULL\n");
return HAL_DMA_STATUS_INVALID_PARAMETER;
}
chan->callback = callback;
chan->callback_param = callback_param;
return HAL_DMA_STATUS_OK;
}
hal_dma_status_t hal_dma_slave_config(struct sunxi_dma_chan *chan,
struct dma_slave_config *config)
{
uint32_t __cpsr;
if (NULL == config || NULL == chan)
{
DMA_ERR("[dma] dma config is NULL\n");
return HAL_DMA_STATUS_INVALID_PARAMETER;
}
__cpsr = hal_spin_lock_irqsave(&dma_lock);
convert_burst(&config->src_maxburst);
convert_burst(&config->dst_maxburst);
memcpy((void *) & (chan->cfg), (void *)config, sizeof(struct dma_slave_config));
hal_spin_unlock_irqrestore(&dma_lock, __cpsr);
return HAL_DMA_STATUS_OK;
}
enum dma_status hal_dma_tx_status(struct sunxi_dma_chan *chan, uint32_t *left_size)
{
uint32_t i = 0;
struct sunxi_dma_lli *l_item = NULL;
enum dma_status status = DMA_INVALID_PARAMETER;
uint32_t __cpsr;
if (NULL == chan || NULL == left_size)
{
DMA_ERR("[dma] chan or left_size is NULL\n");
return HAL_DMA_STATUS_INVALID_PARAMETER;
}
__cpsr = hal_spin_lock_irqsave(&dma_lock);
if (chan->cyclic)
{
for (i = 0, l_item = chan->desc; i <= chan->periods_pos; i++, l_item = l_item->vlln)
{
if (NULL == l_item)
{
*left_size = 0;
status = DMA_COMPLETE;
goto unlock;
}
}
if (NULL == l_item)
{
*left_size = 0;
status = DMA_COMPLETE;
}
else
{
uint32_t pos = 0;
bool count = false;
pos = hal_readl(DMA_LLI_ADDR(chan->chan_count));
*left_size = hal_readl(DMA_CNT(chan->chan_count));
if (pos == LINK_END)
{
status = DMA_COMPLETE;
goto unlock;
}
for (l_item = chan->desc; l_item != NULL; l_item = l_item->vlln)
{
if (l_item->p_lln == pos)
{
count = true;
continue;
}
if (count)
{
*left_size += l_item->len;
}
}
status = DMA_IN_PROGRESS;
}
}
else
{
*left_size = hal_readl(DMA_CNT(chan->chan_count));
if (*left_size == 0)
{
status = DMA_COMPLETE;
}
else
{
status = DMA_IN_PROGRESS;
}
}
unlock:
hal_spin_unlock_irqrestore(&dma_lock, __cpsr);
return status;
}
hal_dma_status_t hal_dma_start(struct sunxi_dma_chan *chan)
{
uint32_t high = 0;
uint32_t irq_val = 0;
struct sunxi_dma_lli *prev = NULL;
uint32_t __cpsr;
if (NULL == chan)
{
DMA_ERR("[dma] chan is NULL\n");
return HAL_DMA_STATUS_INVALID_PARAMETER;
}
__cpsr = hal_spin_lock_irqsave(&dma_lock);
if (chan->cyclic)
chan->irq_type = IRQ_PKG;
else
chan->irq_type = IRQ_QUEUE;
high = (chan->chan_count + START_CHAN_OFFSET >= HIGH_CHAN) ? 1 : 0;
irq_val = hal_readl(DMA_IRQ_EN(high));
irq_val |= SHIFT_IRQ_MASK(chan->irq_type, chan->chan_count);
hal_writel(irq_val, DMA_IRQ_EN(high));
SET_OP_MODE(chan->chan_count, SRC_HS_MASK | DST_HS_MASK);
for (prev = chan->desc; prev != NULL; prev = prev->vlln)
{
hal_dcache_clean((unsigned long)prev, sizeof(*prev));
/* k_dcache_clean(prev, sizeof(*prev)); */
//k_dcache_clean(prev->src, prev->len);
//k_dcache_clean_invalidate(prev->dst, prev->len);
}
hal_writel(__va_to_pa((unsigned long)chan->desc), DMA_LLI_ADDR(chan->chan_count));
hal_writel(CHAN_START, DMA_ENABLE(chan->chan_count));
sunxi_dump_com_regs();
sunxi_dump_chan_regs(chan);
hal_spin_unlock_irqrestore(&dma_lock, __cpsr);
return HAL_DMA_STATUS_OK;
}
hal_dma_status_t hal_dma_stop(struct sunxi_dma_chan *chan)
{
uint32_t __cpsr;
if (NULL == chan)
{
DMA_ERR("[dma] chan is NULL\n");
return HAL_DMA_STATUS_INVALID_PARAMETER;
}
__cpsr = hal_spin_lock_irqsave(&dma_lock);
/*We should entry PAUSE state first to avoid missing data
* count witch transferring on bus.
*/
hal_writel(CHAN_PAUSE, DMA_PAUSE(chan->chan_count));
hal_writel(CHAN_STOP, DMA_ENABLE(chan->chan_count));
hal_writel(CHAN_RESUME, DMA_PAUSE(chan->chan_count));
if (chan->cyclic)
{
chan->cyclic = false;
}
hal_spin_unlock_irqrestore(&dma_lock, __cpsr);
return HAL_DMA_STATUS_OK;
}
hal_dma_status_t hal_dma_chan_free(struct sunxi_dma_chan *chan)
{
uint32_t high = 0;
unsigned long irq_val = 0;
uint32_t __cpsr;
if (NULL == chan)
{
DMA_ERR("[dma] chan is NULL\n");
return HAL_DMA_STATUS_INVALID_PARAMETER;
}
if (!chan->used)
{
return HAL_DMA_STATUS_INVALID_PARAMETER;
}
__cpsr = hal_spin_lock_irqsave(&dma_lock);
high = (chan->chan_count + START_CHAN_OFFSET >= HIGH_CHAN) ? 1 : 0;
irq_val = hal_readl(DMA_IRQ_EN(high));
irq_val &= ~(SHIFT_IRQ_MASK(chan->irq_type, chan->chan_count));
hal_writel(irq_val, DMA_IRQ_EN(high));
chan->used = 0;
hal_spin_unlock_irqrestore(&dma_lock, __cpsr);
sunxi_dma_free_ill(chan);
return HAL_DMA_STATUS_OK;
}
hal_dma_status_t hal_dma_chan_desc_free(struct sunxi_dma_chan *chan)
{
/* FIXME: Interrupt context cannot release memory in melis OS. */
if (hal_interrupt_get_nest() <= 0)
{
sunxi_dma_free_ill(chan);
return HAL_DMA_STATUS_OK;
}
/* Freeing memory in interrupt is not allowed */
return HAL_DMA_STATUS_ERR_PERM;
}
/* only need to be executed once */
void hal_dma_init(void)
{
uint32_t i = 0, high = 0;
memset((void *)dma_chan_source, 0, NR_MAX_CHAN * sizeof(struct sunxi_dma_chan));
for (i = 0; i < NR_MAX_CHAN; i++)
{
high = (i >= HIGH_CHAN) ? 1 : 0;
/*disable all dma irq*/
hal_writel(0, DMA_IRQ_EN(high));
/*clear all dma irq pending*/
hal_writel(0xffffffff, DMA_IRQ_STAT(high));
}
/* disable auto gating */
hal_writel(DMA_MCLK_GATE | DMA_COMMON_GATE | DMA_CHAN_GATE, DMA_GATE);
sunxi_dma_clk_init(true);
/*request dma irq*/
if (request_irq(DMA_IRQ_NUM, sunxi_dma_irq_handle, 0, "dma-ctl", NULL) < 0)
{
DMA_ERR("[dma] request irq error\n");
}
enable_irq(DMA_IRQ_NUM);
}